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A novel iterative algorithm for solving variational
inequality, finite family of monotone inclusion and

fixed point problems
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Abstract. In this paper, we introduce a method for finding common solution of
variational inequality, finite family of monotone inclusion and fixed point problems
of demicontractive mappings in a real Hilbert space. We prove strong convergence
result of proposed method. We also provide a numerical example to show that our
method is efficient from the numerical point of view.
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1 Introduction

Monotone inclusion problem (MIP) plays a crucial role in nonlinear analysis and optimization.
MIP is the problem of finding a point ¢ in a Hilbert space H such that

0eT¢, (1.1)

where T : H — 2F is a monotone operator. Mathematically, monotone inclusion problem in-
cludes image processing problem, variational inequality problem, split feasibility problem, convex
minimization problem, equilibirium problem etc. [1, 2, 3, 4, 5, 6, 7, 8,9, 10, 11, 12, 13]. The first
method, namely proximal point method, for solving MIP was proposed by Martinet in 1970. It
was defined as

Cn-‘rl = (I+ )‘nT>_1Cn (12)

Rockafeller [14] in 1976 and Bruck and Reich [15] in 1977, further developed this algorithm.
But the evaluation of resolvent operator in proximal point algorithm was difficult in many cases.
Consequently, to solve this issue, the operator T is divided into the sum of maximal monotone
operator A and monotone operator B. As the resolvent operators (I + A\, A)~! and (I + A\, B)~!
is simpler to calculate than the full resolvent (I + \,7)~!. The problem (1.1) is equivalent to the
following problem:

Find ¢ € H such that 0 € (4 + B)(. (1.3)
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The solution set of the problem (1.3) is given by (A + B)~!(0). The first method for solving
problem (1.3) was forward-backward splitting algorithm. Many iterative algorithms have been
designed to solve MIP, for instance, Douglas-Rachford splitting method [18], Peaceman-Rachford
splitting method [19] and many more. Tseng [20] in 2000, introduced the modified forward-
backward algorithm and proved its weak convergence. Gibali and Thong [21] in 2018, obtained
a modified version of Tseng’s splitting algorithm and proved its strong convergence.

Polyak [22] developed an inertial extrapolation method which is based on heavy ball method
to speed up the convergence of iterative algorithms. Later, inertial extrapolation technique was
used to solve MIP and numerous authors considerably enhanced it. For instance, Lorenz and Pock
[23] in 2015, introduced the following inertial forward-backward algorithm for solving monotone
inclusion problem and proved weak convergence in a real Hilbert space.

On = Cn + an(Cn - Cn71)7
Cnv1 = (I + X A) "1 — N\ B) oy,
The above algorithm has better rate of convergence than some existing algorithms present in the

literature. Thong and Cholamjiak [25] in 2019, introduced modified forward-backward splitting
algorithm and proved strong convergence.

On the other hand, variational inequality is used in solving various class of problems like
transportation, economics, engineering, optimization, elasticity and control theory [26, 27, 28, 29,
30]. Several numerical techniques have been devised for solving variational inequality problems
(VIP). A VIP is to find a point ¢ in a convex, closed and nonempty subset @ of Hilbert space H
such that

(P(¢),9—¢) >0forall v eqQ, (1.4)

where P : Q — H is a nonlinear mapping. The set of solutions of VIP is denoted by VI(Q, P).
Eslamian and Kamandi [31] in 2020, developed iterative algorithm for finding common solution
of fixed point and monotone inclusion problem in Hilbert space. Recently, Olona and Narain [32]
in 2022, introduced a method for approximating a common solution of fixed point problem for
finite families of multivalued demicontractive mappings and finite families of variational inequality
problem in a real Hilbert space.

Inspired and encouraged by the above results, we introduce a method for finding common
solution of variational inequality problem, finite families of monotone inclusion and fixed point
problems of demicontractive mappings in a real Hilbert space and prove strong convergence of
proposed algorithm. Also, we provide a numerical example to show its applicability.

2 Preliminaries

We now give some definitions and lemmas which we will use in proving our main result. Suppose
H denotes a real Hilbert space having inner product (.,.) and norm ||.|]. Assume that @ is a
nonempty, closed and convex subset of H. In addition, Fiz(U) denotes the collection of all fixed
points of mapping U.

