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Hypergeometric type extended bivariate zeta

function
M. A. Pathan, Mohannad J. S. Shahwan and Maged G. Bin-Saad

Abstract. Based on the generalized extended beta function, we shall introduce
and study a new hypergeometric-type extended zeta function together with related
integral representations, differential relations, finite sums, and series expansions.
Also, we present a relationship between the extended zeta function and the Laguerre
polynomials. Our hypergeometric type extended zeta function involves several known
zeta functions including the Riemann, Hurwitz, Hurwitz-Lerch, and Barnes zeta
functions as particular cases.

Keywords. Extended beta function, extended bivariate zeta function, Hurwitz-Lerch zeta
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1 Introduction

The Hurwitz zeta function [9] is defined by

o0

()= (a+n) (L1)

n=0
(a # Zg; R(2) > 1),

which is a generalization of the Riemann zeta function
((2)=> n*. (1.2)

Here and elsewhere, let C,R,N, Ny and Z; denote the complex numbers, real numbers, positive
integers, and non-negative integers and the non-positive integers.

As a generalization of both Riemann and Hurwitz zeta functions the so-called Hurwitz-Lerch zeta
function is defined by [8,p.27(1)]:

yn

e (1.3)

Oy, z,0) = Y
n=0
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(ae C\Zy;lyl <1).

® is an analytic function in both variables y and z in a suitable region and it reduces to the

ordinary Lerch zeta function when y = 2™ :
2min i eQTrin)\
q)(e i ,z7a) = ¢(A7 ZJ a) = T N~ (14)
n=0 (a + n)z

Next, we recall here a further generalization of the Hurwitz-Lerch zeta function ®(y, z,a) in the
form ( see [13,p.100,Equation (1.5)] ):

& (2, 7a) = Z((“in) (15)

where (a), = F(FCEZ)") = a(a+1)...(a+n—1) denotes the Pochhammer’s symbol, u € C,a ¢ Z;
and |z| < 1. Obviously, when p =1, (1.5) reduces to (1.3).

In [3] Bin-Saad introduced the hypergeometric type generating function of the generalized zeta
function defined by (1.3) and (1.5) in the form:

m

X
(/J’)mq)(y7 Z,a + Am)ﬁ)

NE

K (x,y;2,a0) = (1.6)

3
I
=)

where |z| < 1,|y| <1l;p € C\Zy,A € C\{0};a € C\ {=(n+ Im)},n,m € Ny and ® is the
Hurwitz-Lerch zeta function defined by (1.3).
The alternative representation

o0

& (z,y;2,a) Z ( a+n>z)/\z’ (1.7)

where @7 is the generalized zeta function defined by (1.5), follows by changing the order of
summations and considering equation (1.5) . The case when y = 0 of the definition (1.6) gives
us the following further generalization of the zeta function defined by (1.5) [3]:

> "
(o () —
3 (2,052,a) = @}, \(z,2,a) mzz:om'a—i—)\m (1.8)
where || < I;u € C\Zj;a € C\ {—=(Am)},m € Ny.
A further generalization of the Hurwitz-Lerch zeta function @7 ( see (1.5)):
o (Nn(i)n 2"

P (T, 2,0) = ) ~—F——itr, 1.9
Av(:2,0) g BRCETOE (1.9)

where A\, 4 € C;v,a € C\ Zg ;2 € C when |z] < L;R(z+v — A —p) > 1 when |z| =1,

was investigated earlier by Garg et al. [12,p.313, Eq(1.7)]. In recent years, several extensions of
well known special functions have been considered by several authors [4-7]. In [5], the following
extension of Euler’s beta function

B(z,y;p) = /0 t" 11 —t)V Lexp [t(l_p t)] dt; R(p) > 0, R(x) > 0,R(y) > 0, (1.10)
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has been defined in [5] ( see also [6]) and it has been proved that this extension has connection
with Macdonald, error and Whittaker’s functions. It is obvious that p = 0 gives the original beta
function:

1
B(z,y) = /0 t" 1 — )Yt R(x) > 0, R(y) >0

Recently, in [6] Chaudhry et al. generalized the Gaussian hypergeometric function o F7 and the
confluent hypergeometric function 1 F; as follows

— B(b+n,c—b;p)(a)n
F, (a,b;¢;z) = Z ,p> 0,|z] < 1,R(c) > R(b) >0, (1.11)
2" Blbe-b  al
and
> B(b+n,c—b;
(I>p(a,b;c;x)zz (B(bcb) ip) " ',p>0\x|<1%()>%(b)>0. (1.12)
n=0 ’

The generalization of Euler’s beta function is represented by the various following integral rep-
resentations [7]:

s

B(z,y;p) = 2/2 (cos0)?* 1 (sin 0)* L exp(—p sec? O csc? ), (1.13)
0
_op o] u® 1 4
B(x,y;p) = e ; WGXP [—p(u +u )] du, (1.14)
B(a,b;p) = 217270 [m exp [(a—b)z — 4 pcosh? z)] (cosl:liz)“*‘bdx' (1.15)

Formulas (1.13), (1.14) and (1.15) can be obtained by using ¢t —cos? 0, ¢ = g
formula (1.10) respectively. The present work aims at introducing and investigating a new kind

and ¢t = tanh x in

of hypergeometric type generating functions C G )(x, y; z,a;p) given by (2.1) or (2.2) below. The
results we will obtain and discuss are a further contribution along the line developed in [2] and [3].

The layout of the paper is as follows. In Section 2 we introduce and describe some properties
and relationships for the function ¢,y *(9#) Relevant connections of the function Co *(01) with those
considered in [3] are also indicated. In Section 3, we establish several integral representatlons for

the function C;k(/\’” ) involving integral representations of contour and Mellin-Barnes type of inte-

©)

grals. Section 4 is devoted to the differentiation of the function ¢, (j’ with respect to arguments

z,Yy,2, A\, 0 and a. In the final section, we present some series expansions for the function C:’(f’ﬂ )

involving Saran’s function of three variables F and the generalized hypergeometric function
3F5. Also, we present a connection between our new extended zeta function and the Laguerre
polynomials.

2 The Extended Bivariate Zeta Function C;(f’“)(x,y; z,a;p)

By virtue of the extension of Euler’s beta function (1.10), we aim in the present work to introduce
and study an extended bivariate zeta function of the form

(8,1) u +m,v—pp)  (O)mz™y"
: E E 2.1
Cu,)\ (x,y,z,ap ﬂ,V_M) m'(a+n+)\m)za ( )

m=0n=0
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({l=], lyl} < 1;{6,n,v} € C\Zg, A € C\{0};a € C\ {~(n+ Am)}, R(p) = 0,n,m € No).

The alternative representation

— Blu+m,v—1;p)()m ™
P Am)—
Z B, v — 1) (Y, 2,a 4+ Am) m!’

C*(é’#)

o (@, Y32, a;p) (2.2)

m=0

where @ is the generalized zeta function defined by (1.3), follows by changing the order of
summations and using the definition (1.3). Indeed, formula (2.2) shows that the function
C:(;\S”L) (x,y;z,a;p) is a hypergeometric type generating function of the function ® defined by

(1.3). We have the following relationships

(*(5“)(0,1,2 a;0) = ((z,a), (2.3)
G0, 2,a;:0) = @(y, 2,a), (2.4)
GO (2,05 2,a;0) = B (2, 2, a), (2.5)
C:’(f’”) (z,0;2,a;0) = @5 (7, 2,a), (2.6)
G (@,052,0:0) = B5(w, 2, ), (2.7)
G (@, 5 2,0;0) = (3 2, 0). (2.8)

The case when y = 0 of the definition (2.1) suggests us to define the generalization of the zeta
function @y ., defined by (1.9) in the following interesting form:

e i B( u+m v—pp)  (O)mz™

B(p,v—p)  ml(a+ Im)?’ (2:9)

m=0

Whereas the case when p = 0 of the definition (2.1) gives us another generalization of the zeta
function @) ,,.,, in the form:

Y (1) ma™y"
q>“ 2.10
NCRTENY) ZZ mm'a+n+)\m) (2.10)

mOnO

(max{le],Jyl} < 1;{6.1,v} € C? x (C\Zg) A € C\ {0};a € C\ {—(n + Am)},
{n,m} e NU{0}),
which for y = 0, reduces to the interesting special case:

(z;2,a) i (O)m (1) mz™ (2.11)

(I)é
[TRZPN :0 mm'( + )\m)

Based on the deﬁnition (2.11), we can present another alternative representation for the extended

(0,) +

zeta function C in the form:

(8, - a+n y"
Cy’()\ “)(m,y;z,a;p) = Z (I)fw/;/\ (x;z, )\;p) YL (2.12)

n=0
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In the case when A = p = 0 , we have simply

C*((s,,t)(x vz a:0) = a=! Z Z )1 ()i (1) m (1) 2™y ,

(V)m a—|—1) mln!

m=0n=0

which implies the next result .
Corollary 2.1.Let max{|z|, |y|} < 1,R(a) > 0. Then

GO @,y 2,0,0) = a P[0, g vsa) x o Fila, La + 13y, (2.13)

where 2 F} is the Gaussian hypergeometric function of one variables ( cf. [24]).
According to the relationship (2.4), equation (2.13) yields the following known result [8,p.30(10)]:

®(y,1,a) = a "9 F1[a, 150+ 1;y].

Corollary 2.2. Let A =1, maz{|z|, |y|} < 1. Then

Cz(fﬁ(wyai%zaa;?) = ®(y,z,a) x F, (0, p;v; ), (2.14)
and
5 0 5)m -m,1 —v—m,]1; 2
ot (@, yas 2, a;0) Z (a e X oFe v | (2.15)
m:O Jm 1-6,1—pu—m; )

Proof. We have

B i) @y

O (wy, y; 2, a5 p) :
v B(p,v—p)  mia+n+m)?

m=0n=0

Then by letting n — n — m and considering the Hurwitz-Lerch zeta function ®(y, z,a) and the
extended Gaussian hypergeometric function F,, (see (1.3) and (1.11)), we get (2.14) . Similarly,
one can prove the result (2.15). O

Further, we recall the definition of the derivative operator D™ (see [20] and [18]):

r
Dpa®tmt = ((;E;)m)xé_l = (8)maz’ "L, m € Ny, (2.16)

Now, from (2.14) it is not difficult to infer the following interesting special case
Corollary 2.3.Let R(§) > 0, A = 1, maz{|z|, |y|} < 1. Then

¢, wm(my y; 2,a;p) = 21 0D(y, 2,a) x B, (p;v; Dyz) 2071, (2.17)
where @), is the extended confluent hypergeometric function defined by (1.12).
Proof. 'We refer to the proof of (2.14).

Next, we present a series representation for the function (/. First, we recall the following
well-known expansion formula of the Hurwitz-Lerch zeta functlon [8,p.29(8)]:

*(0,1)

— 5 z—1 oS} o k
D(y,z,a) = P(lya) {log ;] + yl—a ZC(Z —k,a) L i'y) , (2.18)
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valid for |log(y)| < 2m, z # N;a # Z; .

Theorem 2.1. Let A > 0, |log(y)| < 27 and | 5| <1. Then

* 1 1 z—1
G sz aip) = - [F(l ~2) [log y] F, <5,u; v; ;)

o o [T .\ (logy)*
+ZCV7)\ <y}\72_ k7a7p> k! ) (219)

valid for z # N;a # —(n + Am), {m,n} € Ny.
Proof. Use the series representation (2.18) in the definition (2.1). O

The relationships (2.3) to (2.7) give us the intention to derive new series representations for
the other zeta functions involved in those relationships. For instance, if p = 0 and A = 1, in
formula (2.19) , we get an expansion for the zeta function of Garg et al. (1.9):

= z (log y)* a 8,1 17°7! 'z
Z(Dé»li;'/ *,Z—k,a 1 =Y ;1,71/('7372/; Z,G)—F(I—Z) logf 2F1 5;/-“1/7 ’ (220)
= y k! ’ Y y

valid for |%| > 1,14 <1,z ¢ N;R(a) > 0.
Finally, putting 6 = a+ £ in (2.1) and using the classical formula of Norlund for the Pochhammer
symbol (cf. [1,Section 1, Chapter 3] ):

k
(a+bp=> (Z) (@)k—m (b)m, (2.21)

we find form (2.1) that

w(actB, — B(u+m,v—p;p
ny(A+BM)<$ay§Z7@§p)=Z (v a )(a)m¢(y,z,a+)\m)

m=0 B(Na V= /u)
_m,ﬁ; m
X 9B ) [ (2.22)
l—a—m; m:

3 Integral Images for Q:,(f’” )(:C,y; z,a;p)

First, by exploiting the integral representation of the generalized extended beta function B(z, y; p)(see
(1.10)) and the results

(a+n+Am) Zz™y" = 1 / (xe*)‘)m (ye )" 7 te tat, (3.1)
I'(z) Jo
and
1 oo
Nm = —/ wdtmlet dy, 3.2
(6) o) J, (32)
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which follows from the Eulerian integral[2]:

o0
o= (2) = / a1y, (3.3)
0
we can derive the following triple integral representation:

Theorem 3.1. Let {R(a),R(z),R(0),R(u)} > 0. Then

00 4z—1 g 1 6 1
(0, 1) B t o~ (at+s)
CV7>\ (xayaz7aap) B(,u,llf / / / lfu

urse

g )Xe( = )(1—ye N1 qudsd, (3.4)

Proof. In view of the definitions (2.1) and (1.14), it is easily seen that
U;L+m 1

*(6> ) . . —1
G @y 2,ap) = Blnv mz / Ty P [—p(u+u™h)]

% (§)ma™y"
m!(a+n+ AIm)*

(3.5)

Now, with the aid of the results (3.1) and (3.2) and by interchanging the order of summation
and integration, equation (3.5) gives us the left-hand side of assertion (3.4). O

Theorem 3.2. Let {R(a),R(0),R(u)} > 0. Then

* 1 o
¢ (;\s’“) (z,y;2z,a;p) = —/ e_“ttz_l(l — ye_t)_le (57 14 V;xe_’\t) dt, (3.6)
" I'(2) Jo
G i) = s [T e a7
pA T PP —p) Jo  (1+8)”

x(ﬁ (ﬁg,y;z,a) ds. (3.7)
Proof. To prove the formulas (3.6) and (3.7), we employ the integral relations (3.3) and (1.14)
respectively, and exploit the same procedure leading to (3.4). O

Next, utilizing the integral image of the generalized extended Euler’s beta function, we can derive
the following results.

Theorem 3.3. Let R(a) > 0 and R(z) > 0. Then

1
*(0,1) . . _ 1 p—1 v—p—1 p 5 .
= = t 1-—t¢ t dt .
Cy)\ (x,y,z,a,p) B( v mu) /O ( ) exp |:t(1 t):| C)\(LC ,y,Z,CL) ’ (3 8)

™

. 1 H . -
CV’(f’“)(x,y; z,a;p) = m X /0 (cos 0)2“_1(sm9)2("“ MW=L exp (—psec2ecsc2 9)
x(3(zcos® 0, y; z, a)dt, (3.9)
C*(&#) (z,y:2,a;p) = 217_” /‘X’ (coshz)” exp [—(my +4p cosh? 1‘)]
vA L AT B(p,v—p) J_o
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x(g(:zz coshz e™",y; z,a)dx. (3.10)

Proof. The results follow directly from the formulas (1.10), (1.13) and (1.15) respectively. O

We shall now treat ¢, *(5.1) by applying the Mellin- Barnes type integrals. Our starting point is
the formula [24,section 14 51,p.289, Corollary]; also see [15]:

