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A unique continuation result for a system of

nonlinear differential equations

Alex M. Montes, Ricardo Córdoba

Abstract. Using an appropriate Carleman-type estimate, we establish a result of
unique continuation for a special class of one-dimensional systems that model the
evolution of long water waves with small amplitude in the presence of surface tension.
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1 Introduction

The focus of the present work is the following one-dimensional system
(
I − a∂2x

)
ηt + ∂2xΦ− b∂4xΦ+ ∂x(η∂xΦ) = 0,(

I − c∂2x
)
Φt + η − d∂2xη +

1
2 (∂xΦ)

2
= 0,

(1.1)

that describes the propagation of long water waves with small amplitude in the presence of surface
tension, where Φ = Φ(x, t) represents the rescale nondimensional velocity potential on the bottom
z = 0, the variable η = η(x, t) corresponds the rescaled free surface elevation, and the constants
a, b, c, d > 0 are such that

a+ c− (b+ d) =
1

3
− σ,

where σ−1 is known as the Bond number (associated with the surface tension). This model is
the 1D version of systems derived in [5] and [6].

As happens in water wave models, there is a Hamiltonian type structure which is clever
to find the appropriate space for special solutions (solitary waves for example) and also provide
relevant information for the study of the Cauchy problem. For the particular system (1.1), the
Hamiltonian functional H = H(t) is defined as

H
(
η
Φ

)
=

1

2

∫
R

(
η2 + d(∂xη)

2 + (∂xΦ)
2 + b(∂2xΦ)

2 + η (∂xΦ)
2
)
dx,

and the Hamiltonian type structure is given by(
ηt
Φt

)
= JH′

(
η
Φ

)
, J =

(
0

(
I − c∂2x

)−1

−
(
I − a∂2x

)−1
0

)
.
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We see directly that the functional H is well defined when η(·, t), ∂xΦ(·, t) ∈ H1(R), for t in
some interval. These conditions already characterize the natural space for the study of solutions
of the system (1.1). Certainly, J. Quintero and A. Montes in [8] showed for the model (1.1) the
existence of solitary wave solutions which propagate with speed of wave θ > 0, i. e. solutions of
the form

η(x, t) = u(x− θt), Φ(x, t) = v(x− θt),

in the energy space H1(R)× V2(R), where H1(R) is the usual Sobolev space of order 1 and the
space V2(R) is defined with respect to the norm given by

∥w∥2V2(R) = ∥w′∥2H1(R) =

∫
R

(
(w′)2 + (w′′)2

)
dx.

They also showed the local well-posedness for the Cauchy problem associated to the system (1.1)
in the Sobolev type space Hs(R)× Vs+1(R), where Hs(R) is the usual Sobolev space of order s
defined as the completion of the Schwartz class with respect to the norm

∥w∥Hs(R) = ∥ (1 + |ξ|)s ŵ(ξ)∥L2
ξ

and Vs+1(R) denotes the completion of the Schwartz class with respect to the norm

∥w∥Vs+1(R) = ∥ (1 + |ξ|)s |ξ|ŵ(ξ)∥L2
ξ
,

where ŵ is the Fourier transform of w in the space variable x and ξ is the variable in the frequency
space related to the variable x. For a, b, c, d > 0, using a bilinear estimate obtained by J. Bona
and N. Tzvetkov in [1], Quintero and Montes showed that for (η0,Φ0) ∈ Hs(R)× Vs+1(R) with
s ≥ 0, there exists a time T > 0 and unique solution

(η,Φ) ∈ C
(
[−T, T ], Hs(R)× Vs+1(R)

)
∩ C1

(
[−T, T ], Hs−1(R)× Vs(R)

)
of the Cauchy problem associated to the model (1.1) with the initial condition

η(x, t) = η0(x), Φ(x, t) = Φ0(x).

On the case of the periodic domain T = R/(2πZ) (the one-dimensional torus), it was proved
in [7] the local well-posedness of the Cauchy problem associated to system (1.1) in the space
Hs(T)× Vs+1(T), for s ≥ 0, where the periodic Sobolev space Hs(T) is defined by

Hs(T) =
{
w =

∑
k∈Z

wke
ikx :

∑
k∈Z

(1 + |k|2)s|wk|2 < +∞
}

and the space Vs+1(T) is defined by the norm

∥w∥Vs+1(T) =
[∑
k∈Z

(1 + |k|2)s|k|2|wk|2
]1/2

where wk = ŵ(k) denotes the k-Fourier coefficient with respect to the spatial variable x.