Definition 1. [31] “The operator U : H — H is called

(i) Nonexpansive, if
|U¢—UY|| < ||¢ =9 for all ¢,9 € H.
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(ii) Demicontractive, if Fiz(U) # ¢ there exists k € [0,1) such that
|U¢C —9))? <||¢ —9||? + k||¢ — UC||? for all ¢ € H and 9 € Fiz(U).

(iii) Contractive, if there exists a constant 0 < § < 1 such that

|U¢C — UD|| < 0||¢ — 9| for all ¢,9 € H.”

Definition 2. [32] “ Let @ be a nonempty, closed and convex subset of a real Hilbert space H.
A mapping U : Q — @ is said to be

(i) monotone, if (U — U, —9) >0 for all {,¥ € H,

(ii) a-inverse strongly monotone (ism), if there exists @ > 0 such that
(U —UY,¢ =) > al|lU¢—UY|? for all ¢,9 € Q,

(iii) firmly nonexpansive, if (U¢ — UV, —9) > [|[U¢ — U¥||? for all ¢,9 € Q,

(iv) Lipschitz, if there exists a constant K > 0 such that |[U{ — U¥|| < K||¢ — ¢ for all
¢,9eqy

Definition 3. [32] “If U is a multi-valued mapping, that is, U : H — 2% then U is called
monotone, if (( — ¥, —v) >0 for all (,¥ € H,¢p € U{,v € U and U is maximal monotone, if
the graph G(U) of U defined by G(U) = {((,¥) € H x H : ¥ € U(¢)} is not properly contained
in the graph of any other monotone mapping. It is generally known that U is maximal if and
only if for ((,¥) € H x H,{¢ — ¢, —v) >0 for all (¢,9) € G(U) implies ¢ € U({).”

Definition 4. [32] “The metric projection P is a map defined on H onto @ which assign to
each ¢ € H, the unique point in @, denoted by Pg( such that ||¢ — Poc|| = inf{||¢ — 7| : ¥ € Q}.
It is well known that Pg( is characterized by the inequality (¢ — Pg({), ¥ — Pg(()) < 0, for all
¥ € @ and Py is a firmly non-expansive mapping.”

Definition 5. [33] “The resolvent mapping Jg : H — H associated with the set-value mapping
U is defined by Jg(C) = ([T +~U)"1(¢) V (€ H, for some v > 0, where I stands for the
identity operator on H.”

Definition 6. [31] “Assume that T : H — H is a nonlinear mapping with Fiz(T) # ¢. Then
I — T is said to be demiclosed at zero if for any {x,} in H, the following implications holds:
Cpn—tand (I —T)¢, -0 = 1€ Fix(T).”

Lemma 2.1. [3/] “Assume that {t,} C [0,00) is a sequence of real numbers. Suppose that
Sn+1 < (1 - ’Yn)sn + Yntn for alln € N,
where {v,} C [0,1] and {t,} C (—o0,00) satisfying following conditions:

1. 220:1 Tn = OO,

2. limsupt, <O0.

n—oo

Then lim,, s 8, = 0.7

Proposition 2.1. [35] “Let L : Q — H be an inverse strongly monotone(ism) mapping. Then,
2e€VI(Q,L) < z=Pgy(z—ALz),A > 0.7
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Proposition 2.2. [35] “Let L be an ism mapping of Q into H. Let Ng be the normal cone to
QatzeQ,ie. Ngz={we H:(z—u,w) >0, forallue Q},
and define

¢, z€H\Q.

Then, T is mazimal monotone and 0 € Tz if and only if z € VI(Q,L).”

TZ_{Lz—i—NQz, z€Q

Lemma 2.2. [36, 38] “Assume that H is a real Hilbert space. Let mapping g : H — H be
Lipschitz continuous monotone and mapping A : H — 28 be mazimal monotone. Then the
mapping K = g + A is mazximal monotone.”

Lemma 2.3. [32, 37] “Let H be a real Hilbert space. Then for all {,9 € H and v € (0,1), we
have

(i) 2(¢,9) = [ICIP+ 1912 = [I< =912 = I+ 9] = [I<1? = 9]
(it) V¢4 (1 =7)9)* = 7[<IP + @ =I)? =~ =7)I¢ = 9>
(iii) 11¢ + 912 < [ICI1* +2(9,¢ + 9).”

Lemma 2.4. [38] “Assume H is a real Hilbert space, B : H — H is a mapping and A : H — 2H
is mazimal monotone mapping. Define the fized point set of the mapping U as Fix(U) = {C :
(=U¢ and U, = (I + pA)~Y(I — puB),pu > 0. Then, Fiz(U,) = (A+ B)~(0), for all p > 0.”

