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APPROXIMATING COMMON FIXED POINTS OF TWO
ASYMPTOTICALLY QUASI-NONEXPANSIVE MAPPINGS
IN BANACH SPACES

ISA YILDIRIM AND MURAT OZDEMIR

Abstract. In this paper, we consider a composite iterative algorithm for approximating
common fixed points of two nonself asymptotically quasi-nonexpansive mappings and
we prove some strong and weak convergence theorems for such mappings in uniformly
convex Banach spaces.

1. Introduction

Let K be a nonempty subset of a real normed space E. A mapping T: K — K is said to be
nonexpansive if | Tx— Ty| <||x— y|| for all x, y € K and asymptotically nonexpansive if there
exists a sequence {u,}  [0,00), U, — 0 as n — oo such that | T"x - T"y|| < (1 + uy) | x - y| for
all x,ye K and n = 1. T is said to be uniformly L-Lipschitzian if there exists a real number
L>0suchthat |T"x—T"y| < L|x-yl| forall x,y € K and n > 1. The mapping T is said to be
quasi-nonexpansive if F(T):= {x€ X: Tx=x} # @ and | Tx - p| < |x - p| for all x € K and
p € F(T). T is said to be asymptotically quasi-nonexpansive mapping if F (T) # ¢ and there
exists a sequence {u,} < [0,00) with u, — 0 as n — oo such that | T"x - p| < (1 + up) |x - p||
forallxe K,pe F(T)and n=1.

From the above definition, it follows that; a nonexpansive mapping must be quasi-non-
expansive; an asymptotically nonexpansive mapping is uniformly L-Lipschitzian as well as
asymptotically quasi-nonexpansive. However, the converse of these statements is not true, in
general.

Iterative process for asymptotically nonexpansive self-mapping in Hilbert spaces and Ba-
nach spaces incluiding Mann-type and Ishikawa-type iteration process have been studied
extensively by many authors, see for example [4, 6, 9, 11, 13]. The class of asymptotically non-
expansive maps was introduced by Goebel and Kirk [3] as an important generalization of the
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class of nonexpansive maps. They [3] proved that if K is a nonempty closed convex bounded
subset of a real uniformly convex Banach space and T is an asymptotically nonexpansive self
mapping on K, then T has a fixed point.

A subset K of E is said to be a retract of E if there exists a continuous map P : E — K such
that Px = x, for all x € K. Every closed convex subset of a uniformly convex Banach space is
aretract. Amap P: E — E is said to be a retraction if P? = P. It follows that, if a map P is a
retraction, then Pz = z for all z in the range of P.

Recently, Chidume [1] introduce the concept of nonself asymptotically nonexpansive
mappings, which is the generalization of asymptotically nonexpansive mappings. Similarly,
the concept of nonself asymptotically quasi-nonexpansive mappings can also be defined as
the generalization of asymptotically quasi-nonexpansive mappings and nonself asymptoti-
cally nonexpansive mappings. These mappings are defined as follows:

Definition 1.1. Let K be a nonempty subset of a real normed space E. Let P: E — K be a
nonexpansive retraction of E onto K and T : K — E be a nonself mapping.

(1) T issaid to be a nonself asymptotically nonexpansive mapping, if there exists a sequence

{u,} < 10,00), u,, — 0 as n — oo such that
[TPD)" ' x-—T@D" y|<Q+uy|x-y|

forallx,ye Kand n=1;

(2) Tissaid to be anonself uniformly L-Lipschitzian mapping, if there exists a constant L > 0
such that
[T tx-T@ED)" 'y|<L|x-y|

forallx,ye Kand n=1;

(3) T is said to be a nonself asymptotically quasi-nonexpansive mapping, if F(T) # ¢ and
there exists a sequence {u,} c [0,00), u, — 0 as n — oo such that

[TPD" P x—p|<@+uy)|x-p|
forallx,ye K,pe F(T)andn=1.
By studying the following iteration process (Mann-type iteration)

x1 €K, Xpe1=P((L—ap) xp+an,T(PT)" xp) (1.1)
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Chidume, Ofoedu and Zeyege [1] studied the strong and weak convergence theorems for
nonself asymptotically nonexpansive mapping 7. Wang [15] generalizes the iteration process
(1.1) as follows (Ishikawa-type iteration):

x1 €K,
Xne1 = P (A= an) X+ an Ty (PT)" ' yy), (1.2)
Yn=P((1=Bn) Xn+Pn T (PT)" ' x,), n>1,

where T}, T» : K — E are nonself asymptotically nonexpansive mappings. And he also got
several convergence theorems of the iterative scheme (1.2) under proper conditions.

In addition, Petryshn and Williamson [7] proved a sufficient and necessary condition for
the Mann iterative sequences to converge to a fixed point for quasi-nonexpansive mappings.
Ghosh and Debnath [2] extended the result of [7] and gave a sufficient and necessary con-
ditions for strong convergence of Ishikawa-type iteration process to a fixed point of a quasi-
nonexpansive mapping in a real Banach space. Qihou [8] extended the resul of Ghosh and
Debnath to asymptotically quasi-nonexpansive mappings. Shahzad and Udomene [12] es-
tablished necessary and sufficient conditions for the convergence of the Ishikawa-type iter-
ative sequences involving two asymptotically quasi-nonexpansive mappings to a common
fixed point of the mappings defined on a nonempty closed convex subset of a Banach space.

Recently, Thianwan [14] studied the convergence of an projection type Ishikawa iteration
process to a common fixed point of two nonself asymptotically nonexpansive mapppings.
This scheme defined as follows:

Let K be a nonempty convex subset of a real normed space E. Let P: E — K be a nonex-
pansive retraction of E onto K and T3, T» : K — E be two nonself asymptotically nonexpansive
mappings.

x1 €K
Xne1=P((A=an) yn+anTi (PT)" " yn), (1.3)
Yn=P ((1 - ,Bn) Xn+PnT> (PTp)"! xn) ,h=1,

where {a,} and {8, } are appropriate real sequences in [0, 1). In the iterative schemes (1.3) and
(1.2),if Ty = T» = T and B, = 0 for all n = 1, then this schemes reduce to (1.1). The iterative
schemes (1.2) and (1.3) are not general each others. That is, one of them are not obtain from
the other. Thianwan [14] gave the following strong and weak convergence theorems.

Theorem 1.2. ([14]) Let E be a uniformly convex Banach space and K a nonempty closed con-
vex nonexpansive retract of E with P as a nonexpansive retraction. T1,T, : K — E be two
asymptotically nonexpansive nonself mappings of K satisfying condition (A) with sequences
{kn}, 1} < [1,00) such that Y2, (ky—1) <00, Y%, (I, —1) < 0o and F(Ty) N F(T2) # @. Sup-
pose that {a,} and {f,}are real sequences in [¢,1—¢] for some € € (0,1). Then the sequences
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{xn} and {y,} defined by the iterative scheme (1.3) converge strongly to a common fixed point
of Ty and To.

Theorem 1.3. ([14]) Let E be a uniformly convex Banach space which satisfies Opial’s condition
and K a nonempty closed convex nonexpansive retract of E with P as a nonexpansive retrac-
tion. Ty, T» : K — E be two asymptotically nonexpansive nonself mappings of K with sequences
{kn}, {ln} < [1,00) such that Y2 | (k1) <00, ¥, (I, — 1) < oo and F(T1) N F (T2) # @. Sup-
pose that {a,} and {f,}are real sequences in [,1 - €] for some € € (0,1). Let {x,} and {y,} be
the sequences defined by (1.3). Then {x,} and {y,} converge weakly to a common fixed point of
Ty and T.

The purpose of this paper is to establish:

(1) necessary and sufficient conditions for the convergence of the projection type Ishikawa
iteration process involving two nonself asymptotically quasi-nonexpansive mappings to
a common fixed point of the mappings defined on a nonempty closed convex subset of a
Banach space, and

(2) a sufficient condition for the convergence of the projection type Ishikawa iteration pro-
cess involving two uniformly L-Lipschitzian, nonself asymptotically quasi-nonexpansive
mappings to a common fixed point of the mappings defined on a nonempty closed con-
vex subset of a uniformly convex Banach space.

Our results are significant generalizations of the corresponding results of Petryshyn and
Williamson [7], Chidume, Ofoedu and Zeyege [1], Thianwan [14].

2. Preliminaries

Let E be a real normed linear space. The modulus of convexity of E is the function 6 :
(0,2] — [0,1] defined by

55 (@) =int{1-| 2| :0xll= |y = L& = ey}

E is called uniformly convex if and only if 6 (¢) > 0 for all € € (0, 2].

A mapping T : K — K is said to be semicompact if, for any bounded sequence {x,} in K
such that || x, — Tx,ll — 0 as n — oo, there exists a subsequence say {xn j} of {x;} such that
{xnj} converges strongly to some x* in K. A mapping T with domain D (T) and range R (T)
in E is said to be demiclosed at p if whenever {x,,} is a sequence in D (T) such that x,, — x* €
D(T) and Tx;, — p then Tx* = p.



APPROXIMATION COMMON FIXED POINTS 23

A Banach space E said to satisfy Opial’s condition if for any sequence {x,} in E, x, — x
converges weakly implies that

liminf [ x, — x|l <liminf || x, - y|,
n—oo n—oo

forall ye Eand y # x.

Two mappings T}, T : K — Ewith F:=F(T)NF(Ty) ={xe K: Ty x=Tox = x} # @ is said
to satisfy condition (A) [5] if there exists a nondecreasing function f : [0,00) — [0,00) with
f(0)=0, f () >0forall £> 0 such that

lx—Tixll = f(d(x,F)) or | x—Tox| = f (d (x,F))

for all x € K, where d (x, F) = inf{|x— q| : g € F}.

In what follows, we will state the following useful lemmas:

Lemma 2.4.([13]) Let {A,} and{o ,} be sequences of nonnegative real numbers such that 1,41 <
Ap+oy foralln =1, and 3.5 0, < 0o, thenlim, .o, A, exists. Moreover, if there exists a

subsequence{An;} of {An} such that A,; — 0 as j — oo, then A, — 0 as n — oo.

Lemma 2.5. ([11]) Let E be a real uniformly convex Banach spaceand0< p < t, < g <1 forall
positive integers n = 1. Suppose that {x,} and {yn}are two sequences of E such that

limsup | x,ll <, limsup | y,| <sand im ||tpx,+ Q1 —t,) yul| =
n—oo n—oo n—oo

hold for some s = 0, thenlim,—.c || X, — yn | = 0.

3. Main results

In this section, we shall prove convergence of the iteration scheme (1.3) to a common
fixed point of two nonself asymptotically quasi-nonexpansive mappings. Also, we always as-
sume F = F(T)) n F(T») # ¢. In order to prove our main results, the following lemmas are
needed.

Lemma 3.1. Let E be a real Banach space, K be a closed convex nonempty subset of E which
is also a nonexpansive retract with retraction P. Let Ty, T, : K — E be two nonself asymp-
totically quasi-nonexpansive mappings with sequences (respectively), {u,},{v,} < [0,00) such
that 57, up < 0o and }.57 , v, < co. Suppose that {a,} and {,Bn} are two real sequences in

[0,1),x* € F and {x,} is defined by (1.3). Then, {x,} is bounded and the limitslim,_., | x,, — x*||
andlim,,_.oo d (x,, F) exists, wherelim,,_.oo d (x;,, F) = inf v ep || x;, — x* || .
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Proof. Let x* € FWe know that ¥ % , u,, <oo, X2, v, < co. Using (1.3), we have

[y =" = 1P (1= Bu) 0+ BuTo (PT)"™ 1)~ P ()]
< (1= ) [ = | + B | T2 (P T ="
< (1= ) [ =+ B (-4 v [ =

< 1+vp) |xn—x7|. (3.1)
From this and by (1.3), we have also

|1 =2 = [P (1 = @) yu+ @n Ty P ya) = P (x7)]
<(U-ap) |yn—x*|+an| T (PTY" ! yu—x*|
<A -ap) |yn—x"|+anQ+up) || yn—x*|
= —ap+an+anup)||y,—x*|
< (L+up) | yn— x|
< (L+up) A+ vy) | xn—x7|

= (L4 Un+ vn+ Upvp) |20 — X7

Un+Up+Uyv
Se(rl n nn)

x-

Yol (Up+ v +unvy)

e

x1—x*. 3.2)

Since Y57, (un + vy + Uy vy) < 0o, it follows that {x,} is bounded. Thus, there exists con-
stant M > 0 such that || x,, — x*|| < M for all n = 1. Then, we obtain

X1 = x*|| < |30 = x* || + M (un + vy + unvp). 3.3)
Since (3.3) is true for each x* in F. This implies that

d(xps1, F)<d Xy, F)+ M (U, + v, + uyvy).

From Lemma 2.1, we obtain that lim,_ |x, — x*|| and lim,,_.o d (x;,, F) exists. This
completes the proof. O

The above lemma generalizes Theorem 3.5 of Chidume, Ofoedu, Zeyege [1] and Lemma
2.1 of Thianwan [14] for nonself asymptotically nonexpansive mappings to nonself asymptot-
ically quasi-nonexpansive mappings.

Theorem 3.2. Let K be a nonempty closed convex subset of a real Banach spaceE. Let Ty, T> :

K — E be two nonself asymptotically quasi-nonexpansive mappings with sequences {u,},{v,}, {an}
and {Bn} asin Lemma 3.1. Suppose that F # @ and {x,} is defined by (1.3). Then {x,} converges

to a common fixed point of Ty and T, if and only ifliminf,,_. d (x,, F) = 0.
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Proof. It suffices that we only prove the sufficiency. That is, let liminf,_. d (x,, F) = 0. Then,
the proof follows as in the proof of Theorem 2.4 of [10].

Now, we establish some weak and strong convergence results for the iterative scheme
(1.3) by removing the condition liminf,_., d (x;, F) = 0 from the results obtained in above;
for this we have to consider the class of uniformly L-Lipschitzian and nonself asymptotically
quasi-nonexpansive mappings on a uniformly convex Banach space.

For our next theorems, we start by proving the following lemma which will be needed in
the sequel.

Lemma 3.3. Let E be a uniformly convex Banach space and K be a closed convex nonempty
subset of E which is also a nonexpansive retract with retraction P. Let Ty, T> : K — E be two uni-
formly L-Lipschitzian, nonself asymptotically quasi-nonexpansive mappings with sequences
{tn},{vn} < [0,00) such that Y u, < oo and Y52, v, < co. Let {an} and {f,} be real se-
quences in [g,1—¢], for somee € (0,1). Suppose {x,} is generated iteratively by (1.3). Then,

lim ||x,— Tix,ll=0= lim ||x,;,— Tox,l.
n—oo n—oo

Proof. For any x* € F, by Lemma 3.1, we know that lim;,_. [lx, —x*|| exists. Assume
lim,—oo X, — x* || = b for some b = 0. From (3.1) and (3.2), we get

[yn—x*|| < @+vn) || xn—x*| (3.4)

and
[T Ty —x*|| < A+ un) [|yn—x*| - (3.5)

Taking limsup on both sides in the inequalities (3.4) and (3.5), we obtain

limsup |y, —x*||<b (3.6)
n—oo
and
limsup || T3 (PT))" !y, — x*| <limsup ||y, — x*|| < b. (3.7)
n—oo n—oo

And also, by using (1.3) we get that

b

lim ||x, —x*|| = lim ||xps1 — X7
n—oo n—oo

Tim [[P(1= @) yn+ @ T (PT)" ™ y, = P (7))

lim [|(1-ap) (yn = x*) + an (T PT)" ™ yn = x7)|. (3.8)
This together with (3.6), (3.7) and Lemma 2.5 imply that

1im ||y, = T (PT))" "y =0, (3.9)
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Ontheotherhand, || T2 (PT2)" ' x, — x*|| < (1 + vy) [ X, — x* |, taking lim sup on both sides
in this inequality, we have

limsup || T2 (PT2)" ! x, — x*|| <limsup || x, — x*|| < b. (3.10)
n—oo n—oo

From (1.3) we get that

|1 = x| < |P(A = @n) yn+@n Ty (P yy) = x* |
<(U-ap) |yn— x| +an | T P yu—x*
<(U=ap) |yn—x* |+ an | T PT" 7 yu—yu| +an | yn—x*|
< lyn=x"[+ 70 PTO" v =yl -

Putting lim;,_.o, | X541 — x* || = b in (3.8), we have
bSIi,I,IliC,I.}f||yn_x*||' (3.11)
Combining (3.6) and (3.11), we obtain
lim lyn—x*| =D. (3.12)
It follows from (3.12) that

b= lim [y —x"| < lim (1=, (ta = ")+ B (Ta (PTe)" s °)]

< lim ||x,—x*||=b,
n—oo

and so
lim [[(1=Bn) (xn = x*) + B (T2 (PT)" ' x, - x*)| = D.

n—oo

Using (3.10) and Lemma 2.5, we obtain

lim |x, - T2 (PT2)" " x,| = 0. (3.13)
n—oo
From y, =P ((1-Bn) xn+ BnT2 (PT2)" ! x,) and (3.13), we have

lyn=xnll = |P (1= Bn) xn+ BnT2 (PT2)" " xp) = x|
< (1= Bn) Gen = xn) + B (T2 (PT2)" ™ xp = ) |
< (1= Bn) 1xn = xpll + B | To (PT2)" " X — x|
< | T (PT)" ™! xp = x|

and it implies that
lim ||y, — xa| =0. (3.14)
n—oo
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Since T uniformly L-Lipschitzian mapping, it follows that
”xn -Th (PTl)n_l xn” < ”xn —Ynt+tyn—T (PTl)n_l xn”
< [0 =yull + lyn = T (PT)" " x|
<|lxn=yul + |yn—TL PTY"  yu| + | T (PT™  yp— Ty (PT)" ' x|
< [ =yull + |ya = Ta PTO" yu | + L]| 0 =
<A+ D ||x0=yu| + | yn- T PTY™ " ya].
Thus, from (3.9) and (3.14) we obtain
lim |73 (PT)" ' X, — x| = 0. (3.15)
n—oo
Next, we shall prove that lim;_. | x,;, — T1 x|l = 0. Since
lxtp = Taxull < || = Ty (PTD™ || + || T (PT)™ ™ = T3 (PT)™ |
+[ T (PO yu = Taxa |
< [xn = T (PTO" ™ x| + L 0 =y | + LI T2 (PTO" 2 Y=y | + [ = xa )
= [lon = 1o T | + L[ x5 = yul| + L 0 = yu | + L Ta PTO" 2 = |
this together with (3.9), (3.14) and (3.15) imply that
lim || x;,, — Ty x| = 0.
n—oo
Moreover,
Ixn = Toxnll < || xn = To (PT2)" ™ || + || T2 (PT2)" " 0 — Tox|
< %0 = T2 (PT)" x| + L|| T2 (PT2)" 2 x5 — x| -
Thus, since T, uniformlyL-Lipschitzian mapping and by the equality (3.13) we have
lim | x,, — To x| =0.
n—oo
This completes the proof. U

Now we give some strongly convergence theorems and proofs. Note that, the condition
(A) is weaker than the compactness of the domain of the mappings.

Theorem 3.4. Let E be a uniformly convex Banach space and K be a closed convex nonempty
subset of E which is also a nonexpansive retract with retraction P. Let Ty, T» : K — E be two
uniformly L-Lipschitzian, nonself asymptotically quasi-nonexpansive mappings of K satisfy-
ing condition (A) with sequences {u,},{v,},{a,} and {,6,,} as in Lemma3.3. Then the sequence
{x,} defined by the iterative scheme (1.3) converge strongly to a common fixed point of T\ and
T>.
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Proof. From Lemma 3.3, we know that
lim |x, - Tix,Il=0= lim [lx,— Tox,l.
n—oo n—oo
Since T} and T> satisfies condition (A"), we get that
lim f(d(x,,F)) < lim [[x, - T1x,ll or lim f(d(xp, F)) < lim |lx, — Tox,ll.
n—oo n—oo n—oo n—oo

Therefore, lim,,_., d (x,;, F) = 0. For any given ¢ > 0, there exists x* € F and ng > 0 such
that for all n = ng
Jen =" <
2
from Lemma 3.1. It implies that
€ €
1nem = Xnll < | Xnem = [ + [0 - 27| < 5+ 5 =¢
for all n = ng and m = 0. Thus, {x,} is a Cauchy sequence. Since E is complete, we can obtain
{x,} is convergent. That s, lim,_., x, = x*. Since K is closed, so we get x* € K. Now, we prove

that x* € F. We can write the following inequality
|d(x*,F)—d (xp, F)| < || x* — x|

for all n = 1. Since lim,_ X, = x* and lim,_., d (x,, F) = 0, we get that d (x*,F) = 0. So,
x* € F. Therefore {x,} converges strongly to a common fixed point x* € F. This completes the
proof. O

Theorem 3.5. Let E be a uniformly convex Banach space and K be a closed convex nonempty
subset of E which is also a nonexpansive retract with retraction P. Let T, T» : K — E be two
uniformly L-Lipschitzian, nonself asymptotically quasi-nonexpansive mappings of K with se-
quences {un},{v,}, {a,} and {,Bn} as in Lemma 3.3. Let {x,} be the sequences defined by (1.3).
If one of Ty and T, is semicompact, then {x,} converge strongly to a common fixed point of T,
and T>.

Proof. We may assume that one of T; and 7% is semicompact. Since lim;_oo X, — T1 x5 =0
and lim;,_ X, — Tox, |l = 0 from Lemma 3.3, then there exists a subsequence {xn].} c {x,}
such that x,; converges strongly to x*. Hence from Lemma 3.3,

[x* = Tix*|| = lim ||x,, — Tixn, || =0, i=1,2.
n—oo 7 J

This implies that x* € F. Thus lim,,_., [l X, — x*|| exists by Lemma 3.1. Since the subse-
quence {xp,} of {x,} such that {x,,} converges strongly to x*. Then {x,} converges strongly
to a common fixed point x* € F. This completes the proof.

Finally, we prove weak convergence theorem given as follows:
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Theorem 3.6. Let E be a uniformly convex Banach space and let K be a closed convex nonempty
subset of E which is also a nonexpansive retract with retraction P. Let Ty, T» : K — E be two
uniformly L-Lipschitzian, nonself asymptotically quasi-nonexpansive mappings of K with se-

quences{un},{vn},{a,} and{B,} asin Lemma3.3. Let {x,} be the sequences defined by (1.3). If
E satisfies Opial’s condition and each I — T;,i = 1,2, is demiclosed at 0, then the sequence {x,}

converge weakly to a common fixed point of T1 and T.

Proof. From Lemma 3.1, {x,} is bounded and lim,_ |x, — x*| exists. Since a uniformly
convex Banach space is reflexive, there exists a subsequence {xnj} of {x,} converging weakly
to some y* € K. From Lemma 3.3, lim; .o || X4, = TiXy, | = 0 and I - T; is demiclosed at 0
for i = 1,2. Hence, we have T;y* = y*. Thatis, y* € F. Now, we show that {x,} converges
weakly to y*. So, we suppose that another subsequence {x,,} of {x,} converging weakly to
some z* € K. Again, we can prove that z* € F, as above. Next, we show that y* = z*. Assume
y* # z*. Then, by using the Opial’s condition, we obtain

Hm [l =y = lim o, =y

nj
< Jim [, "] = fim 02|
= tim [, =]

< lim [, —y*| = Jim [, -y
which is a contradiction, hence y* = z*. Then {x,} converges weakly to a common fixed point
of T; and T,. This completes the proof. O

Remark 3.7.

(1) Since an asymptotically nonexpansive mapping is uniformly L-Lipschitzian and asymp-
totically quasi-nonexpansive, the uniformly L-Lipschitz and nonself asymptotically quasi-
nonexpansive mappings in Lemma 3.3 can be replaced by a asymptotically nonexpansive
mappings. Thus, Lemma 3.3 extends Lemma 2.5 of Thianwan [14] for two asymptotically
nonexpansive mappings to two uniformly L-Lipschitz and nonself asymptotically quasi-

nonexpansive mappings.

(2) Theorem 3.4 and Theorem 3.6 contain as special cases, Theorem 2.5 and Theorem 2.6 of
Thianwan [14], respectively.

(3) In the iterative scheme (1.3), if T, = T, = T and f,, = 0 for all n = 1, then (1.3) reduces
to (1.1). Thus Theorem 3.5 contains as special cases, Theorem 3.7 of Chidume, Ofoedu,
Zegeye [1].
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