1 L(z+ I/)F(*l/)(*w)udy

A 6 |

(3.11)

where z and w are complex with R(z) > 0, |arg(w)| < 7m,w # 0, and the path is the vertical line
from ¢ — 0o to ¢ 4 ico. In [26] this formula is stated with ¢ = 0, (with suitabe modification of
the path near the point z = 0), but it is clear that the formula is also valid for —#(z) < ¢ < 0.
Theorem 3.4. Let R(z) > 0,R(a —b) > 0,R(b) >0, |z| <1 and |y| < 1. Then

(8,11 1 L(v+2)I'(=v) S (. .
<y7)\u (JU Yz, a; p) 27T1/T mu(z,—u,a—b,p) X (I)(yaz+y7b)dya (312)

Proof. Let w = (b—a — Am)/(b+n) in (3.11) and multiply both the sides by

B(p+m,v —p) (0)ma"y"
B(p,v —p) m!

amaneN()v

to obtain

(B(u +m,v —p) (8)ma™
B(p,v —p) m!

_ (B4 (—v) (Bp+muv—p) (0)ma™ v
_/c I'(2) ) ( B(p,v — p) m!(ab+/\m)”> ) (b+n)z+”d ’

Y )(a—&—n—i—)\m)_z

(m >0,n>0).
Therefore, if we assume (1 — R(r) < ¢ < —1, then from (1.3) and (2.11) we get (3.12). O

Further, by using the Mellin transform representation of the generalized beta function in terms
of Mellin-Barnes type contour integral[7]

e (T(s)D(x + s s
B(x,y;z,a;p)zi/ T + Ty + 5) ~*ds, (3.13)

278 oy ioo I(z+y+ 2s)
we have the following complex integral representation for C *(0op )(;v, Y;Z,a;p).

Theorem 3.5. Let R(p) > 0,m > 0, maz{|x|,|y|} <1 and v > 0. Then

(z,y; 2, a)ds.
(3.14)

+i00
oy o L T L) (v —p+ s)D(p+ s)T(v) gt
Cy7,\ (%y,z,mp) s [ymo F(,U)F(V — ,u)l"(u + 28) v+2s,A

where ®° o 18 zeta function defined by (2.10).
Proof. Using the formula (3.13) in the definition (2.1), interchanging the order of summation and
integration and considering the definition (2.10), we led to the desired result (3.14). O
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4 Differential Relations

. 5 . . . . .
The extended zeta function Cl(, ;\” ), as a function satisfies some differential recurrence relations.

3,1)

Fortunately these properties of C can be developed directly from the definition (2.1). Firstly,

we recall the following result [20]

Tr 1
(n+1) " n—m>O,DE:i, (4.1)

Dm 77/:
=¥ I'n—m+1) ’ - dz

Theorem 4.1. Let k € N. Then

*(9,
D} {CV,(A N, y; z,a;p)}

] . ks
_ ( )k(ﬂ)kgufgl)f,/ +k) (z,y; 2,0+ \e; p), (4.2)
(V) ’
Dy {C*(é’“) (z.y; 2, a;p)}

— B(u+m,v—p;p) ™
2; B oy gy WP @2, a+k+)\m)—| (4.3)
D} {C © ”)(x,y;z,a;p)} = (—1*) COM @y 2+ koasp). (4.4)

Proof. Using (4.1), we get
, +m,v — p;p) (O)mz™*y"

DELEOm (4 g, B(p 45
{< (:my,z,ap} mz:(mz:o B(u,v —p)  (m—k)(a+n+Im)*’ (45)
Now, replacing m by m + k in (4.5) and considering the definition (2.1), we get the right-hand
side of formula (4.2). Similarly, one can proof the formulas (4.3) and (4.4). O

According to the relation (2.3) formula (4.4)reduces to the result
D§<(Zva) = (71)k(z)k6(z+k,a)v (46)

which is a known result ( see e.g. [10,p.2(1.8)]). In view of the relationship (2.5), we find from
equation (4.4) that

D’; (s, (2, 2,0)) = (—1)k(z)k<1>57m,j(x, z+k,a). (4.6)

Secondly, we show that the zeta function 2?‘, in (2.9) is related to the extended function g;fﬁ’”

for 6, u,v # N by the following differential relation.

Theorem 4.2. Let 6 —n,A\—n,v—n # Z, . Then

v—n,\

GO @,y 2 aip) =Y El — V)"(_l)n‘l)/n D [Cé_"’”_"(x,y;Z,a + (1= XNmn;p)| . (4.8)
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Proof. Let I denote the right-hand side of assertion (4.8). Then in view of (2.11) and (4.1) we have

_ (p+m—n,v—p;p)(d —n)m(l —v)p(=1)"y"z™ ™"
1= ZZBM»V— = (= 0 a+ (1= Nn + )= (m — )l

m=0n=0

Now, by using the identities

and

we led to the left-hand side of (4.8).
Next, we establish the derivative of the function C;k,(f’” )

Theorem 4.3. Let b € R. Then

O x(dm)

v @Yz =1 a+Abip)

=(1-2) [MCZSSH’“) (2,93 2.0+ Mb+1);p) + 0G5 (2,53 2,0+ /\b;p)} :

Proof. We have
SO @,y 2 — 1a+ Ab;p)

(1-2) lzz M+m+1 v — 5 p)(6)ma™y"

B(p,v —p)(m —Dl(a+n+ A(m+b))?

m=1n=0

(b +m, v — ;) (§)ma™y"
+bZZBu1/— m!(a+n+ A(m + b))?

m=0n=0

Now , let mm — m + 1 in the first summation of (4.14) and then use the identity

(M)m-‘rn = (M)n(ﬂ + n)m

to obtain (4.13).
The same type of differentiation gives the next result.

Theorem 4.4. Let q¢ € R. Then

0 .«
%Cy,(f’“)(z,y;z —1a+bgp) = b1 — 2)5" (2,53 2.0+ bg; p).

Proof. We refer to the proof of Theorem 4.3.

with respect to the argument .

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)
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It is easily observed that the relations (4.13) and (4.15) are generalization of the known re-
sults (see e.g. [9,p.451]):

TGN = (1), (4.16)
and 5
6—q§(z— 1,a+ Xb) =b(1 — 2)¢(z,a+ gb). (4.17)

Closely associated with the derivative of the gamma function is the digamma function defined by
(see e.g.[17])

d I (z)
—InI'(z) =

dz (z) I(x)’

Now, we establish the derivative of the function C:(f

() = z#0,—1,-2,---. (4.18)

) with respect to the parameter 6.

Theorem 4.5. Let 6 € C\ Zy . Then

O 6 (1 1 5 4
85 (70N ('xayazva‘ap)
S +m v — ;D) (6)ma™
o - . 4.1
Z By gy 27t dm) [(E+m) —(0)] = (4.19)
Proof. By noting that
0 0 [T(d+m)
—_— m = -_— —_— = m - 3 4.2
55 (0] = 5 | “L] = @ 016 +-m) = o) (4.20)
we obtain the result (4.19). O
According to the algebraic identity ( cf. [22,p.295(6.7)] ):
D*m!IT(x + 1)
YE+1) —YPx+m+1) = km k'Fm+k+1) (4.21)
the formula (4.19) can be rewritten in the followmg more compact form
0 x(6.m) DT (8 +m)
—C Yy ; o m. 4.22
86Cy,)\ (x,y,z,ap sz m k'F(6+k) (y,z,a—i—/\m)x ( )

m=0 k=1

Further, let us recall the definition of the Weyl fractional derivative of the exponential function
e~ a > 0 of order v in the form (see [18,p.248(7.4)]):

DY {e~*} =ae" ™, (4.23)
( v not restricted to be postive integer).

S

We now proceed to find the fractional derivative of the function G (01 with respect to z.

Theorem 4.6. Let v > 0. Then

DY [ (@, ys 2, aip)|
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=33 M ) e xostae w20

m=0n=0

Proof. Since

(G+TL+ )\m)—z — e—zlog(a+n+>\m)7

we have
<*(5,,u) (:17 Y 2, a; p Z Z ,u +m,v — /’“p) (:U’)mxmyn e—zlog(a—&-n—&-)\m).
v —~ ~  B(u,v—p) m!
The desired result now follows by applying the formula (4.23) to the above identity. O

Finally, it is interesting to note that the n — th derivative of the extended zeta function C:(f’“ )
concerning the parameter p is given by the following theorem.

Theorem 4.7. Let k € N. Then

Ny B(u—k,v—pu—k) «@u—k
Dy (C O (@, y; 2, a:p ) = (-1 ’ Gy (@5 2,05 p). 4.25
P |70\ ( ) ( ) B(,U7V_M) v—2k,\ ( ) ( )

Proof. From definitions (2.1) and (1.10) and the formula (4.1), we can state that

N B(p+m—k,v—p—kp)  (6)mz"y"
Dy (CM (x, y,zap) nLZOnZO Bl —p) o+ n ) (3.26)

Now, by interpreting the above series in the form of the definition (2.1), we obtain the desired
result (4.25). O

5 Series Expansions

This section aims at establishing some series relations for the extende bivariate series zeta function
(:(f’“ ). First, based on the two forms of Taylor’s theorem for the deduction of addition and
miﬂtiplication theorems for the confluent hypergeometric function (cf.[11,p.63, Equations(2.8.8)
and (2.8.9)] or [22,p.21-22]):

) =3 F@L (51)
m=0 '

and
Flzy) = i f(m)(x)M

m=0

= (5.2)

where |y| < p, p being the radius of convergence of the analytic function f(x), we aim to discuss

certain addition and multiplication theorems of the extended bivariate zeta function C:(:\S’”).

Theorem 5.1. Let |w| < 1. Then

0 wk

(8,1 0)x( A
Cu M+ w,y; 2, a5p) kz_o ) H_k/\“ (z+ w,y; 2, aJr)\kp)k',

(5.3)
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oo

*(81) s an) = B(p+m,v—p;p) ) a™y"

GV @y +wizap) = > Blaw (O)m®pr(w, 2,0 +n+dm)=— =, (5.4)
m,n=0
o o~ Ok (o thpth z*
C;,()\’M)(xw7y; Z,a;3 p Z I/ VJrlj/\ " )(a:(w - 1) Y;2,a+ Ak; p) kl’ (55)
k=0

C*(é’“)(az Yw; 2, a;p) = i B(u—|—m,u—u;p)(6) O (y(w—1),z a—&-n—i-/\m)xmyn. (5.6)

(79 bl et iadl S~ B(ll,, v — ,LL) n—+ » m!

Proof. The proof is a direct application of the formulas (5.1),(5.2) and the first two results of
Theorem 4.1. O

C*(&H)

Next , we derive the Taylor expansion of ¢\ in the fourth variable a.

Theorem 5.2. Let |w| < R(a).Then

g*(é’“)(x Y; 2,0+ w;p) = Z( DED(y, 2 4 k, a) x *“(x —k,w) (Z),k (5.7)
k=0 '

Proof. We have

“(6.1) u+m v — 15p) (O)mz™y" _z< W+Am>
T,Y; 2,0+ w; a+n 1+
G (s 2 220112:0 B(p,v — ) m! ( ) a+mn
(5.8)
The result now follows from the binomial expansion and the definitions (1.3) and (2.9). O

In fact, equation (5.7) gives a number of known and new series expansions as particular cases.
For instance, in view of the relation (2.4) we find from (5.7) that

By, 2,0 +w) = Y (Jk®(y, 2+ k,a) 7 (2 # L |wl < a]), (5.9)

which is a known result due to Raina and Chhajed [21,p.93(3.3)]. Moreover according to the
relationship (2.3), equation (5.7) yields

ok
lw| < al. (5.10)

(DM (= + k)

]2

C(za+w) =

B
I

0

Note that, formula (5.10) is a known result due to Kanemitsu et al. [15,p.5(2.6)].
Furthermore, if in (5.9) we let y = €2™*(in conjunction with (1.4)), formula (5.9) reduces to a

known power series expansion due to Klusch [16]:

wk

d(a,a+w,2) = Z kqﬁozaz—l—k:)k'7

k=0

lw| < a. (5.11)

Another expansion function for C:(f’“)

9.4(7)]:
3] =

can be derived by using the result [ 17,p.374, Exercise

(1+vz) ™+ - (1-va) ™. (5.12)

l\')\»—l
l\DM—‘
l\')\»—l

2F1 |:a a—+
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Theorem 5.3.Let > 1, Re(a) > 0, |z| < 1,|y| < 1 and |w| < |a|. Then

> 2k — 1\ .
> (Z : 2% )Cu,(f’”) (2,93 2 + 2k, a;p)w?”
k=0
1 *(4, *(4,
=3 [Cy,& (2,0 +wip) + GO (@, 2,0 — wip) | (5.13)

Proof.We have
- 2k — 1\ .
> (Z - o )Cy,(f’“) (x,y; 2 + 2k, a; p)w*

k=0

,u +m,v — p;p) (0)mz™y™ ad (2)aw?*
N Z Z B(p,v—p)  ml(a+n+Im)? kZ:O (2k)!(a +n + Am)2k’ (5.14)

m=0n=0

By applying the formula (5.12) to the last summation in the right-hand side of equation (5.14),
we led to the result (5.13). O

Next, we derive a series expansion for the extended zeta function C ) involving Saran hyper-
geometric function Fi of three variables defined by the series ( see e.g. [23]):

X0 (a)m(a1) g (01) s p (b2) na™y" 2P

F b1, ba,b1; ; = 5.15
eloesosbbubionecinnd = 3 T et 17
z| <TAJyl <TA 2] < (1= |z[)(1 = [y]).
Theorem 5.4. Let maz{|z/b|, |y/b|} < 1,|b| < R(a) and A # 0.Then
o . 8™ y™
Z xy,z+ka+bp ZZ B(p+m,v — %p)()fﬂly
k=0 m=0n=0 B(p,v = p) m
—b -m  —w
Fg |1 1;1,1, z; -, 5.16
X K|:azaza y Ly 7Z7a+n+)\m7a+n7a+n:|(a+n) ( )

Proof. Since

Amn —(z+k) b —(2+k)
(a+n+xm+b)"CH = (a+n)~ =0 <1+) <1+> :
a+n a+n+im

it follows that
ok

ST @R (@ s 2+ k a+b;0),€

== Bpt+m,v = p;p) (8)ma™y"
-2 B(p,v—p)  mi(a+mn)

()1T)T ) (a+n_i/\m)s (a_inD(a;wn)k (5.17)

The result (5.16) now follows from the definition (5.15). O

oo oo oo s 1
DRI

k=0 s5=0r=0
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Indeed, for = p = b = 0 equation (5.16) reduces to the well-known result of Ramanujan
[20,p.396(6)]:

o (2)
(z,a —w Z—'k (z+n,a)w".
k=0

Finally, we give a representation of the extended zeta function CZA(/‘\S’“ ) in terms of Laguerre poly-
nomials. We start by recalling the useful identity used in [19]

laitn) — o2 3 L)L (p)ut™ (1 — )"t < 1. (5.18)

m,n=0

Theorem 5.5. Let {6, u,v} € C\Zy, A€ C\ {0};a € C\ {—(n+ Am)},R(p) > 0. Then

«(8,11) o ,u+5+m+11/ w+r+1)
<y,/\ (x,y,z,a,p) /qu_ m;OéTZO +n+)\m)
x(6)sLs(p)Lr(p)z™y". (5.19)
Proof. Using (5.18) in (3.8), employing the series expansion of the zeta function ({ and inter-
change the order of integration and summation, we obtain the result (5.19). O

According to the definition of beta function[24]

[(z)I(y)
B(z,y) = =—=,
@9 = Ta Ty
the assertion (5.19) can be rewritten in the following alternative representation:

*(4,
GO (@, ys 2, a5p)

—2p _ 00 D). (v — . Lo(p)L,
e #1(/1/ 1) Z (n+1) (V(V/j_—;)slr (p) (P)Ciisﬂ e @y 22 ), (5.20)

where CU N(z,y; z,a) is the generalized zeta function defined by (2.9).
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