Lemma 2.5. [38] “Assume that the sequences {p,} and {1, } are created by the following:

on = Cn + an(Cn — Cu-1);
In=I+7A)" I —7B)pn.

Iflim, o0 |on — 0]l = 0 and {@n, } converges weakly to some « € H, then 1 € (A + B)~%(0).”

Lemma 2.6. [39] “Let H be a real Hilbert space. Let {(;,i =1,2,..m} C H. For
{B:} € (0,1),i=1,2,..m such that Y ;| B; = 1, the following identity holds:

> BiG
i=1

Lemma 2.7. [25, 40] “Let {(,} be a sequence of nonnegative real numbers, such that there
exists a subsequence {Cn,;} of {Cn} such that (., < Cn,41 for all j € N. Then, there exists a
nondecreasing sequence {ny} of N such that lim,, ., ng = 0o and the following properties are
satisfied by all (sufficiently large) number k € N : ¢, < Cnpg1 and G < Cnyt1- In fact, ny is the
largest number n in the set {1,2,....,k}, such that {, < (pi1.”

2 m
=3Bl - BBilG - IR
=1

Ji=1,j7#1

3 Main Result

In this section, we introduce a method for finding common solution of variational inequality,
finite family of monotone inclusion and fixed point problems of demicontractive mappings in a
real Hilbert space. Suppose () is nonempty, convex and closed subset of a real Hilbert space H and
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S; (i =1,2,...m) is finite family of demicontractive mappings having constant k; € (0, 1) such that
I1—S; are demiclosed at origin. Assume that L : Q — H is o-inverse strongly monotone mapping,
Aj  H — 2" are maximal monotone mappings, B; : H — H are {-cocoercive mappings, g is
contractive mapping on H having constant 6 € (0,1) and constants 7; such that 0 < 7; < 2¢ for
all j=1,2,..N.

Algorithm 3.1. Consider $, ;, v, € (0,1) such that >\ B =1, Bno € (k, 1),
limsup By, (Brn.o — k) > 0,lim,, 00 7 = 0, ZSLO=1 Yn = 00, where k = sup,>;{k;} < 1. Select

n—oo

M € (6,20 — €),where € > 0 and «;,, C [0,00) such that lim, :—: = 0. For {; € H, calculate
{Cn+1} using the sequences {e,}, {on}, {vn}, {n}, {kn} as follows:

. an, .
€n = {mzn{”gn—w>€}a7ff Cn 7 Cn—1,

€, otherwise

on = Cn + €n(Cn — Cn-1);

Un = Yng(Pn) + (1 — ¥n)@n;

Yn = Bn,Ovn + Z:i1 ﬂn,isﬂ)n;

Kn = PQ("/}n - nnL¢n)§

o1 = JAN(I = mw BN) TN (I = 51 By 1) Ja 2 (I = Tv—a By —2) .. T (I = 71 By )i
(3.1)

Where Jéj (j = 1,2,...N) represents the resolvent mapping of the mapping A; and I
represents the identity operator on H.

Remark 1. As €,]|¢, — Gu—1]|| < @, for all n and from our assumption lim,, 3—: =0, we have

lim ¢, = Guon]| < lim 22—,
ix

Hence,

. €n
lim — |Gy — Gu—1ll = 0. (3.2)
n—oo ’yn

m N
Theorem 3.2. Suppose that the solution set Q = { N Fiz(S;) }ﬂVI(L Q)ﬂ{ N (A; + Bi)_l(O)}

i=1 j=1
is nonempty. Then the sequence {(,} generated by Algorithm (3.1) converges strongly to an ele-
ment in €.

Proof. Firstly we will prove {¢,} is bounded. Suppose ¢ € Q and
N — JAN (I—7n BN)JaN M (I—mn 1 By 1) oy 32 (I=7n 9By _2)...J A (I—7, By), where ¢ = 1.
As the resolvent mapping is nonexpansive and using equation (3.1), we have

1 = ell® = IJAN (I = 7 Br)oN " — ol < (6N o — of? < 8N — o]|* < [lmn — ]|
(3.3)

Since ¢ € VI(L, Q). Also, from equation (3.1) and the fact that projection mapping is nonexpan-
sive , we obtain

6 = dlI* = 1Po(¥n — 1t Ltbn) — ¢||?
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<N = mnL)(Wn) = (I = nnL)elf?

= [[(n — ) = (Lt — Lo)|?

= [t = ¢lI* + 12 | Lon — Lelf® = 200 (o — ¢, Lpy — L)

< [on = ol + 1 | Ltbn — Lel|* = 2050| Lapy, — Lo]?

= [[n = tl® = 10 (20 — 0a)l| Loy — Le||*. (34)

Since 1, € (€,20 — €), so we have
i = ell* < llep = o] (3-5)

Using Lemmas (2.3), (2.6) and equation (3.1), we have

2

m
||wn - LH2 S ﬁn,Ovn + Zﬁn,isivn —t
i=1
m 2
= ‘ ﬁn,O(Un - L) + Z Bn,i(sivn - L)
=1
m m
= ﬁmO”U’n - L”Q + Zﬁn,l”slvn - [/||2 - ZﬁmOBn,iHUn - Sivn||2
i=1 i=1
m m
< Buollvn =+ Bui [lon = el + klon = Sivall®] =D BuoBaillvn — Sivall?
i=1 i=1

|Un — Sivn % (3.6)

— o — P+ (k = Buo) 3 Bu
=1

Since 8,0 € (k,1). From equation (3.6), we have
[t = ol < flon — ]| 3.7)
Again from equation (3.1), we have
llon = el = lI¢n + €n(Cn = Cn—1) — ¢
< l6n = el + 73060 = Guall (3.8)

By Remark (1), we have lim, f/—;HCn — Cn—1]| = 0, therefore there exist a constant M; > 0
such that = |¢, — Gu1|| < M. Therefore, equation (3.8) implies

[on —tll < 11Gn = ¢l + 7M. (3.9)
Using equations (3.3), (3.5), (3.7) and (3.9) we deduce that
1Cnt1 = el < flon — ¢l (3.10)
= Ivng(en) + (1 =)o — ¢l
= [[1m(g(en) — ) + (1 = 7n)(pn — 1)

= [l (g(en) = 9()) + Yu(g9(t) = 1) + (1 =) (2n — 1)
< Yallglen) — gl +vnllg(e) — el + (1 =) llon — ¢l
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< Anbllon — ol + (1 = v)llen — el + nllg(e) — ¢l
= [1 - 'Vn(]- - 9)]||§Dn - L” + ’Yan(L) - L”

< [1 —Yn(1 - 9)][\|Cn - LH +'7an} + '771(1 - 6) (W)

< 1= 70116, — ol + 202+ 71— ) (142210,

Continuing like this,

61 = ol < o { o — o + 21, L

Thus {¢,} is bounded and hence {¥,}, {¢n}, {vn} and {k,} are also bounded. Now, using
equation (3.1) and Lemma (2.3), we obtain

[vn = > = I1mg(en) + (1 = yn)en — ¢|?
= [ (g(pn) — ) + (L= ) (en — )|I?
< (1 =7n)llen = el + 29m(g(en) = t:0n — t+Tnlg(on) — ©n))- (3.11)

From equations (3.3), (3.5), (3.6) and (3.11), we obtain
161 = el < llvon — ¢
< vn = tl* + (k = Bn0) D Buil

1=1
< (I =y)llen = tl* + 29 (g(@n) — t, 00 — t + Yulg(en) — ©n))

+ (k - /Bn,O) Z ﬁn,z|
=1

Since, B0 € (k, 1), so equation (3.12) gives

Up — Sivn||2

Uy — Sivn||% (3.12)

IGns1 = el < (1 =) llon = el® + 270 {9(#n) = 1,00 — ¢+ Tn(9(#n) = @n)). (3.13)

Now, from equation (3.1), we have

lon = el = 1Cn + €n(Cn = Gnoa) — ¢l
= [IGn — el + €2l1Gn — Cnrll? + 26 {Gn — 1, Gn — Ca1)
< |IGn — L||2 + 6721H<n - Cn71||2 + 2€,[|Cn — tfll|Cn = Ca—1l|- (3.14)

Now, we prove (,, — ¢. For this, we study two cases.

Case 1: Suppose that there exists a number N € N such that ||¢nt1 — ¢||* < |[¢n — ¢||? for any n > N.
As sequence {||¢, — ¢||}? is bounded and monotonic, this gives {||¢, — ¢||*} is convergent. From equations
(3.12) and (3.14), we have

(Bno —k Zﬂnzwn_svnH 1_'Yn){H<n_L” +€nHCn_CnleQ+2€nH<n_L”H<n_<n*1H}

i=1

+ 29 (g(n) — 1, 0n — L+ Yn(g(n) — n)) — |G — ¢||?
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< H(n - LHQ + Eiugn - (nleQ + 2€n||4n - LHHQL - Cnle
+ 29n(g(@n) = 1, 0n — L+ ¥ (g(n) — ¢n)) — [Cnsr — ¢|1?,

which implies

m

2
€ 2671
(Bro = k) Y Buillvn = Sival® < [1Ga — ¢ + V%villcn — Goal® = YelGn = dllliGn = Gnall

i=1
+29n{9(pn) = 1,00 — e+ (9(pn) = ¢n)) = lGarr — e[, (3.15)
Taking limit n — oo in equation (3.15), by using Remark (1) and lim,— v» = 0, we obtain
lim ||vn, — S;vs,|| = 0. (3.16)
n—r00
Using equation (3.1), we have

”U” - 9071” = ||7ng(‘10n) + (1 - 'Yn)SOn - Sﬁn”
=Ynllg(en) = @nl. (3.17)

Taking limit n — oo in equation (3.17) and using lim;,— o v, = 0, we obtain

lim ||vn — @nl =0. (3.18)
n—o0
From equation (3.1), we have
[¥n = vnll < BuillSivn — vall. (3.19)
i=1

Taking limit n — oo in above equation and using equation (3.16), we get
Jim (¢, — v = 0. (3.20)
Using triangle inequality, equations (3.18) and (3.20), we have
lim |[¢hn — ¢n| = 0. (3.21)
n— o0
From equations (3.3), (3.4) and (3.7), we have
1 = dll* < llkn — |

< ltpn — tl|* = 0 (20 — nn) | Lipn — Le|?
< v — tlI? = (20 — nn) || Ltbn — Le||?, (3.22)

which implies
(20 = 1) [ Lpn — Le)|* < JJon = elf* = [ Gngr — elf*. (3:23)
Using equations (3.11) and (3.23), we deduce

M (20 = M) || Lpn — Le||? < (1 =) [lon — tl|* 4+ 270{g(n) — 1, 0n — t + n(9(¢n) — @n)) — [Cns1 (— LIIQ)-
3.24

Consequently, from equation (3.14) and (3.24), we have

M (20 = M) || Lapn — Le)|? < (|G — ¢l|? = [[Cntr — ell® + 290 (g(n) — t,0n — ¢ + ¥n(g(¢n) — @n))
+ enllén = Cnmall® + 2enl|Cn — tlll|Gn — Cnal- (3.25)

Taking limit n — oo in equation (3.25) and using Remark (1) and limy o yn = 0, we have

lim ||Lyn — L] = 0. (3.26)
n—o0
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Using equation (3.1) and Lemma (2.3), we obtain
150 = oll* = 1Pe(¥n — naLabn) — o
< (Bn =t (I = L)n = (I = L)L)
1
= 5lllen — P+ =1 L)t = (I = naL)el|* = [ Kn = Pn + ma (Lt — L),
After rearranging the terms, we have
lKn = ell* < lleon = el = N5 = Yull® = il Lton — Lall* = 2mn|kn — toulll| Lon — L. (3.27)
Now, from equation (3.13) and (3.14), we have
[on = el* < (1= m)llon = ell* + 27 (9(0n) = t,0n = ¢ + Y (9n — ¢n))
< (1 =) {ll¢n = ell* + €nliGn = G ll* + 2€nllGn = elllI¢n = Gun ]I}
+ 29 {9(pn) = 1, on — L+ 1 (g(pn) — ¥n))- (3.28)
Again, using equations (3.3), (3.27) and (3.28), we deduce
Gnt1 = oll® < [lrem = elf?
< (1= 1) {6 =l + enllGn = Gall* + 2€nllGn = elllién = Gam1ll} = lln — ¢nll®
+ 20n|kn — Ynl[|[ Lon — Lt
+ 290 (9(#n) = t,0n — t + 90 (g(#n) = n)) = Ml Lbn — Le*
<N = ell® + enlin = Goal” + 26nli6n = ellllGn = Gt = llin = u?
+ 20n|[¢on — ulll| Lapn — Le|]
+ 290 (9(pn) = s 0n =+ u(9(Pn) = @n)) = Tl Ltpn — Le%,
which implies
I = all® < 1o = el = Gss ol + 2 — 2l Lo — