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Abstract. In this paper, we introduce a method for finding common solution of
variational inequality, finite family of monotone inclusion and fixed point problems
of demicontractive mappings in a real Hilbert space. We prove strong convergence
result of proposed method. We also provide a numerical example to show that our
method is efficient from the numerical point of view.
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1 Introduction

Monotone inclusion problem (MIP) plays a crucial role in nonlinear analysis and optimization.
MIP is the problem of finding a point ζ in a Hilbert space H such that

0 ∈ Tζ, (1.1)

where T : H → 2H is a monotone operator. Mathematically, monotone inclusion problem in-
cludes image processing problem, variational inequality problem, split feasibility problem, convex
minimization problem, equilibirium problem etc. [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]. The first
method, namely proximal point method, for solving MIP was proposed by Martinet in 1970. It
was defined as

ζn+1 = (I + λnT )
−1ζn. (1.2)

Rockafeller [14] in 1976 and Bruck and Reich [15] in 1977, further developed this algorithm.
But the evaluation of resolvent operator in proximal point algorithm was difficult in many cases.
Consequently, to solve this issue, the operator T is divided into the sum of maximal monotone
operator A and monotone operator B. As the resolvent operators (I + λnA)

−1 and (I + λnB)−1

is simpler to calculate than the full resolvent (I+λnT )
−1. The problem (1.1) is equivalent to the

following problem:

Find ζ ∈ H such that 0 ∈ (A+B)ζ. (1.3)
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The solution set of the problem (1.3) is given by (A + B)−1(0). The first method for solving
problem (1.3) was forward-backward splitting algorithm. Many iterative algorithms have been
designed to solve MIP, for instance, Douglas-Rachford splitting method [18], Peaceman-Rachford
splitting method [19] and many more. Tseng [20] in 2000, introduced the modified forward-
backward algorithm and proved its weak convergence. Gibali and Thong [21] in 2018, obtained
a modified version of Tseng’s splitting algorithm and proved its strong convergence.

Polyak [22] developed an inertial extrapolation method which is based on heavy ball method
to speed up the convergence of iterative algorithms. Later, inertial extrapolation technique was
used to solve MIP and numerous authors considerably enhanced it. For instance, Lorenz and Pock
[23] in 2015, introduced the following inertial forward-backward algorithm for solving monotone
inclusion problem and proved weak convergence in a real Hilbert space.{

φn = ζn + θn(ζn − ζn−1),

ζn+1 = (I + λnA)
−1(I − λnB)φn.

The above algorithm has better rate of convergence than some existing algorithms present in the
literature. Thong and Cholamjiak [25] in 2019, introduced modified forward-backward splitting
algorithm and proved strong convergence.

On the other hand, variational inequality is used in solving various class of problems like
transportation, economics, engineering, optimization, elasticity and control theory [26, 27, 28, 29,
30]. Several numerical techniques have been devised for solving variational inequality problems
(VIP). A VIP is to find a point ζ in a convex, closed and nonempty subset Q of Hilbert space H
such that

⟨P (ζ), ϑ− ζ⟩ ≥ 0 for all ϑ ∈ Q, (1.4)

where P : Q → H is a nonlinear mapping. The set of solutions of VIP is denoted by V I(Q,P ).
Eslamian and Kamandi [31] in 2020, developed iterative algorithm for finding common solution
of fixed point and monotone inclusion problem in Hilbert space. Recently, Olona and Narain [32]
in 2022, introduced a method for approximating a common solution of fixed point problem for
finite families of multivalued demicontractive mappings and finite families of variational inequality
problem in a real Hilbert space.

Inspired and encouraged by the above results, we introduce a method for finding common
solution of variational inequality problem, finite families of monotone inclusion and fixed point
problems of demicontractive mappings in a real Hilbert space and prove strong convergence of
proposed algorithm. Also, we provide a numerical example to show its applicability.

2 Preliminaries

We now give some definitions and lemmas which we will use in proving our main result. Suppose
H denotes a real Hilbert space having inner product ⟨., .⟩ and norm ∥.∥. Assume that Q is a
nonempty, closed and convex subset of H. In addition, Fix(U) denotes the collection of all fixed
points of mapping U.

Definition 1. [31] “The operator U : H → H is called

(i) Nonexpansive, if
∥Uζ − Uϑ∥ ≤ ∥ζ − ϑ∥ for all ζ, ϑ ∈ H.
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(ii) Demicontractive, if Fix(U) ̸= ϕ there exists k ∈ [0, 1) such that
∥Uζ − ϑ∥2 ≤ ∥ζ − ϑ∥2 + k∥ζ − Uζ∥2 for all ζ ∈ H and ϑ ∈ Fix(U).

(iii) Contractive, if there exists a constant 0 ≤ θ < 1 such that
∥Uζ − Uϑ∥ ≤ θ∥ζ − ϑ∥ for all ζ, ϑ ∈ H.”

Definition 2. [32] “ Let Q be a nonempty, closed and convex subset of a real Hilbert space H.
A mapping U : Q→ Q is said to be

(i) monotone, if ⟨Uζ − Uϑ, ζ − ϑ⟩ ≥ 0 for all ζ, ϑ ∈ H,

(ii) α-inverse strongly monotone (ism), if there exists α > 0 such that
⟨Uζ − Uϑ, ζ − ϑ⟩ ≥ α∥Uζ − Uϑ∥2 for all ζ, ϑ ∈ Q,

(iii) firmly nonexpansive, if ⟨Uζ − Uϑ, ζ − ϑ⟩ ≥ ∥Uζ − Uϑ∥2 for all ζ, ϑ ∈ Q,

(iv) Lipschitz, if there exists a constant K > 0 such that ∥Uζ − Uϑ∥ ≤ K∥ζ − ϑ∥ for all
ζ, ϑ ∈ Q.”

Definition 3. [32] “If U is a multi-valued mapping, that is, U : H → 2H , then U is called
monotone, if ⟨ζ − ϑ, ψ − υ⟩ ≥ 0 for all ζ, ϑ ∈ H,ψ ∈ Uζ, υ ∈ Uϑ and U is maximal monotone, if
the graph G(U) of U defined by G(U) = {(ζ, ϑ) ∈ H ×H : ϑ ∈ U(ζ)} is not properly contained
in the graph of any other monotone mapping. It is generally known that U is maximal if and
only if for (ζ, ϑ) ∈ H ×H, ⟨ζ − ψ, ϑ− υ⟩ ≥ 0 for all (ψ, ϑ) ∈ G(U) implies ϑ ∈ U(ζ).”

Definition 4. [32] “The metric projection PQ is a map defined on H onto Q which assign to
each ζ ∈ H, the unique point in Q, denoted by PQζ such that ∥ζ −PQζ∥ = inf{∥ζ −ϑ∥ : ϑ ∈ Q}.
It is well known that PQζ is characterized by the inequality ⟨ζ − PQ(ζ), ϑ − PQ(ζ)⟩ ≤ 0, for all
ϑ ∈ Q and PQ is a firmly non-expansive mapping.”

Definition 5. [33] “The resolvent mapping JU
γ : H → H associated with the set-value mapping

U is defined by JU
γ (ζ) = (I + γU)−1(ζ) ∀ ζ ∈ H, for some γ > 0, where I stands for the

identity operator on H.”

Definition 6. [31] “Assume that T : H → H is a nonlinear mapping with Fix(T ) ̸= ϕ. Then
I − T is said to be demiclosed at zero if for any {χn} in H, the following implications holds:
ζn ⇀ ι and (I − T )ζn → 0 =⇒ ι ∈ Fix(T ).”

Lemma 2.1. [34] “Assume that {tn} ⊂ [0,∞) is a sequence of real numbers. Suppose that

sn+1 ≤ (1− γn)sn + γntn for all n ∈ N,

where {γn} ⊂ [0, 1] and {tn} ⊂ (−∞,∞) satisfying following conditions:

1.
∑∞

n=1 γn = ∞,

2. lim sup
n→∞

tn ≤ 0.

Then limn→∞ sn = 0.”

Proposition 2.1. [35] “Let L : Q→ H be an inverse strongly monotone(ism) mapping. Then,
z ∈ V I(Q,L) ⇐⇒ z = PQ(z − λLz), λ > 0.”
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Proposition 2.2. [35] “Let L be an ism mapping of Q into H. Let NQ be the normal cone to
Q at z ∈ Q, i.e. NQz = {w ∈ H : ⟨z − u,w⟩ ≥ 0, for all u ∈ Q},
and define

Tz =

{
Lz +NQz, z ∈ Q

ϕ, z ∈ H\Q.

Then, T is maximal monotone and 0 ∈ Tz if and only if z ∈ V I(Q,L).”

Lemma 2.2. [36, 38] “Assume that H is a real Hilbert space. Let mapping g : H → H be
Lipschitz continuous monotone and mapping A : H → 2H be maximal monotone. Then the
mapping K = g +A is maximal monotone.”

Lemma 2.3. [32, 37] “Let H be a real Hilbert space. Then for all ζ, ϑ ∈ H and γ ∈ (0, 1), we
have

(i) 2⟨ζ, ϑ⟩ = ∥ζ∥2 + ∥ϑ∥2 − ∥ζ − ϑ∥2 = ∥ζ + ϑ∥2 − ∥ζ∥2 − ∥ϑ∥2.

(ii) ∥γζ + (1− γ)ϑ∥2 = γ∥ζ∥2 + (1− γ)∥ϑ∥2 − γ(1− γ)∥ζ − ϑ∥2.

(iii) ∥ζ + ϑ∥2 ≤ ∥ζ∥2 + 2⟨ϑ, ζ + ϑ⟩.”

Lemma 2.4. [38] “Assume H is a real Hilbert space, B : H → H is a mapping and A : H → 2H

is maximal monotone mapping. Define the fixed point set of the mapping U as Fix(U) = {ζ :
ζ = Uζ} and Uµ = (I + µA)−1(I − µB), µ > 0. Then, Fix(Uµ) = (A+B)−1(0), for all µ > 0.”

Lemma 2.5. [38] “Assume that the sequences {φn} and {ϑn} are created by the following:{
φn = ζn + αn(ζn − ζn−1);

ϑn = (I + τA)−1(I − τB)φn.

If limn→∞ ∥φn − ϑn∥ = 0 and {φnk
} converges weakly to some ι ∈ H, then ι ∈ (A+B)−1(0).”

Lemma 2.6. [39] “Let H be a real Hilbert space. Let {ζi, i = 1, 2, ...m} ⊂ H. For
{βi} ⊂ (0, 1), i = 1, 2, ...m such that

∑m
i=1 βi = 1, the following identity holds:∥∥∥∥∥

m∑
i=1

βiζi

∥∥∥∥∥
2

=

m∑
i=1

βi∥ζi∥2 −
∑

j,i=1,j ̸=i

βiβj∥ζi − ζj∥2.”

Lemma 2.7. [25, 40] “Let {ζn} be a sequence of nonnegative real numbers, such that there
exists a subsequence {ζnj} of {ζn} such that ζnj < ζnj+1 for all j ∈ N. Then, there exists a
nondecreasing sequence {nk} of N such that limn→∞ nk = ∞ and the following properties are
satisfied by all (sufficiently large) number k ∈ N : ζnk

≤ ζnk+1 and ζk ≤ ζnk+1. In fact, nk is the
largest number n in the set {1, 2, ..., k}, such that ζn < ζn+1.”

3 Main Result

In this section, we introduce a method for finding common solution of variational inequality,
finite family of monotone inclusion and fixed point problems of demicontractive mappings in a
real Hilbert space. Suppose Q is nonempty, convex and closed subset of a real Hilbert spaceH and
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Si (i = 1, 2, ...m) is finite family of demicontractive mappings having constant ki ∈ (0, 1) such that
I−Si are demiclosed at origin. Assume that L : Q→ H is σ-inverse strongly monotone mapping,
Aj : H → 2H are maximal monotone mappings, Bj : H → H are ξ-cocoercive mappings, g is
contractive mapping on H having constant θ ∈ (0, 1) and constants τj such that 0 < τj ≤ 2ξ for
all j = 1, 2, ...N.

Algorithm 3.1. Consider βn,i, γn ∈ (0, 1) such that
∑m

i=0 βn,i = 1, βn,0 ∈ (k, 1),
lim sup
n→∞

βn,i(βn,0 − k) ≥ 0, limn→∞ γn = 0,
∑∞

n=1 γn = ∞, where k = supi≥1{ki} < 1. Select

ηn ∈ (ϵ, 2σ − ϵ),where ϵ > 0 and αn ⊆ [0,∞) such that limn→∞
αn

γn
= 0. For ζ1 ∈ H, calculate

{ζn+1} using the sequences {ϵn}, {φn}, {υn}, {ψn}, {κn} as follows:

ϵn =

{
min

{
αn

∥ζn−ζn−1∥ , ϵ
}
, if ζn ̸= ζn−1,

ϵ, otherwise

φn = ζn + ϵn(ζn − ζn−1);

υn = γng(φn) + (1− γn)φn;

ψn = βn,0υn +
∑m

i=1 βn,iSiυn;

κn = PQ(ψn − ηnLψn);

ζn+1 = JAN
τN (I − τNBN )J

AN−1
τN−1 (I − τN−1BN−1)J

AN−2
τN−2 (I − τN−2BN−2)...J

A1
τ1 (I − τ1B1)κn.

(3.1)

Where J
Aj
τj (j = 1, 2, ...N) represents the resolvent mapping of the mapping Aj and I

represents the identity operator on H.

Remark 1. As ϵn∥ζn − ζn−1∥ ≤ αn for all n and from our assumption limn→∞
αn

γn
= 0, we have

lim
n→∞

ϵn
γn

∥ζn − ζn−1∥ ≤ lim
n→∞

αn

γn
= 0.

Hence,

lim
n→∞

ϵn
γn

∥ζn − ζn−1∥ = 0. (3.2)

Theorem 3.2. Suppose that the solution set Ω =

{
m⋂
i=1

Fix(Si)

}
∩V I(L,Q)∩

{
N⋂
j=1

(Ai +Bi)
−1(0)

}
is nonempty. Then the sequence {ζn} generated by Algorithm (3.1) converges strongly to an ele-
ment in Ω.

Proof. Firstly we will prove {ζn} is bounded. Suppose ι ∈ Ω and

ϕN = JAN
τN (I−τNBN )J

AN−1
τN−1 (I−τN−1BN−1)J

AN−2
τN−2 (I−τN−2BN−2)...J

A1
τ1 (I−τ1B1), where ϕ

0 = I.
As the resolvent mapping is nonexpansive and using equation (3.1), we have

∥ζn+1 − ι∥2 = ∥JAN
τN (I − τNBN )ϕN−1κn − ι∥2 ≤ ∥ϕN−1κn − ι∥2 ≤ ∥ϕN−2κn − ι∥2 ≤ ∥κn − ι∥2.

(3.3)

Since ι ∈ V I(L,Q). Also, from equation (3.1) and the fact that projection mapping is nonexpan-
sive , we obtain

∥κn − ι∥2 = ∥PQ(ψn − ηnLψn)− ι∥2
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≤ ∥(I − ηnL)(ψn)− (I − ηnL)ι∥2

= ∥(ψn − ι)− ηn(Lψn − Lι)∥2

= ∥ψn − ι∥2 + η2n∥Lψn − Lι∥2 − 2ηn⟨ψn − ι, Lψn − Lι⟩
≤ ∥ψn − ι∥2 + η2n∥Lψn − Lι∥2 − 2ηnσ∥Lψn − Lι∥2

= ∥ψn − ι∥2 − ηn(2σ − ηn)∥Lψn − Lι∥2. (3.4)

Since ηn ∈ (ϵ, 2σ − ϵ), so we have

∥κn − ι∥2 ≤ ∥ψn − ι∥2. (3.5)

Using Lemmas (2.3), (2.6) and equation (3.1), we have

∥ψn − ι∥2 ≤

∥∥∥∥∥βn,0υn +

m∑
i=1

βn,iSiυn − ι

∥∥∥∥∥
2

=

∥∥∥∥∥βn,0(υn − ι) +

m∑
i=1

βn,i(Siυn − ι)

∥∥∥∥∥
2

= βn,0∥υn − ι∥2 +
m∑
i=1

βn,i∥Siυn − ι∥2 −
m∑
i=1

βn,0βn,i∥υn − Siυn∥2

≤ βn,0∥υn − ι∥2 +
m∑
i=1

βn,i
[
∥υn − ι∥2 + k∥υn − Siυn∥2

]
−

m∑
i=1

βn,0βn,i∥υn − Siυn∥2

= ∥υn − ι∥2 + (k − βn,0)

m∑
i=1

βn,i∥υn − Siυn∥2. (3.6)

Since βn,0 ∈ (k, 1). From equation (3.6), we have

∥ψn − ι∥2 ≤ ∥υn − ι∥2. (3.7)

Again from equation (3.1), we have

∥φn − ι∥ = ∥ζn + ϵn(ζn − ζn−1)− ι∥

≤ ∥ζn − ι∥+ γn
ϵn
γn

∥ζn − ζn−1∥. (3.8)

By Remark (1), we have limn→∞
ϵn
γn

∥ζn − ζn−1∥ = 0, therefore there exist a constant M1 > 0

such that ϵn
γn

∥ζn − ζn−1∥ ≤M1. Therefore, equation (3.8) implies

∥φn − ι∥ ≤ ∥ζn − ι∥+ γnM1. (3.9)

Using equations (3.3), (3.5), (3.7) and (3.9) we deduce that

∥ζn+1 − ι∥ ≤ ∥υn − ι∥ (3.10)

= ∥γng(φn) + (1− γn)φn − ι∥
= ∥γn(g(φn)− ι) + (1− γn)(φn − ι)∥
= ∥γn(g(φn)− g(ι)) + γn(g(ι)− ι) + (1− γn)(φn − ι)∥
≤ γn∥g(φn)− g(ι)∥+ γn∥g(ι)− ι∥+ (1− γn)∥φn − ι∥
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≤ γnθ∥φn − ι∥+ (1− γn)∥φn − ι∥+ γn∥g(ι)− ι∥
= [1− γn(1− θ)]∥φn − ι∥+ γn∥g(ι)− ι∥

≤ [1− γn(1− θ)][∥ζn − ι∥+ γnM1] + γn(1− θ)

(
∥g(ι)− ι∥

1− θ

)
≤ [1− γn(1− θ)][∥ζn − ι∥+M1] + γn(1− θ)

(
∥g(ι)− ι∥

1− θ

)
.

Continuing like this,

∥ζn+1 − ι∥ ≤ max

{
∥ζ0 − ι∥+M1,

∥g(ι)− ι∥
1− θ

}
.

Thus {ζn} is bounded and hence {ψn}, {φn}, {υn} and {κn} are also bounded. Now, using
equation (3.1) and Lemma (2.3), we obtain

∥υn − ι∥2 = ∥γng(φn) + (1− γn)φn − ι∥2

= ∥γn(g(φn)− ι) + (1− γn)(φn − ι)∥2

≤ (1− γn)∥φn − ι∥2 + 2γn⟨g(φn)− ι, φn − ι+ γn(g(φn)− φn)⟩. (3.11)

From equations (3.3), (3.5), (3.6) and (3.11), we obtain

∥ζn+1 − ι∥2 ≤ ∥ψn − ι∥2

≤ ∥υn − ι∥2 + (k − βn,0)

m∑
i=1

βn,i∥υn − Siυn∥2

≤ (1− γn)∥φn − ι∥2 + 2γn⟨g(φn)− ι, φn − ι+ γn(g(φn)− φn)⟩

+ (k − βn,0)

m∑
i=1

βn,i∥υn − Siυn∥2. (3.12)

Since, βn,0 ∈ (k, 1), so equation (3.12) gives

∥ζn+1 − ι∥2 ≤ (1− γn)∥φn − ι∥2 + 2γn⟨g(φn)− ι, φn − ι+ γn(g(φn)− φn)⟩. (3.13)

Now, from equation (3.1), we have

∥φn − ι∥2 = ∥ζn + ϵn(ζn − ζn−1)− ι∥2

= ∥ζn − ι∥2 + ϵ2n∥ζn − ζn−1∥2 + 2ϵn⟨ζn − ι, ζn − ζn−1⟩
≤ ∥ζn − ι∥2 + ϵ2n∥ζn − ζn−1∥2 + 2ϵn∥ζn − ι∥∥ζn − ζn−1∥. (3.14)

Now, we prove ζn → ι. For this, we study two cases.

Case 1: Suppose that there exists a number N ∈ N such that ∥ζn+1 − ι∥2 ≤ ∥ζn − ι∥2 for any n ≥ N.
As sequence {∥ζn− ι∥}2 is bounded and monotonic, this gives {∥ζn− ι∥2} is convergent. From equations
(3.12) and (3.14), we have

(βn,0 − k)

m∑
i=1

βn,i∥υn − Siυn∥2 ≤ (1− γn){∥ζn − ι∥2 + ϵ2n∥ζn − ζn−1∥2 + 2ϵn∥ζn − ι∥∥ζn − ζn−1∥}

+ 2γn⟨g(φn)− ι, φn − ι+ γn(g(φn)− φn)⟩ − ∥ζn+1 − ι∥2
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≤ ∥ζn − ι∥2 + ϵ2n∥ζn − ζn−1∥2 + 2ϵn∥ζn − ι∥∥ζn − ζn−1∥

+ 2γn⟨g(φn)− ι, φn − ι+ γn(g(φn)− φn)⟩ − ∥ζn+1 − ι∥2,

which implies

(βn,0 − k)

m∑
i=1

βn,i∥υn − Siυn∥2 ≤ ∥ζn − ι∥2 + ϵ2n
γ2
n

γ2
n∥ζn − ζn−1∥2 +

2ϵn
γn

γn∥ζn − ι∥∥ζn − ζn−1∥

+ 2γn⟨g(φn)− ι, φn − ι+ γn(g(φn)− φn)⟩ − ∥ζn+1 − ι∥2. (3.15)

Taking limit n→ ∞ in equation (3.15), by using Remark (1) and limn→∞ γn = 0, we obtain

lim
n→∞

∥υn − Siυn∥ = 0. (3.16)

Using equation (3.1), we have

∥υn − φn∥ = ∥γng(φn) + (1− γn)φn − φn∥
= γn∥g(φn)− φn∥. (3.17)

Taking limit n→ ∞ in equation (3.17) and using limn→∞ γn = 0, we obtain

lim
n→∞

∥υn − φn∥ = 0. (3.18)

From equation (3.1), we have

∥ψn − υn∥ ≤
m∑
i=1

βn,i∥Siυn − υn∥. (3.19)

Taking limit n→ ∞ in above equation and using equation (3.16), we get

lim
n→∞

∥ψn − υn∥ = 0. (3.20)

Using triangle inequality, equations (3.18) and (3.20), we have

lim
n→∞

∥ψn − φn∥ = 0. (3.21)

From equations (3.3), (3.4) and (3.7), we have

∥ζn+1 − ι∥2 ≤ ∥κn − ι∥2

≤ ∥ψn − ι∥2 − ηn(2σ − ηn)∥Lψn − Lι∥2

≤ ∥υn − ι∥2 − ηn(2σ − ηn)∥Lψn − Lι∥2, (3.22)

which implies

ηn(2σ − ηn)∥Lψn − Lι∥2 ≤ ∥υn − ι∥2 − ∥ζn+1 − ι∥2. (3.23)

Using equations (3.11) and (3.23), we deduce

ηn(2σ − ηn)∥Lψn − Lι∥2 ≤ (1− γn)∥φn − ι∥2 + 2γn⟨g(φn)− ι, φn − ι+ γn(g(φn)− φn)⟩ − ∥ζn+1 − ι∥2.
(3.24)

Consequently, from equation (3.14) and (3.24), we have

ηn(2σ − ηn)∥Lψn − Lι∥2 ≤ ∥ζn − ι∥2 − ∥ζn+1 − ι∥2 + 2γn⟨g(φn)− ι, φn − ι+ γn(g(φn)− φn)⟩

+ ϵ2n∥ζn − ζn−1∥2 + 2ϵn∥ζn − ι∥∥ζn − ζn−1∥. (3.25)

Taking limit n→ ∞ in equation (3.25) and using Remark (1) and limn→∞ γn = 0, we have

lim
n→∞

∥Lψn − Lι∥ = 0. (3.26)
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Using equation (3.1) and Lemma (2.3), we obtain

∥κn − ι∥2 = ∥PC(ψn − ηnLψn)− ι∥2

≤ ⟨κn − ι, (I − ηnL)ψn − (I − ηnL)ι⟩

=
1

2
{∥κn − ι∥2 + ∥(I − ηnL)ψn − (I − ηnL)ι∥2 − ∥κn − ψn + ηn(Lψn − Lι)∥2.

After rearranging the terms, we have

∥κn − ι∥2 ≤ ∥ψn − ι∥2 − ∥κn − ψn∥2 − η2n∥Lψn − Lι∥2 − 2ηn∥κn − ψn∥∥Lψn − Lι∥. (3.27)

Now, from equation (3.13) and (3.14), we have

∥ψn − ι∥2 ≤ (1− γn)∥φn − ι∥2 + 2γn⟨g(φn)− ι, φn − ι+ γn(gφn − φn)⟩

≤ (1− γn){∥ζn − ι∥2 + ϵ2n∥ζn − ζn−1∥2 + 2ϵn∥ζn − ι∥∥ζn − ζn−1∥}
+ 2γn⟨g(φn)− ι, φn − ι+ γn(g(φn)− φn)⟩. (3.28)

Again, using equations (3.3), (3.27) and (3.28), we deduce

∥ζn+1 − ι∥2 ≤ ∥κn − ι∥2

≤ (1− γn){∥ζn − ι∥2 + ϵ2n∥ζn − ζn−1∥2 + 2ϵn∥ζn − ι∥∥ζn − ζn−1∥} − ∥κn − ψn∥2

+ 2ηn∥κn − ψn∥∥Lψn − Lι∥

+ 2γn⟨g(φn)− ι, φn − ι+ γn(g(φn)− φn)⟩ − η2n∥Lψn − Lι∥2

≤ ∥ζn − ι∥2 + ϵ2n∥ζn − ζn−1∥2 + 2ϵn∥ζn − ι∥∥ζn − ζn−1∥ − ∥κn − ψn∥2

+ 2ηn∥ψn − ι∥∥Lψn − Lι∥

+ 2γn⟨g(φn)− ι, φn − ι+ γn(g(φn)− φn)⟩ − η2n∥Lψn − Lι∥2,

which implies

∥κn − ψn∥2 ≤ ∥ζn − ι∥2 − ∥ζn+1 − ι∥2 + 2ηn∥ψn − ι∥∥Lψn − Lι∥ − η2n∥Lψn − Lι∥2

+ 2γn⟨g(φn)− ι, φn − ι+ γn(g(φn)− φn)⟩

+ ϵ2n∥ζn − ζn−1∥2 + 2ϵn∥ζn − ι∥∥ζn − ζn−1∥. (3.29)

Taking limit n → ∞ in equation (3.29) and using equation (3.26), remark (1) and limn→∞ γn = 0, we
get

lim
n→∞

∥κn − ψn∥ = 0. (3.30)

From equations (3.21), (3.30) and triangle inequality, we have

lim
n→∞

∥κn − φn∥ = 0. (3.31)

Consider

∥ζn − φn∥ = ∥ϵn(ζn − ζn−1)∥. (3.32)

By using Remark (1) and taking limit n→ ∞ in equation (3.32), we get

lim
n→∞

∥ζn − φn∥ = 0. (3.33)

By using equations (3.31), (3.33) and triangle inequality, we deduce

lim
n→∞

∥κn − ζn∥ = 0. (3.34)

From equations (3.30) and (3.34), we have

lim
n→∞

∥ψn − ζn∥ = 0. (3.35)
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Again using equations (3.20), (3.30) and (3.34), we get

lim
n→∞

∥ζn − υn∥ = 0. (3.36)

Now, consider

∥ζn+1 − ι∥2 = ∥JAN
τN (I − τNBN )J

AN−1
τN (I − τN−1BN−1)J

AN−2
τN−2 (I − τN−2BN−2)...J

A1
τ1 (I − τ1B1)κn − ι∥2

= ∥JAN
τN (I − τNBN )ϕN−1κn − ι∥2.

As JAN
τN (I − τNBN ) is firmly nonexpansive, we have

∥ζn+1 − ι∥2 ≤ ⟨ζn+1 − ι, ϕN−1κn − ι⟩. (3.37)

Using Lemma (2.3) and equation (3.37), we obtain

∥ζn+1 − ι∥2 ≤ 1

2

[
∥ζn+1 − ι∥2 + ∥ϕN−1κn − ι∥2 − ∥ζn+1 − ϕN−1κn∥2

]
. (3.38)

From equation (3.38), we have

∥ζn+1 − ι∥2 ≤ ∥ϕN−1κn − ι∥2 − ∥ζn+1 − ϕN−1κn∥2,

which implies

∥ζn+1 − ϕN−1κn∥2 ≤ ∥ϕN−1κn − ι∥2 − ∥ζn+1 − ι∥2. (3.39)

Taking limit n→ ∞ in equation (3.39) and using equations (3.3) and (3.34), we have

lim
n→∞

∥ζn+1 − ϕN−1κn∥2 ≤ lim
n→∞

(
∥ϕN−1κn − ι∥2 − ∥ζn+1 − ι∥2

)
≤ lim
n→∞

(
∥κn − ι∥2 − ∥ζn+1 − ι∥2

)
= lim
n→∞

(∥κn − ζn∥2 + 2∥κn − ζn∥∥ζn − ι∥

+ ∥ζn − ι∥2 − ∥ζn+1 − ι∥2)

≤ lim
n→∞

(
∥κn − ζn∥2 + 2∥κn − ζn∥∥ζn − ι∥

)
+ lim
n→∞

(
∥ζn − ι∥2 − ∥ζn+1 − ι∥2

)
≤ 0.

Therefore,

lim
n→∞

∥ζn+1 − ϕN−1κn∥ = 0. (3.40)

Using the similar argument as in (3.39) , we get

∥ϕN−1κn − ϕN−2κn∥2 ≤
(
∥ϕN−2κn − ι∥2 − ∥ϕN−1κn − ι∥2

)
. (3.41)

Taking limit n→ ∞ in equation (3.41) and using equations (3.3), (3.34) and (3.40), we have

lim
n→∞

∥ϕN−1κn − ϕN−2κn∥2 ≤ lim
n→∞

(
∥ϕN−2κn − ι∥2 − ∥ϕN−1κn − ι∥2

)
≤ lim
n→∞

(
∥κn − ι∥2 − ∥ζn+1 − ι∥2

)
= lim
n→∞

(∥κn − ζn∥2 + 2∥κn − ζn∥∥ζn − ι∥

+ ∥ζn − ι∥2 − ∥ζn+1 − ι∥2)

≤ lim
n→∞

(
∥κn − ζn∥2 + 2∥κn − ζn∥∥ζn − ι∥

)
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+ lim
n→∞

(
∥ζn − ι∥2 − ∥ζn+1 − ι∥2

)
≤ 0. (3.42)

Hence, limn→∞ ∥ϕN−1κn − ϕN−2κn∥ = 0.

Continuing like this,

lim
n→∞

∥ϕjκn − ϕj−1κn∥ = 0 for all j = 1, 2, ...N. (3.43)

Also, using triangle inequality, we obtain

∥ζn+1 − κn∥ ≤ ∥ϕNκn − ϕN−1κn∥+ ∥ϕN−1κn − ϕN−2κn∥+ ...+ ∥ϕ1κn − κn∥. (3.44)

Taking limit n→ ∞ in equation (3.44) and using equation (3.43), we have

lim
n→∞

∥ζn+1 − κn∥ = 0. (3.45)

From equations (3.30), (3.35) and (3.45), we obtain

lim
n→∞

∥ζn+1 − ζn∥ = 0. (3.46)

As the sequence {ζn} is bounded, so there exists a subsequence {ζnk} of {ζn} such that {ζnk} converges
to q. Using equations (3.35) and (3.36), there exists subsequences {υnk} of {υn} and {ψnk} of {ψn}
that converges weakly to q. Hence, by demiclosedness of Si at zero and using equation (3.16), we have
q ∈ Fix(Si) for each i = 1, 2, ...m. We next show that q ∈ V I(L,Q). Let the mapping M ′ be defined by

M ′(z∗) =

{
L(z∗) +NQ(z

∗) if z∗ ∈ Q

ϕ if z∗ /∈ Q
,

where NQ(z
∗) = {t′ ∈ H : ⟨z∗ − p′, t′⟩ ≥ 0 for all p′ ∈ Q} is the normal cone at Q and M ′ is maximal

monotone, which implies 0 ∈M ′(z∗) if and only if z∗ ∈ V I(L,Q). Let us assume that (z∗, t′) ∈ G(M ′),
where G(M ′) denotes graph of mappingM ′. So, t′ ∈M ′(z∗) = L(z∗)+NQ(z

∗) which implies t′−L(z∗) ∈
NQ(z

∗).

Hence, we obtain ⟨z∗ − p′, t′ − L(z∗)⟩ ≥ 0 for all p′ ∈ Q. Also, from equation (3.1) and using that
z∗ ∈ Q, we get ⟨ψn−ηnLψn−κn, κn−z∗⟩ ≥ 0. Hence, ⟨z∗−κn, κn−ψn

ηn
+Lψn⟩ ≥ 0. As ⟨z∗−p, t′−Lz∗⟩ ≥ 0

for all p′ ∈ Q,κn ∈ Q and monotonicity of L, we have

⟨z∗ − κn, t
′⟩ ≥ ⟨z∗ − κn, Lz

∗⟩

≥ ⟨z∗ − κn, Lz
∗⟩ − ⟨z∗ − κn,

κn − ψn
ηn

+ Lψn⟩

= ⟨z∗ − κn, Lz
∗ − Lκn⟩ − ⟨z∗ − κn,

κn − ψn
ηn

⟩+ ⟨z∗ − κn, Lκn − Lψn⟩

≥ ⟨z∗ − κn, Lκn − Lψn⟩ − ⟨z∗ − κn,
κn − ψn
ηn

⟩.

As L is continuous, taking limit n→ ∞, we obtain ⟨z∗−q, t′⟩ ≥ 0. Since, M ′ is maximal monotone, so we
obtain q ∈M ′−1(0) and therefore 0 ∈M ′(q) and hence q ∈ V I(L,Q). Now, we prove q ∈ (Aj+Bj)

−1(0).
Let us denote Tj = (I + τjAj)

−1(I − τjBj) for all j = 1, 2, ...N. Putting j = 1 in equation (3.43), we
obtain

lim
n→∞

∥ϕ1κn − κn∥ = 0, (3.47)

which implies

lim
n→∞

∥T1κn − κn∥ = 0. (3.48)
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As T1 is nonexpansive, we have

∥T1φn − φn∥ = ∥T1φn − T1κn + T1κn − φn∥
≤ ∥T1φn − T1κn∥+ ∥T1κn − φn∥
≤ ∥φn − κn∥+ ∥T1κn − φn∥
≤ ∥φn − κn∥+ ∥T1κn − κn + κn − φn∥
≤ ∥φn − κn∥+ ∥T1κn − κn∥+ ∥κn − φn∥. (3.49)

Taking limit n→ ∞ in equation (3.49), we get

lim
n→∞

∥T1φn − φn∥ = 0. (3.50)

From equation (3.50) and Lemmas (2.4) and (2.5), we deduce that

q ∈ (A1 +B1)
−1(0) = Fix(T1).

Putting j = 2 in equation (3.43), we get

lim
n→∞

∥ϕ2κn − ϕ1κn∥ = 0,

which implies

lim
n→∞

∥T2T1κn − T1κn∥ = 0. (3.51)

Consider

∥T2κn − κn∥ = ∥T2κn − T2T1κn + T2T1κn − κn∥
≤ ∥T2κn − T2T1κn∥+ ∥T2T1κn − κn∥
≤ ∥κn − T1κn∥+ ∥T2T1κn − κn∥
= ∥κn − T1κn∥+ ∥T2T1κn − T1κn + T1κn − κn∥
≤ ∥κn − T1κn∥+ ∥T2T1κn − T1κn∥+ ∥T1κn − κn∥. (3.52)

Taking limit n→ ∞ in equation (3.52) and using equations (3.48) and (3.51), we have

lim
n→∞

∥T2κn − κn∥ = 0. (3.53)

Similarly, as equation (3.50), we obtain

lim
n→∞

∥T2φn − φn∥ = 0. (3.54)

From equation (3.54), Lemmas (2.4) and (2.5), we obtain

q ∈ Fix(T2) = (A2 +B2)
−1(0).

Continuing like this, we have q ∈ Fix(Tj) for all j = 1, 2, ...N. Hence,

q ∈
N⋂
j=1

Fix(Tj) =

N⋂
j=1

(Aj +Bj)
−1(0).

From equations (3.13) and (3.14), we obtain

∥ζn+1 − ι∥2 ≤ (1− γn){∥ζn − ι∥2 + ϵ2n∥ζn − ζn−1∥2 + 2ϵn∥ζn − ι∥∥ζn − ζn−1∥} (3.55)

+ 2γn⟨g(φn)− ι, φn − ι+ γn(g(φn)− φn)⟩.



A novel iterative algorithm for solving... 363

Hence

∥ζn+1 − ι∥2 ≤ (1− γn)∥ζn − ι∥2 + γn{2⟨g(φn)− ι, φn − ι+ γn(g(φn)− φn)⟩+
ϵ2nγn
γn2

∥ζn − ζn−1∥2

+
2ϵn
γn

∥ζn − ι∥∥ζn − ζn−1∥}, (3.56)

which gives

rn+1 ≤ (1− γn)rn + γnsn, (3.57)

where rn = ∥ζn − ι∥2 and

sn = 2⟨g(φn)− ι, φn − ι+ γn(g(φn)− φn)⟩+ ϵ2nγn
γn2 ∥ζn − ζn−1∥2 + 2ϵn

γn
∥ζn − ι∥∥ζn − ζn−1∥.

Now, it remains to prove that lim sup
n→∞

⟨g(φn)− ι, φn − ι+ γn(g(φn)− φn)⟩ ≤ 0.

Let {φnk} be a subsequence of {φn}. Using equation (3.33) , {φnk} weakly converges to q. Consider

lim sup
n→∞

⟨g(φn)− ι, φn − ι+ γn(g(φn)− φn)⟩ ≤ lim sup
n→∞

⟨g(φn)− ι, φn − ι⟩

+ lim sup
n→∞

⟨g(φn)− ι, γn(g(φn)− φn)⟩

≤ lim sup
n→∞

⟨g(φn)− ι, φn − ι⟩

+ lim sup
n→∞

γn⟨g(φn)− ι, g(φn)− φn⟩

≤ lim sup
n→∞

⟨g(φn)− ι, φn − ι⟩

≤ ⟨g(q)− ι, q − ι⟩ ≤ 0.

Hence,

lim sup
n→∞

⟨g(φn)− ι, φn − ι+ γn(g(φn)− φn)⟩ ≤ 0. (3.58)

Using equation (3.58), Remark (1) and Lemma (2.1), {rn} converges to zero as n→ ∞. Thus ζn → ι.

Case 2: Suppose that there exists a subsequence {rnj} of {rn} such that rnj ≤ rnj+1 for any j ∈ N. From
Lemma (2.7), we observe that there exists a nondecreasing sequence {nk} of N such that lim

k→∞
nk = ∞

which satisfy following inequalities for all k ∈ N.

rnk ≤ rnk+1 (3.59)

and

rk ≤ rnk+1. (3.60)

Using equation (3.3), we obtain

∥υnk − ρnk∥ = ∥γnkg(ρnk ) + (1− γnk )ρnk − ρnk∥
= γnk∥g(ρnk )− ρnk∥. (3.61)

Taking limit k → ∞ in equation (3.61), we get

lim
n→∞

∥υnk − ρnk∥ = 0. (3.62)

From equation (3.19), we have

∥ψnk − υnk∥ ≤
m∑
i=1

βnk,i∥Siυnk − υnk∥. (3.63)
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Taking limit k → ∞ in above equation , we get

lim
k→∞

∥ψnk − υnk∥ = 0. (3.64)

Similarly as in Case 1, we can prove

lim
k→∞

∥κnk − ψnk∥ = 0 and lim
k→∞

∥κnk − ζnk∥ = 0. (3.65)

Also,

lim
k→∞

∥ζnk − υnk∥ = 0 and lim
k→∞

∥ζnk+1 − κnk∥ = 0. (3.66)

Similar to Case 1, q ∈ V I(L,Q) and q ∈ (Aj +Bj)
−1(0). Hence, q ∈ Ω. Using the same arguments as in

Case 1, we have

lim sup
k→∞

⟨g(ρnk )− ι, ρnk − ι+ γnk (g(ρnk )− ρnk )⟩ ≤ 0. (3.67)

Using equation (3.57), we obtain

rnk+1 ≤ (1− γnk )rnk + γnksnk . (3.68)

Using equation (3.59) in equation (3.68), we get

γnkrnk ≤ γnksnk . (3.69)

As γnk > 0, we have rnk ≤ snk . So, we have

∥ζnk − ι∥2 ≤ 2⟨g(ρnk )− ι, ρnk − ι+ γnk (g(ρnk )− ρnk )⟩+
ϵ2nk

γnk

γnk
2

∥ζnk − ζnk−1∥2

+
2ϵnk

γnk

∥ζnk − ι∥∥ζnk − ζnk−1∥. (3.70)

As limk→∞ γnk = 0, limk→∞
ϵnk
γnk

∥ζnk − ζnk−1∥ = 0 and from equation (3.67), we obtain rnk → 0

as k → ∞. Also, using equation (3.68), we have limk→∞ rnk+1 = 0 and from equation (3.60), we get
rnk+1 ≥ rk, which gives limk→∞ rk = 0 that is, ∥ζn − ι∥ → 0 as n→ ∞. Hence ζn → ι as n→ ∞.

4 Numerical Example

In this section, we give numerical example and compare the convergence of algorithms [23, 24]
with the Algorithm (3.1).

Example 1. Let H = R4 and Q = {ζ ∈ R4 : ζ1 + ζ2 − 3ζ3 + ζ4 ≤ 0}, where ζ = (ζ1, ζ2, ζ3, ζ4).
Suppose Aj : H → 2H are maximal monotone mappings defined by Aj(ζ) = N∗

jNj(ζ) for all

ζ ∈ H, j = 1, 2, where Nj : R4 → R4 are created from a normal distribution with unit variance

and mean zero and the mappings B1, B2 : H → H are defined by B1(ζ) = ζ
5 for all ζ ∈ H,

B2(ζ) =
ζ
7 for all ζ ∈ H. Clearly, B1 and B2 are 1- inverse strongly monotone mappings. The

mappings Si : H → H are defined as Si(ζ) = −3iζ
i+1 for all ζ ∈ H, i = 1, 2, ...7. It can be easily

shown that Si are
2i−1
4i+1 demicontractive mappings. Further, L : Q → H is a mapping given by

L(ζ) = ζ for all ζ ∈ Q, where L is 1- cocoercive mapping and the mapping g : H → H is defined
as g(ζ) = ζ

2 for all ζ ∈ H. Let αn = 1
n5 , γn = 1

n+6 , ϵ = 0.4, βn,0 = 57k+3
67k , βn,i = 10k−3

469k for all

i = 1, 2, ...7, τ1 = 0.5 and τ2 = 1 and we choose ∥ζn − ζn−1∥ ≤ 10−4 as stopping criterion.

We take following cases for various initial values of ζ0 and ζ1 and plot the graphs of errors
En = ∥ζn − ζn−1∥ against number of iterations n.
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Case 1. ζ0 = (1, 1, 1, 1), ζ1 = (2, 2, 2, 2);
Case 2. ζ0 = (10, 10, 10, 10), ζ1 = (20, 20, 20, 20);
Case 3. ζ0 = (100, 100, 100, 100), ζ1 = (200, 200, 200, 200).
We also show that Algorithm (3.1) is more effective than Lorenz algorithm [23] and Cholamjiak
algorithm [24].

Cases iteration number cpu time in seconds
Case 1. 7 0.02158
Case 2. 10 0.02419
Case 3. 38 0.03042

Table 1: Numerical analysis of Algorithm (3.1) for various cases

Figure 1: Numerical study of Algorithm (3.1) for various values of ζ0 and ζ1

Algorithm iteration number cpu time (in seconds)
Algorithm (3.1) 7 0.01726
Lorenz Algorithm 38 0.01849

Cholamjiak Algorithm 431 0.01854

Table 2: Comparison of Algorithm (3.1) with Lorenz Algorithm [23] and Cholamjiak
Algorithm [24]
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Figure 2: Comparison of Algorithm (3.1) with Lorenz Algorithm [23] and Cholamjiak
Algorithm [24]
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