In the present work, for a, b, c, d > 0 we will prove a unique continuation result for the system
(1.1). More precisely, we show that if (η,Φ) = (η(x, t),Φ(x, t)) is a solution of the system (1.1)
in a suitable function space, for example

η, ηt ∈ L2
(
−T, T ;H2

loc(R)
)
, Φ ∈ L2

(
−T, T ;H4

loc(R)
)
, Φt ∈ L2

(
−T, T ;H2

loc(R)
)
,
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and (η,Φ) vanishes on an open subset Ω of R × [−T, T ], then (η,Φ) ≡ 0 in the horizontal
component of Ω. We recall that the horizontal component Ω1 of an open subset Ω ⊆ R × R is
defined as the union of all segments t = constant in R× R which contain a point of Ω, this is,

Ω1 =
{
(x, t) ∈ R× [−T, T ] : ∃x1 ∈ R, (x1, t) ∈ Ω

}
.

The unique continuation property has been intensively studied for a long time. An important
work on the subject was done by J.C. Saut and B. Scheurer in [9]. They showed a unique
continuation result for a general class of dispersive equations including the well known KdV
equation,

ut + uux + uxxx = 0,

and various generalizations. In the work [3], M. Davila and G. Menzala proved a similar result
for the Benjamin-Bona-Mahony equation,

ut + ux − uxxt + uux = 0,

and for the Boussinesq equation,

utt − uxx +
(
u2 + uxx

)
xxx

= 0.

In a similar way, Y. Shang showed in [10] a unique continuation result for the symmetric regu-
larized long wave equation,

utt − uxx +
1

2

(
u2
)
xt

− uxxtt = 0.

In the previous equations, a Carleman estimate is established to prove that if a solution
u vanishes on an open subset Ω, then u ≡ 0 in the horizontal component of Ω. By using the
inverse scattering transform and some results from the Hardy function theory, B. Zhang in [11]
established that if u is a solution of the KdV equation, then it cannot have compact support at
two different moments unless it vanishes identically. In the paper [2], J. Bourgain introduced a
different approach and prove that if a solution u to the KdV equation has compact support in a
nontrivial time interval I = [t1, t2], then u ≡ 0. His argument is based on an analytic continuation
of the Fourier transform via the Paley-Wiener Theorem and the dispersion relation of the linear
part of the equation. It also applies to higher order dispersive nonlinear models, and to higher
spatial dimensions. More recently, C. Kenig, G. Ponce and L. Vega in [4] proposed a new method
and proved that if a sufficiently smooth solution u to a generalized KdV equation is supported
in a half line at two different instants of time, then u ≡ 0.

Following from close the works of Saut-Scheurer [9], we base our analysis in finding an
appropriate Carleman-type estimate for the linear operator L associated to the system (1.1). In
order to do this we use a particular version of the well known Treves’ inequality. For the operator
L we also prove that if a solution vanishes in a ball in the xt plane, which passes through the
origin, then it also vanishes in a neighborhood of the origin.

The paper is organized as follows. In Section 2, using a particular version of the Treves
inequality, we establish a Carleman estimate for a differential operator L closely related to our
problem. In Section 3, first we give some useful technical results. Later, we show the unique
continuation result for the system (1.1).
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2 Carleman estimate

In this section, using a particular version of the Treves’ inequality, we establish a Carleman
estimate for the differential operator L defined as

L =

∂t − a∂2x∂t + c1∂
3
x + f1(x, t)∂x f2(x, t)∂

2
x − b∂4x

I − d∂2x ∂t − c∂2x∂t + c2∂
3
x + f3(x, t)∂x

 . (2.1)

In what follows a, b, c, d > 0. In addition, we are going to use the notation D = (∂x, ∂t).
Moreover, if P = P (ξ1, ξ2) is a polynomial in two variables, has constant coefficients and degree
m, then we consider the differential operator of order m associated to P ,

P (D) = P (∂x, ∂t) =
∑

|α|≤m

aαD
α,

where Dα = ∂α1
x ∂α2

t and |α| = α1 + α2. By definition P (β)(ξ1, ξ2) = ∂β1

ξ1
∂β2

ξ2
P (ξ1, ξ2) where β is

given by β = (β1, β2) ∈ N2.

Theorem 2.1. (Treves’ Inequality). Let P (D) = P (∂x, ∂t) be a differential operator of order
m with constant coefficients. Then for all α = (α1, α2) ∈ N2, δ > 0, τ > 0, Ψ ∈ C∞

0 (R2) and
ψ(x, t) = (x− δ)2 + δ2t2 we have that

22|α|τ |α|δ2α2

α!

∫
R2

|P (α)(D)Ψ|2e2τψdxdt ≤ C(m,α)

∫
R2

|P (D)Ψ|2e2τψdxdt (2.2)

with

|α| = |α1|+ |α2|, α! = α1!α2! and C(m,α) =

sup|r+α|≤m

(
r + α

α

)
, if |α| ≤ m,

0, if |α| > m.

Proof. See Corollary 5.1 in [3] (see also Corollary 1 in [10]).

We present the Carleman estimate for the differential operator L.

Theorem 2.2. Let L the differential operator defined in (2.1), where c1, c2 are real constants
and f1, f2, f3 ∈ L∞

loc(R2). Let δ > 0 and

Bδ := {(x, t) ∈ R2 : x2 + t2 < δ2}, ψ(x, t) = (x− δ)2 + δ2t2.

Then, there exists C > 0 such that for all Ψ = (Ψ1,Ψ2) ∈ C∞
0 (Bδ)× C∞

0 (Bδ) and τ > 0 with

∥f1∥2L∞(Bδ)

τ2δ2a2
≤ 1

4
,

∥f2∥2L∞(Bδ)

τ2b2
≤ 1

4
,

∥f3∥2L∞(Bδ)

τ2δ2c2
≤ 1

4
,

we have that

τ3c21

∫
Bδ

|Ψ1|2e2τψdxdt+ τ2δ2a2
∫
Bδ

|∂xΨ1|2e2τψdxdt+ (τ3c22 + τ4b2)

∫
Bδ

|Ψ2|2e2τψdxdt

+ (τ2δ2c2 + τ3b2)

∫
Bδ

|∂xΨ2|2e2τψdxdt+ τ2b2
∫
Bδ

|∂2xΨ2|2e2τψdxdt

≤ C

∫
Bδ

|LΨ|2e2τψdxdt. (2.3)
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Proof. Let Ψ = (Ψ1,Ψ2) ∈ C∞
0 (Bδ)× C∞

0 (Bδ). Consider the polynomial

P1(ξ1, ξ2) = ξ2 − aξ21ξ2 + c1ξ
3
1

and
P1(D) = P1(∂x, ∂t) = ∂t − a∂2x∂t + c1∂

3
x

the differential operator associated to P1. Then, simple calculations show that if α = (1, 1) we
have that

P
(α)
1 (ξ1, ξ2) = P

(1,1)
1 (ξ1, ξ2) = −2aξ1, P

(α)
1 (D)Ψ1 = −2a∂xΨ1

and also

C(3, α) = sup
|r+α|≤3

(
r + α
α

)
= 2.

Thus, using Theorem 2.1 we see that

τ2δ2a2
∫
Bδ

|∂xΨ1|2e2τψdxdt ≤ 32τ2δ2a2
∫
Bδ

|∂xΨ1|2e2τψdxdt

=
22|α|τ |α|δ2α2

α!

∫
Bδ

|P (α)
1 (D)Ψ1|2e2τψdxdt

≤
∫
Bδ

|P1(D)Ψ1|2e2τψdxdt. (2.4)

Moreover,

P
(3,0)
1 (ξ1, ξ2) = 6c1, P

(3,0)
1 (D)Ψ1 = 6c1Ψ1, C(3, (3, 0)) = 1.

Then, using again the Theorem 2.1 we obtain that

τ3c21

∫
Bδ

|Ψ1|2e2τψdxdt ≤
26τ3

6

∫
Bδ

|P (3,0)
1 (D)Ψ1|2e2τψdxdt

≤
∫
Bδ

|P1(D)Ψ1|2e2τψdxdt. (2.5)

Now, by defining
P2(ξ1, ξ2) = −bξ41 , P2(D) = −b∂4x,

we have that

P
(4,0)
2 (ξ1, ξ2) = −24b, P

(4,0)
2 (D)Ψ2 = −24bΨ2, C(4, (4, 0)) = 1

and

τ4b2
∫
Bδ

|Ψ2|2e2τψdxdt ≤
28τ4

24

∫
Bδ

|P (4,0)
2 (D)Ψ2|2e2τψdxdt

≤
∫
Bδ

|P2(D)Ψ2|2e2τψdxdt. (2.6)

In a similar fashion

P
(3,0)
2 (D)Ψ2 = −24b∂xΨ2, P

(2,0)
2 (D)Ψ2 = −12b∂2xΨ2, C(4, (3, 0)) = 4, C(4, (2, 0)) = 6.
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Hence, we see that

τ3b2
∫
Bδ

|∂xΨ2|2e2τψdxdt ≤
26τ3

24

∫
Bδ

|P (3,0)
2 (D)Ψ2|2e2τψdxdt

≤
∫
Bδ

|P2 (D)Ψ2|2e2τψdxdt (2.7)

and also that

τ2b2
∫
Bδ

|∂2xΨ2|2e2τψdxdt ≤
24τ2

12

∫
Bδ

|P (2,0)
2 (D)Ψ2|2e2τψdxdt

≤
∫
Bδ

|P2 (D)Ψ2|2e2τψdxdt. (2.8)

By considering

P4(ξ1, ξ2) = ξ2 − cξ21ξ2 + c2ξ
3
2 , P4(D) = P (∂x, ∂t) = ∂t − c∂2x∂t + c2∂

3
x

we have that

P
(3,0)
4 (D)Ψ2 = 6c2Ψ2, P

(1,1)
4 (D)Ψ2 = −2c∂xΨ2, C(3, (3, 0)) = 1, C(3, (1, 1)) = 2.

Then, using Theorem 2.1 we obtain that

τ3c22

∫
Bδ

|Ψ2|2e2τψdxdt ≤
26τ3

6

∫
Bδ

|P (3,0)
4 (D)Ψ2|2e2τψdxdt

≤
∫
Bδ

|P4(D)Ψ2|2e2τψdxdt, (2.9)

and

τ2δ2c2
∫
Bδ

|∂xΨ2|2e2τψdxdt ≤ 24τ2δ2
∫
Bδ

|P (1,1)
4 (D)Ψ2|2e2τψdxdt

≤
∫
Bδ

|P4(D)Ψ2|2e2τψdxdt. (2.10)

From (2.4)-(2.10), there is C > 0 such that

τ3c21

∫
Bδ

|Ψ1|2e2τψdxdt+ τ2δ2a2
∫
Bδ

|∂xΨ1|2e2τψdxdt+ (τ3c22 + τ4b2)

∫
Bδ

|Ψ2|2e2τψdxdt

+ (τ2δ2c2 + τ3b2)

∫
Bδ

|∂xΨ2|2e2τψdxdt+ τ2b2
∫
Bδ

|∂2xΨ2|2e2τψdxdt

≤ C

∫
Bδ

(
|P1(D)Ψ1|2 + |P2(D)Ψ2|2 + |P4(D)Ψ2|2

)
e2τψdxdt. (2.11)

Now, we note that
L1 = ∂t − a∂2x∂t + c1∂

3
x + f1(x, t)∂x

implies P1(D)Ψ1 = L1Ψ1 − f1(x, t)∂xΨ1. Then, using inequality (2.4), we have that∫
Bδ

|f1(x, t)∂xΨ1|2e2τψdxdt ≤ ∥f1∥2L∞(Bδ)

∫
Bδ

|∂xΨ1|2e2τψdxdt
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≤
∥f1∥2L∞(Bδ)

τ2δ2a2

∫
Bδ

|P1(D)Ψ1|2e2τψdxdt

≤
2∥f1∥2L∞(Bδ)

τ2δ2a2

∫
Bδ

(
|L1Ψ1|2 + |f1(x, t)∂xΨ1|2

)
e2τψdxdt. (2.12)

In a similar way, for

L2Ψ2 = P2(D)Ψ2 + f2(x, t)∂
2
xΨ2, L4Ψ2 = P4(D)Ψ2 + f3(x, t)∂xΨ2

we obtain, using (2.8) and (2.10), that∫
Bδ

|f2(x, t)∂2xΨ2|2e2τψdxdt ≤ ∥f2∥2L∞(Bδ)

∫
Bδ

|∂2xΨ2|2e2τψdxdt

≤
∥f2∥2L∞(Bδ)

τ2b2

∫
Bδ

|P2(D)Ψ2|2e2τψdxdt

≤
2∥f2∥2L∞(Bδ)

τ2b2

∫
Bδ

(
|L2Ψ2|2 + |f2(x, t)∂2xΨ2|2

)
e2τψdxdt (2.13)

and also that∫
Bδ

|f3(x, t)∂xΨ2|2e2τψ ≤ ∥f3∥2L∞(Bδ)

∫
Bδ

|∂xΨ2|2e2τψdxdt

≤
∥f2∥2L∞(Bδ)

τ2δ2c2

∫
Bδ

|P4(D)Ψ2|2e2τψdxdt

≤
2∥f3∥2L∞(Bδ)

τ2δ2c2

∫
Bδ

(
|L4Ψ2|2 + |f3(x, t)∂xΨ2|2

)
e2τψdxdt. (2.14)

Next, if we choose τ > 0 large enough such that

∥f1∥2L∞(Bδ)

τ2δ2a2
≤ 1

4
,

∥f2∥2L∞(Bδ)

τ2b2
≤ 1

4
,

∥f3∥2L∞(Bδ)

τ2δ2c2
≤ 1

4
,

then from inequalities (2.12)-(2.14) we have that∫
Bδ

(
|f1(x, t)∂xΨ1|2 + |f2(x, t)∂2xΨ2|2 + |f3(x, t)∂xΨ2|2

)
e2τψdxdt

≤ 1

2

∫
Bδ

(
|L1Ψ1|2 + |L2Ψ2|2 + |L4Ψ2|2

)
e2τψdxdt

+
1

2

∫
Bδ

(
|f1(x, t)∂xΨ1|2 + |f2(x, t)∂2xΨ2|2 + |f3(x, t)∂xΨ2|2

)
e2τψdxdt,

what implies∫
Bδ

(
|f1(x, t)∂xΨ1|2 + |f2(x, t)∂2xΨ2|2 + |f3(x, t)∂xΨ2|2

)
e2τψdxdt

≤
∫
Bδ

(
|L1Ψ1|2 + |L2Ψ2|2 + |L3Ψ1|2 + |L4Ψ2|2

)
e2τψdxdt
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=

∫
Bδ

|LΨ|2e2τψdxdt,

where
L3 = I − d∂2x and |LΨ| =

(
|L1Ψ1|2 + |L2Ψ2|2 + |L3Ψ1|2 + |L4Ψ2|2

)1/2
.

Therefore ∫
Bδ

(
|P1(D)Ψ1|2 + |P2(D)Ψ2|2 + |P4(D)Ψ2|2

)
e2τψdxdt

≤ 2

∫
Bδ

(
|L1Ψ1|2 + |f1(x, t)∂xΨ1|2

)
e2τψdxdt

+ 2

∫
Bδ

(
|L2Ψ2|2 + |f2(x, t)∂2xΨ2|2

)
e2τψdxdt

+ 2

∫
Bδ

(
|L4Ψ2|2 + |f3(x, t)∂xΨ2|2

)
e2τψdxdt

≤ 4

∫
Bδ

|LΨ|2e2τψdxdt.

Hence, from previous inequality and (2.11) we obtain the estimate (2.3).

Remark 1. The estimate (2.3) is invariant under changes of signs on the components of L.

Corollary 2.3. Let T > 0. Assume that in addition to the hypotheses of the Theorem 2.2 we
have that

η, ηt ∈ L2
(
−T, T ;H2

loc(R)
)
, Φ ∈ L2

(
−T, T ;H4

loc(R)
)
, Φt ∈ L2

(
−T, T ;H2

loc(R)
)

and the support of η and support of Φ are compact contained in Bδ. Then, the inequality (2.3)
holds if we replace Ψ = (Ψ1,Ψ2) by U = (η,Φ). Indeed,

τ3c21

∫
Bδ

|η|2e2τψdxdt+ τ2δ2a2
∫
Bδ

|∂xη|2e2τψdxdt+ (τ3c22 + τ4b2)

∫
Bδ

|Φ|2e2τψdxdt

+ (τ2δ2c2 + τ3b2)

∫
Bδ

|∂xΦ|2e2τψdxdt+ τ2b2
∫
Bδ

|∂2xΦ|2e2τψdxdt

≤ C

∫
Bδ

|LU |2e2τψdxdt. (2.15)

Proof. Let {ρϵ}ϵ>0 be a regularizing sequence (in two variables) and consider

Uϵ = (ρϵ ∗ η, ρϵ ∗ Φ),

where ∗ denotes the usual convolution. Then we have that Uϵ ∈ C∞
0 (Bδ) × C∞

0 (Bδ) and the
inequality (2.3) holds for Uϵ, that is

τ3c21

∫
Bδ

|ρϵ ∗ η|2e2τψdxdt+ τ2δ2a2
∫
Bδ

|∂x(ρϵ ∗ η)|2e2τψdxdt
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+ (τ3c22 + τ4b2)

∫
Bδ

|ρϵ ∗ Φ|2e2τψdxdt+ (τ2δ2c2 + τ3b2)

∫
Bδ

|∂x(ρϵ ∗ Φ)|2e2τψdxdt

+ τ2b2
∫
Bδ

|∂2x(ρϵ ∗ Φ)|2e2τψdxdt ≤ C

∫
Bδ

|LUϵ|2e2τψdxdt. (2.16)

Now, for n = 0, 1 and m = 0, 1, 2 we have that

∥∂nx (ρϵ ∗ η)eτψ − ∂nxη e
τψ∥L2(Bδ) = ∥(ρϵ ∗ ∂nxη)eτψ − ∂nxη e

τψ∥L2(Bδ)

≤ C∥∂nx (ρϵ ∗ η)− ∂nxη∥L2(Bδ) → 0

and

∥∂mx (ρϵ ∗ Φ)eτψ − ∂mx Φ eτψ∥L2(Bδ) ≤ C∥∂mx (ρϵ ∗ Φ)− ∂mx Φ∥L2(Bδ) → 0, as ϵ→ 0+,

where C is a positive constant depending only on τ and δ. Similarly we have that∫
Bδ)

(
|LUϵ|2 e2τψ − |LU |2 e2τψ

)
dxdt→ 0, as ϵ→ 0+,

which allows us to pass to the limit in (2.16) to conclude the proof of Corollary 2.3.

3 Unique continuation

In this section we prove the unique continuation result for the system (1.1). Before to do the
proof, we establish the following results.

Lemma 3.1. Let T > 0 and f1, f2, f3 ∈ L∞
loc(R× (−T, T )). Let U = (η,Φ) with

η, ηt ∈ L2(−T, T ;H2
loc(R)), Φ ∈ L2(−T, T ;H4

loc(R)), Φt ∈ L2(−T, T ;H2
loc(R))

be a solution of LU = 0 in R× (−T, T ) where L is the differential operator defined in (2.1). Let

Ũ =

{
U if t ≥ 0

0 if t < 0.

Suppose that Ũ ≡ 0 in the region {(x, t) : x < t} intercepted with a neighborhood of (0, 0). Then

there exists a neighborhood O1 of (0, 0) (in the plane xt) such that Ũ ≡ 0 in O1.

Proof. By hypotheses there is 0 < δ < 1 such that Ũ ≡ 0 in Rδ = R1 ∪R2, where

R1 = {(x, t) : x < t} ∩Bδ, R2 = {(x, t) : t < 0} ∩Bδ, Bδ = {(x, t) : x2 + t2 < δ2}.

Next, consider χ ∈ C∞
0 (Bδ) such that χ = 1 in a neighborhood O of (0, 0) and define

Ψ = (Ψ1,Ψ2) = χŨ.

Then we have that

Ψ1,Ψ1t ∈ L2(−T, T ;H2
loc(R)), Ψ2 ∈ L2(−T, T ;H4

loc(R)), Ψ2t ∈ L2(−T, T ;H2
loc(R))
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and
suppΨ ⊂ Bδ.

By using the definition of χ, we note that LΨ = 0 in O. Thus, using the Corollary 2.3, we
have for ψ(x, t) = (x− δ)2 + δ2t2 and τ > 0 large enough that

τ3c21

∫
Bδ

|Ψ1|2e2τψdxdt+ τ2δ2a2
∫
Bδ

|∂xΨ1|2e2τψdxdt+ (τ3c22 + τ4b2)

∫
Bδ

|Ψ2|2e2τψdxdt

+ (τ2δ2c2 + τ3b2)

∫
Bδ

|∂xΨ2|2e2τψdxdt+ τ2b2
∫
Bδ

|∂2xΨ2|2e2τψdxdt

≤ C

∫
Bδ

|LΨ|2e2τψdxdt = C

∫
Bδ\O

|LΨ|2e2τψdxdt. (3.1)

Now, using again the definition of χ and the fact that Ũ ≡ 0 in Rδ, we see that

suppΨ ⊂ D, suppLΨ ⊂ D ∩ (Bδ \ O) , D = {(x, t) : 0 ≤ t ≤ x < δ < 1}.

It follows that if (x, t) ̸= (0, 0) and (x, t) ∈ D then

ψ(x, t) = (x− δ)2 + δ2t2 ≤ (t− δ)2 + δ2t2 = t2(1 + δ2)− 2tδ + δ2 < δ2.

Thus, there exists 0 < ϵ < δ2 such that

ψ(x, t) ≤ δ2 − ϵ, (x, t) ∈ D ∩ (Bδ \ O) .

Moreover, since ψ(0, 0) = δ2, we can choose O1 ⊂ O a neighborhood of (0, 0) such that

ψ(x, t) > δ2 − ϵ, (x, t) ∈ O1.

From the above construction and inequality (3.1), we have that there exists C1 > 0 such that

τ3e2τ(δ
2−ϵ)

∫
O1

(
|Ψ1|2 + |Ψ2|2

)
dxdt ≤ τ3

∫
O1

(
|Ψ1|2 + |Ψ2|2

)
e2τψdxdt

≤ τ3
∫
Bδ

(
|Ψ1|2 + |Ψ2|2

)
e2τψdxdt

≤ C1

∫
Bδ\O

|LΨ|2e2τψdxdt

≤ C1e
2τ(δ2−ϵ)

∫
Bδ\O

|LΨ|2dxdt.

Therefore ∫
O1

(
|Ψ1|2 + |Ψ2|2

)
dxdt ≤ C1

τ3

∫
Bδ\O

|LΨ|2dxdt.

Then, passing to the limit as τ → +∞, we have that Ψ ≡ 0 in O1. Since Ũ = Ψ in O and
O1 ⊂ O, we see that Ũ = 0 in O1.

Similarly, we also have the following result.
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Lemma 3.2. Let T > 0 and f1, f2, f3 ∈ L∞
loc(R× (−T, T )). Let U = (η,Φ) with

η, ηt ∈ L2(−T, T ;H2
loc(R)), Φ ∈ L2(−T, T ;H4

loc(R)), Φt ∈ L2(−T, T ;H2
loc(R))

be a solution of LU = 0 in R× (−T, T ) where L is the differential operator defined in (2.1). Let

Ũ =

{
0 if t ≥ 0

U if t < 0.

Suppose that Ũ ≡ 0 in the region { (x, t) : x < −t } intercepted with a neighborhood of (0, 0).

Then there exists a neighborhood O2 of (0, 0) (in the plane xt) such that Ũ ≡ 0 in O2.

Corollary 3.1. Let T > 0 and F1, F2, F3 ∈ L∞
loc(R× (−T, T )). Let U = (η,Φ) with

η, ηt ∈ L2(−T, T ;H2
loc(R)), Φ ∈ L2(−T, T ;H4

loc(R)), Φt ∈ L2(−T, T ;H2
loc(R))

be a solution in R× (−T, T ) of the system (I − a∂2x)ηt − b∂4xΦ+ F1(x, t)∂xη + F2(x, t)∂
2
xΦ = 0,

(I − c∂2x)Φt + η − d∂2xη + F3(x, t)∂xΦ = 0.

Let γ be a circumference passing through the origin (0, 0). Suppose that U ≡ 0 in the interior
of the circle (with boundary γ) in a neighborhood of (0, 0). Then, there exists a neighborhood of
(0, 0) where U ≡ 0.

Proof. Let us assume that the circumference (a piece of it) γ is given by x = g(t). By using the
hypotheses, we have that U ≡ 0 in the region {(x, t) : x < g(t)} intercepted with a neighborhood
of (0, 0). Then, we can to see that there exists ω ∈ R \ {0, 1} such that U ≡ 0 in a neighborhood
of (0, 0) intercepted with the region {(x, t) : x < h(t)} where

h(t) =

{
ωt if t ≥ 0

− 1
ω t if t < 0.

Now, we consider the following change of variables (x, t) → (X,T ) with

X = x− h(t) + |t|
T = t.

Notice that in the new variables, if T ≥ 0 then the function

U = U(X,T ) = (η(T,X),Φ(X,T ))

is a solution of the system (I − a∂2X)ηT − b∂4XΦ+ a(ω − 1)∂3Xη + (1− ω + F1(X,T )) ∂Xη + F2(X,T )∂
2
XΦ = 0,

(I − c∂2X)ΦT + η − d∂2Xη + c(ω − 1)∂3XΦ+ (1− ω + F3(X,T )) ∂XΦ = 0.

Then, U ≡ 0 in the region {(X,T ) : X < T, T ≥ 0} intercepted with a neighborhood of (0, 0)
and U satisfies

LU = 0 if T ≥ 0,
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where

L =

∂T − a∂2X∂T + c1∂
3
X + f1(X,T )∂X f2(X,T )∂

2
X − b∂4X

I − d∂2X ∂T − c∂2X∂T + c2∂
3
X + f3(X,T )∂X


with

c1 = a(ω − 1), c2 = c(ω − 1), f1 = 1− ω + F1, f2 = F2, f3 = 1− ω + F3.

So, using Lemma 3.1 with the previous differential operator L, we obtain that there exists a
neighborhood O1 of (0, 0) in the plane XT where U ≡ 0.

In a similar fashion, U ≡ 0 in the region {(X,T ) : X < −T, T < 0} intercepted with a
neighborhood of (0, 0) and U satisfies

LU = 0 if T < 0,

where

c1 = a
(
1− 1

ω

)
, c2 = c

(
1− 1

ω

)
, f1 = 1

ω − 1 + F1, f2 = F2, f3 = 1
ω − 1 + F3.

Then, from Lemma 3.2 we have that there exists a neighborhood O2 of (0, 0) in the plane XT
where U ≡ 0. Thus, returning to the original variables (x, t) we have the result.

Now we have the main result on the unique continuation property for the system (1.1).

Theorem 3.2. Let T > 0 and (η,Φ) = (η(x, t),Φ(x, t)) with

η, ηt ∈ L2(−T, T ;H2
loc(R)), Φ ∈ L2(−T, T ;H4

loc(R)), Φt ∈ L2(−T, T ;H2
loc(R))

be a solution in R×(−T, T ) of the system (1.1). If (η,Φ) ≡ 0 in an open subset Ω of R×(−T, T ),
then (η,Φ) ≡ 0 in the horizontal component of Ω.

Proof. By defining the functions

F1(x, t) = ∂xΦ(x, t), F2(x, t) = 1 + η(x, t), F3(x, t) =
1
2∂xΦ(x, t),

the system (1.1) takes the form (I − a∂2x)ηt − b∂4xΦ+ F1(x, t)∂xη + F2(x, t)∂
2
xΦ = 0,

(I − c∂2x)Φt + η − d∂2xη + F3(x, t)∂xΦ = 0.
(3.2)

with F1, F2, F3 ∈ L∞
loc(R× (−T, T )). Then, we will show the result for the system (3.2).

Denote by Ω1 the horizontal component of Ω and let

Λ = {(x, t) ∈ Ω1 : (η,Φ) ≡ 0 in a neighborhood of (x, t)}.

Let Q ∈ Ω1 arbitrary. Choose P ∈ Λ and let Γ be a continuous curve contained in Ω1 joining P
to Q, parametrized by a continuous function f : [0, 1] → Ω1 with f(0) = P and f(1) = Q. Since
P ∈ Λ, there exists r > 0 such that

(η,Φ) ≡ 0 in Br(P ). (3.3)
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Taking 0 < r0 < min{r, dist(Γ, ∂Ω1)}, where ∂Ω1 denotes the boundary of Ω1, we have that

Br0(P ) ⊂ Λ.

Now, if r1 <
r0
4 we see that

B2r1(f(s)) ⊂ Ω1, for all s ∈ [0, 1]; (3.4)

in fact, if w ∈ B2r1(f(s)) and w /∈ Ω1 then

∥w − f(s)∥ < 2r1 < r0 < dist(Γ, ∂Ω1) ≤ ∥w − f(s)∥,

which is a contradiction.

Next, let
Λ1 = {(x, t) ∈ Λ : (η,Φ) ≡ 0 in Br1(x, t) ∩ Ω1}

and
S = {0 ≤ ℓ ≤ 1 : f(s) ∈ Λ1 whenever 0 ≤ s ≤ ℓ}, ℓ0 = supS.

We will prove that f(ℓ0) ∈ Λ1. If w ∈ Br1(f(ℓ0)) and r2 = ∥w−f(ℓ0)∥ then there exists 0 < δ < ℓ0
such that ∥f(ℓ0)− f(ℓ0 − δ)∥ < r1 − r2. Therefore

∥w − f(ℓ0 − δ)∥ ≤ ∥w − f(ℓ0)∥+ ∥f(ℓ0)− f(ℓ0 − δ)∥ < r1,

and so w ∈ Br1(f(ℓ0 − δ)). Now, from the definition of ℓ0 there exists ℓδ ∈ S such that ℓ0 − δ <
ℓδ ≤ ℓ0, what implies f(ℓ0 − δ) ∈ Λ1. Then, using (3.4) we see that

(η,Φ) ≡ 0 in Br1(f(ℓ0 − δ)) ∩ Ω1 = Br1(f(ℓ0 − δ)). (3.5)

Consequently we obtain that (η(w),Φ(w)) = 0 and then

(η,Φ) ≡ 0 in Br1(f(ℓ0)). (3.6)

Hence, we have showed f(ℓ0) ∈ Λ1.

If ℓ0 = 1 then from previous analysis we have that Q = f(1) ∈ Λ1 ⊂ Λ. Thus, since Q was
arbitrarily chosen we obtain that (η,Φ) ≡ 0 in Ω1, which proves Theorem 3.2. Then to finish the
proof of Theorem 3.2 remains to prove that ℓ0 = 1. In fact, let us suppose that ℓ0 < 1 and let

G = {Y ∈ Ω1 : ∥Y − f(ℓ0)∥ = r1} .

For w = (x1, t1) ∈ G fixed, we consider the change of variable (x, t) → (X,T ) where

X = x− x1,

T = t− t1.

Notice that (0, 0) ∈ G∗ = {Y = (X,T ) : ∥Y − (f(ℓ0)− w)∥ = r1}. Moreover, from (3.6) we see
that

(η(X,T ),Φ(X,T )) = 0, (X,T ) ∈ Br1(f(ℓ0)− w).

So that, by using Corollary 3.1, there exists r∗w > 0 such that

(η(X,T ),Φ(X,T )) = 0, (X,T ) ∈ Br∗w(0, 0).
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Returning to the original variables we have that for each w ∈ G there exists r∗w > 0 such that

(η,Φ) ≡ 0 in Br∗w(w).

Then, using (3.6) and the compactness of G, we have that there is ϵ1 > 0 such that

(η,Φ) ≡ 0 in Br1+ϵ1(f(ℓ0)). (3.7)

Now, we note that there exists 0 < δ1 < 1− ℓ0 such that if w ∈ Br1(f(ℓ0 + δ1)) then

∥w − f(ℓ0)∥ ≤ ∥w − f(ℓ0 + δ1)∥+ ∥f(ℓ0 + δ1)− f(ℓ0)∥ < r1 + ϵ1.

Thus, w ∈ Br1+ϵ1(f(ℓ0)) and so Br1(f(ℓ0 + δ1)) ⊂ Br1+ϵ1(f(ℓ0)). Therefore, using (3.7) we have
that (η,Φ) ≡ 0 in Br1(f(ℓ0+ δ1)). Consequently f(ℓ0+ δ1) ∈ Λ1, which contradicts the definition
of ℓ0. So, ℓ0 = 1 and the proof of Theorem 3.2 is complete.

Conclusion. In this paper, using an appropriate Carleman-type estimate, we established
a result of unique continuation for a special class of one-dimensional systems that model the
evolution of long water waves with small amplitude in the presence of surface tension. We
showed that if (η,Φ) = (η(x, t),Φ(x, t)) is a solution of the system (1.1) in a suitable function
space and (η,Φ) vanishes on an open subset Ω of R× [−T, T ], then (η,Φ) ≡ 0 in the horizontal
component of Ω.
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