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n-harmonicity, minimality, conformality and

cohomology

Bang-Yen Chen and Shihshu Walter Wei

Abstract. By studying cohomology classes that are related with n-harmonic

morphisms and F -harmonic maps, we augment and extend several results on F -

harmonic maps, harmonic maps in [1, 3, 15], p-harmonic morphisms in [23], and

also revisit our previous results in [10, 11, 29] on Riemannian submersions and n-

harmonic morphisms which are submersions. The results, for example Theorem 3.2

obtained by utilizing the n-conservation law (2.6), are sharp.

Keywords. p-harmonic maps, n-harmonic morphism, cohomology class, minimal submani-
fold, submersion

1 Introduction

Harmonicity and its variants are related with the topology and geometry of manifolds. It was
shown in [27] that homotopy classes can be represented by p-harmonic maps (see, e.g. [29], for
definition and examples of p-harmonic maps):

Theorem A. If Nn is a compact Riemannian n-manifold, then for any positive integer i, each
class in the i-th homotopy group πi(N

n) can be represented by a C1,α p-harmonic map u0 from
an i-dimensional sphere Si into Nn minimizing p-energy in its homotopy class for any p > i.

On the other hand, B.-Y. Chen established in [7] the following result involving Riemannian
submersion, minimal immersion, and cohomology class.

Theorem B. ([7]) Let π : (Mm, gM ) → (Bb, gB) be a Riemannian submersion with minimal fibers
and orientable base manifold Bb. If Mm is a closed manifold with cohomology class Hb(Mm,R) =
0, then the horizontal distribution H of the Riemannian submersion is never integrable. Thus the
submersion π is never non-trivial.

Whereas p-harmonic maps represent homotopy classes, B.-Y. Chen and S.W. Wei connected
the two seemingly unrelated areas of p-harmonic morphisms and cohomology classes in the fol-
lowing.
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Theorem C. ([10, 11]) Let u : (Mm, gM ) → (Nn, gN ) be an n-harmonic morphism which is
a submersion. If Nn is an orientable n-manifold and Mm is a closed m-manifold with n-th
cohomology class Hn(Mm,R) = 0, then the horizontal distribution H of u is never integrable.
Hence the submersion u is always non-trivial.

This recaptures Theorem B when π : Mm → Bb is a Riemannian submersion with minimal
fibers and orientable base manifold Bb. While a horizontally weak conformal p-harmonic map
is a p-harmonic morphism (cf. e.g., [11, Theorem 4]), p-harmonic morphism is also linked to
cohomology class as follows.

Theorem D. ([10, 11]) Let u : (Mm, gM ) → (Nn, gN ) be an n-harmonic morphism which is a
submersion. Then the pull back of the volume element of the base manifold Nn is a harmonic
n-form if and only if the horizontal distribution H of u is completely integrable.

Following the proofs given in [10, 11], and by applying a characterization theorem of a p-
harmonic morphism from [4, 6], and [29, Theorem 2.5], we seek a dual version of Theorem D. In
particular, p-harmonic maps and cohomology classes are interrelated in [29] as follows.

Theorem E. Let Mm be a closed m-manifold and u : (Mm, gM ) → (Nn, gN ) be an n-harmonic
map which is a submersion. If Mm is a closed m-manifold and the horizontal distribution H of
u is integrable and u is an n-harmonic morphism, then we have Hn(M,R) ̸= 0.

Theorem F. ([29]) Let u : (Mm, gM ) → (Nn, gN ) be an n-harmonic map which is a submersion
such that the horizontal distribution H of u is integrable. If Mm is a closed manifold with
cohomology class Hn(Mm,R) = 0. Then u is not an n-harmonic morphism. Thus the submersion
u is always nontrivial.

The purpose of this paper is to point out the underlying essence of the foregoing Theorems
C, D, E, and F is an application of stress-energy tensor and a conservation law. The results, for
example Theorem 3.2 obtained by utilizing the n-conservation law (2.6), are sharp.

2 Preliminaries

2.1 Submersions

A differential map u : (Mm, gM ) → (Nn, gN ) between two Riemannian manifolds is called a
submersion at a point x ∈ Mm if its differential dux : Tx(M

m) → Tu(x)(N
n) is a surjective linear

map. A differentiable map u that is a submersion at each point x ∈ Mm is called a submersion.
For each point x ∈ Nn, u−1(x) is called a fiber. For a submersion u : M → N , let Hx denote
the orthogonal complement of Kernel

(
dux : Tx(M

m) → Tu(x)(N
n)
)
. Let H = {Hx : x ∈ Mm}

denote the horizontal distribution of u.

A submersion u : (Mm, gM ) → (Nn, gN ) is called horizontally weakly conformal if the re-
striction of dux to Hx is conformal, i.e., there exists a smooth function λ on Mm such that

u∗gN = λ2gM |H or gN
(
dux(X), dux(Y )

)
= λ2(x)gM (X,Y ) (2.1)

for all X,Y ∈ Hx and x ∈ Mn. If the function λ in (2.1) is positive, then u is called horizontally
conformal and λ is called the dilation of u. For a horizontally conformal submersion u with
dilation λ, the energy density of u is eu = 1

2nλ
2 (cf. (2.2)).
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A horizontally conformal submersion with dilation λ ≡ 1 is called a Riemannian submersion.
Recall that a k-form ω on a compact Riemannian manifold is called harmonic if ω is both closed
and co-closed, i.e., dω = δω = 0.

In [29, 4], generalizing the work of P. Baird and J. Eells for the case n = 2, and the necessary
condition for the fibers being minimal, S. W. Wei linked p-harmonicity for every p > 1, and P.
Baird and S. Gudmundsson linked n-harmonicity, n = p = dimN with minimal fibers as follows.

Theorem 2.1 ([29], Theorem 2.5 ). Let u : M → N be a Riemannian submersion. Then u is a
p-harmonic map, for every p > 1, if and only if all fibers u−1(y) , y ∈ N are minimal submanifolds
in M .

Proposition 2.1 ([29], Propostion 2.4 ). Let u : M → N be a Riemannian submersion. Then u
is a p-harmonic morphism, for every p > 1, if and only if all fibers u−1(y) , y ∈ N are minimal
submanifolds in M .

The case p = 2 in Theorem 2.1 and Proposition 2.1 are due to Eells-Sampson [16].

Theorem 2.2 (P. Baird and S. Gudmundsson [4], Corollary 2.6 ). If u : (Mm, gM ) → (Nn, gN )
is a horizontally conformal submersion from a Riemannian manifold Mm onto a Riemannian
manifold Nn, then u is n-harmonic if and only if the fibers of u are minimal in Mm.

Remark 1. (i). The results of linking p-harmonicity for every p > 1, with minimal fibers in
Theorem 2.1 can be extended to p = 1 = n with minimal fibers. We refer to the celebrated work
of E. Bombieri - E. De Gorgi - E. Jiusti on minimal cones and the Bernstein problem ([5]), S.W.
Wei on 1-harmonic functions ([28]), P. Baird - S. Gudmundsson on p-harmonic maps and minimal
submanifods ([4]), Y.I. Lee - S.W. Wei - A.N. Wang on a generalized 1-harmonic equation and
the inverse mean curvature flow ([21]), etc. (ii). We also note that utilizing symmetry, Wu-Yi
Hsiang pioneered the study of the inverse image of minimal submanifolds being minimal under
appropriate conditions ([18]), which marked the birth of equivariant differential geometry (cf. e.g.
W.Y. Hsiang - H.B. Lawson [19], S.W. Wei [26], etc.).

2.2 F - and p-harmonic morphisms

Let u : (Mm, gM ) → (Nn, gN ) be a differential map between two Riemannian manifolds M and
N . Denote eu the energy density of u, which is given by

eu =
1

2

m∑
i=1

gN
(
du(ei), du(ei)

)
=

1

2
|du|2 , (2.2)

where {e1, · · · , em} is a local orthonormal frame field on Mm and |du| is the Hilbert-Schmidt
norm of du, determined by the metric gM of M and the metric gN of Nn. The energy of u,
denoted by E(u), is defined to be

E(u) =

∫
M

eu dvg.

A smooth map u : Mm → Nn is called harmonic if u is a critical point of the energy functional
E with respect to any compactly supported variation.

Let F : [0,∞) → [0,∞) be a strictly increasing function with F (0) = 0 and let u : (M, gM ) →
(N, gN ) be a smooth map between two compact Riemannian manifolds. Then the map u : M → N
is called F -harmonic if it is a critical point of the F -energy functional:

EF (u) =

∫
M

F

(
|du|2

2

)
dvg. (2.3)
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In particular, if F (t) = 1
p (2t)

p
2 , then the F -energy EF (u) becomes p-energy, and its critical point

u is called p-harmonic map. A map u : (Mm, gM ) → (Nn, gN ) is a p-harmonic morphism if for
any p-harmonic function f defined on an open set V of Nn, the composition f ◦ u is p-harmonic
on u−1(V ).

2.3 Stress-Energy tensor

Let (Mm, g) be a smooth Riemannian m-manifold. Let ξ : E → Mm be a smooth Riemannian
vector bundle over (Mm, g) , i.e. a vector bundle such that at each fiber is equipped with a
positive inner product ⟨ , ⟩E . Set Ap(ξ) = Γ(ΛpT ∗M ⊗ E) the space of smooth p-forms on
Mm with values in the vector bundle ξ : E → Mm.

For ω ∈ Ap(ξ), set |ω|2 = ⟨ω, ω⟩ defined as in ([13, (2.3)],). The authors of [20] defined the
following EF,g-energy functional given by

EF,g(ω) =

∫
Mm

F

(
|ω|2

2

)
dvg

where F : [0,+∞) → [0,+∞) is as before.

The stress-energy associated with the EF,g-energy functional is defined as follows:

SF,ω(X,Y ) = F

(
|ω|2

2

)
gM (X,Y )− F ′

(
|ω|2

2

)
u∗gN (iXω, iY ω) (2.4)

where iXω is the interior multiplication by the vector field X given by

(iXω)(Y1, . . . , Yp−1) = ω(X,Y1, . . . , Yp−1)

for ω ∈ Ap(ξ) and any vector fields Yl on Mm, 1 ≤ l ≤ p− 1.

When F (t) = t and ω = du for a map u : Mm → Nn, SF,ω is just the stress-energy tensor
introduced in [3]. And when F (t) = 1

n (2t)
n
2 and ω = du for a map u : Mm → Nn, SF,ω is the

n-stress energy tensor Sn given by

Sn =
1

n
|du|ngM − |du|n−2u∗gN . (2.5)

Definition 1. ω ∈ Ap(ξ) (p ≥ 1) is said to satisfy an F -conservation law if SF,ω is divergence
free, i.e., the (0, 1)-type tensor field divSF,ω vanishes identically (i.e., divSF,ω ≡ 0).

Definition 2.1. ω ∈ Ap(ξ) (p ≥ 1) is said to satisfy an F -conservation law if SF,ω is divergence
free, i.e., the (0, 1)-type tensor field divSF,ω vanishes identically (i.e., divSF,ω ≡ 0).

The n-conservation law is given by

div(Sn) = 0 (2.6)

(cf. [13, 22] for details), in which coarea formula was first employed by Y.X. Dong and S.W.
Wei to derive monotonicity formulas, vanishing theorems, and Liouville theorems on complete
noncompact manifolds from conservation laws.
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3 Main Theorems and Their Proofs

Assume that dimMm = m and dimNn = n.

Theorem 3.1. Let u : (Mm, gM ) → (Nn, gN ) be a non-constant map. Then the n-stress tensor
Sn = 0 if and only if m = n and u is conformal.

Proof. If Sn = 0, then

u∗gN =
1

n
|du|2gM = λ2gM (3.1)

in the region du ̸= 0, where λ is the dilation and thus

0 = trace Sn =
1

n
|du|n trace gM − |du|n−2 trace u∗gN

= en m− nen

= (m− n) en,

(3.2)

where en is the n-energy density of u given by en = 1
n |du|

n. Hence, we get m = n.

Conversely, if u∗gN = λ2gM and m = n, then we find

|du|2 = mλ2,
1

n
|du|n =

1

n
(mλ2)

n
2 .

Therefore, we obtain

Sn = m
n−2
2

(m− n)

n
λngM = 0, (3.3)

which shows that the n-stress tensor Sn vanishes identically.

Theorem 3.2. If m > n and u : (Mm, gM ) → (Nn, gN ) is an n-harmonic and conformal map,
then u is homothetic.

Proof. If u is n-harmonic, then it follows from [13, Corollary 2.2] that u satisfies n-conservation
law, i.e., div(Sn) = 0.

In virtue of Theorem 3.1 and (3.3), with these hypotheses, we find

0 = div(Sn) =

(
m

n−2
2

m− n

n

)
div(λngM ) =

(
m

n−2
2

m− n

n

)
⟨d(λn), gM ⟩. (3.4)

Thus, it follows from the assumption m > n that λ is a constant. Therefore, u is homothetic.

Theorems 3.2 is sharp in dimensions m > n. That is, if m = n, then the results no longer
hold. Counterexamples can be provided and based on the fact that a conformal map between
equal dimensional n-manifolds, such as stereographic projections u : En → Sn is n-harmonic, but
u is not homothetic (cf. [30, 23]). In fact, Y. L. Ou and S.W. Wei proved the following:

Theorem G. ([23]) Let u : (Mm, gM ) → (Nn, gN ) be a non-constant map between Riemannian
manifolds with dimM = dimN = n ≥ 2. Then u is an n-harmonic morphism if and only if u is
weakly conformal.

While Theorems 3.2 on the one hand, augments Theorem G, on the other hand, Theorems
3.1 and 3.2 generalize the work of J. Eells and L. Lemaire ([15]) in which n = 2. Furthermore,
Theorems 3.1 and 3.2 augment a theorem of M. Ara in [1] for the case the zeros of (n− 2)F ′(t)−
2tF ′′(t) are being isolated for horizontally conformal F -harmonic maps. Hence we obtain:
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Theorem 3.3. Let u : (Mm, gM ) → (Nn, gN ), m > n, be an F -harmonic map, which is hori-
zontally conformal with dilation λ.

Case 1. Assume that the zeros of (n − 2)F ′(t) − 2tF ′′(t) are isolated. Then the following three
properties are equivalent:

(1) The fibers of u are minimal submanifolds.

(2) grad(λ2) is vertical.

(3) The horizontally distribution of u has mean curvature vector grad(λ2)
2λ2 .

Case 2. Assume that the zeros of (n− 2)F ′(t)− 2tF ′′(t) are not isolated. Then

(1) The fibers of u are minimal submanifolds.

(2) u is homothetic, i.e. λ = C , a positive constant.

(3) grad(λ2) = 0, hence it is vertical.

Proof. Case 1 is exactly [1, Theorem 5.1] proved by M. Ara.

For Case 2, statement (1) follows from that fact that general solutions of

(n− 2)F ′(t)− 2tF ′′(t) = 0

are given by F (t) = at
n
2 + b with constants a, b. Hence, u is an n-harmonic map, and so we may

apply Theorem 2.2 to conclude that fibers of u are minimal in Mm. Statements (2) and (3) of
Case 2 follow from Theorem 3.2 and the fact that u is n-harmonic.

In examining the converse of Theorem 3.3, Case 2, (1), we characterize the minimal fibers
of a horizontally conformal map from the previously untreated case in F -harmonic maps:

Theorem 3.4. Let u : (Mm, gM ) → (Nn, gN ), m > n, be a horizontally conformal map. Assume
that the zeros of (n − 2)F ′(t) − 2tF ′′(t) are not isolated. Then the fibers of u are minimal
submanifolds if and only if u is an F -harmonic map; if and only if u is an n-harmonic map.

Proof. This follows from the fact that when the zeros of (n− 2)F ′(t)− 2tF ′′(t) are not isolated,
F -harmonic map is an n-harmonic map, and Theorem 2.2.

When the target manifold of u is a Riemann surface, i.e. n = 2, then we associate u with a
harmonic map in the following way:

Theorem 3.5. Let (N2, gN ) be a Riemann surface, and u : (Mm, gM ) → (N2, gN ), m > 2, be
a horizontally conformal map. Assume that the zeros of −2tF ′′(t) are not isolated. Then the
fibers of u are minimal submanifolds if and only if u is an F -harmonic map; if and only if u is
a harmonic map.

Proof. This follows from the fact that when the zeros of −2tF ′′(t) are not isolated, F -harmonic
map is a harmonic map, and Theorem 3.4.
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4 Applications

As an application of Theorems 3.1 and 3.2, we revisit

Theorem 4.1 (Theorem C. ([10, 11]). Let u : (Mm, gM ) → (Nn, gN ) be an n-harmonic
morphism which is a submersion. If Nn is an orientable manifold and Mm is a closed manifold
with the n-th cohomology class Hn(M,R) = 0, then the horizontal distribution H of u is never
integrable.

Proof. Under the hypothesis, in view of Theorem 2.2, u has minimal fibers and, according to
Theorem 3.2, λ is constant. Let {ē1, . . . , ēn} be an oriented local orthonormal frame of the
base manifold (Nn, gN ) and let ω̄1, . . . , ω̄n denote the dual 1-forms of {ē1, . . . , ēn} on Nn. Then
ω̄ = ω̄1 ∧ · · · ω̄n is the volume form of (Nn, gN ), which is a closed n-form on Nn.

Consider the pull back of the volume form ω̄ of Nn via u, which is denoted by u∗(ω̄). Then
u∗(ω̄) is a simple n-form on Mm satisfying

d
(
u∗(ω̄)

)
= u∗(dω̄) = 0, (4.1)

due to the fact that the exterior differentiation d and the pullback u∗ commute.

Assume that m = dimMm = n+ k and let e1, . . . , en+k be a local orthonormal frame field
with ω1, . . . , ωn+k being its dual coframe fields on Mm such that

(i) e1, . . . , en are basic horizontal vector fields satisfying du(ei) = λēi, i = 1, . . . , n, and du(e1), . . . , du(en)
give a positive orientation of Nn; and

(ii) en+1, . . . , en+k are vertical vector fields.

Then we have

ωj(es) = 0, ωi(ej) = δij , 1 ≤ i, j ≤ n; n+ 1 ≤ s ≤ n+ k . (4.2)

Also, it follows from (i) that

u∗ω̄i =
1

λ
ωi, i = 1, . . . , n. (4.3)

If we put

ω = ω1 ∧ · · · ∧ ωn and ω⊥ = ωn+1 ∧ · · · ∧ ωn+k , (4.4)

then

dω⊥ =

k∑
i=1

(−1)iωn+1 ∧ · · · ∧ dωn+i ∧ · · · ∧ ωn+k. (4.5)

It follows from (4.2) and (4.5) that dω⊥ = 0 holds identically if and only if the following two
conditions are satisfied:

dω⊥(ei, en+1, . . . , en+k) = 0, i = 1, . . . , n, (4.6)

and

dω⊥(X,Y, V1, . . . , Vk−1) = 0. (4.7)

for any horizontal vector fields X,Y and for vertical vector fields V1, . . . , Vk−1.
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Since the fibers of u are minimal submanifolds of Mm, we find for each 1 ≤ i ≤ n that

dω⊥(ei, en+1, . . . , en+k)

=

k∑
j=1

(−1)j+1ω⊥([ei, en+j ], en+1, . . . , ên+j , . . . , en+k)

=

k∑
j=1

(−1)j+1
(
ωn+j(∇eien+j)− ωn+j(∇en+jei)

)
=

k∑
j=1

−⟨∇en+jei, en+j⟩

=

k∑
j=1

⟨h(en+j , en+j), ei⟩

= 0,

(4.8)

where “ ·̂ ” denotes the missing term and h denotes the second fundamental form of fibers in M ,
which prove that condition (4.2) holds.

Now, suppose that the horizontal distribution H is integrable. If X,Y are horizontal vector
fields, then [X,Y ] is also horizontal by Frobenius theorem. So, for vertical vector fields V1, . . . , Vk ,
we find (cf. [7, formula (6.7)] or [29, formula (3.5)])

dω⊥(X,Y, V1, . . . , Vk−1) = ω⊥([X,Y ], V1, . . . , Vk−1) = 0. (4.9)

Consequently, from (4.8) and (4.9) we get

dω⊥ = 0. (4.10)

Next, we show that if H is integrable, then we have d
(
(u∗ω̄ )⊥

)
= 0 . Since u is a horizontally

conformal submersion with constant dilation λ, it preserves orthogonality, which is crucial to
horizontal and vertical distributions, and the pullback u∗ expands the length of 1-form constantly
by 1

λ in every direction. This, via (4.3) and (4.10) leads to

d
(
(u∗ω̄ )⊥

)
= d

(
(u∗ω̄1 ∧ · · · ∧ u∗ω̄n)⊥

)
= d

(
1

λ
ω1 ∧ · · · ∧ 1

λ
ωn

)⊥

=
1

λn
dω⊥

= 0.

(4.11)

Since d
(
(u∗ω)⊥

)
= 0 is equivalent to u∗ω being co-closed, it follows that, under the condition

that H is integrable, the pullback of the volume form, u∗ω is a harmonic n-form on M . Thus,
u∗ω gives rise to a non-trivial cohomology class in Hn(M,R) by Hodge Theory [17]. Therefore,
if Hn(M,R) = 0, then the horizontal distribution H of u is never integrable.

From the proof of Theorem 4.1, we have the following.

Theorem 4.2. Let u : (M, gM ) → (N, gN ) be an n-harmonic morphism with n = dimN which
is a submersion. Then the pull back of the volume element of N is a harmonic n-form if and
only if the horizontal distribution H of u is completely integrable.



n-harmonicity, minimality, conformality and cohomology 9

References

[1] M. Ara, Geometry of F-harmonic maps. Kodai Math. J. 22(2) (1999), 243–263.

[2] P. Baird, Stress-energy tensors and the Lichnerowicz Laplacian, J. Geom. Phys. 58(10)
(2008), 1329–1342.

[3] P. Baird and J. Eells, A conservation law for harmonic maps. Geometry Symposium, Utrecht
1980 (Utrecht, 1980), 1–25, Lecture Notes in Math. 894 Springer, Berlin-New York, 1981.

[4] P. Baird and S. Gudmundsson, p-harmonic maps and minimal submanifolds. Math. Ann.
294(4) (1992), 611–624.

[5] E. Bombieri, E. de Giorgi, and E. Giusti, Minimal cones and the Bernstein problem, Invent.
Math. 7 (1969), 243-268.

[6] J. M. Burel and E. Loubeau, p-harmonic morphisms: the 1 < p < 2 case and a non-trivial
example. Contemp. Math. 308 (2002), 21–37.

[7] B.-Y. Chen, Riemannian submersions, minimal immersions and cohomology class. Proc.
Japan Acad. Ser. A Math. Sci. 81(10) (2005), 162–167.

[8] B.-Y. Chen, Pseudo-Riemannian geometry, δ-invariants and applications. World Scientific,
Hackensack, NJ, 2011.

[9] B.-Y. Chen, Geometry of Submanifolds. Dover Publications, Mineola, NY, 2019. ISBN: 978-
0-486-83278-4

[10] B.-Y. Chen and S. W. Wei, Geometry of submanifolds of warped product Riemannian mani-
folds I×f S

m−1(k) from a p-harmonic viewpoint. Bull. Transilv. Univ. Braşov Ser. III 1(50)
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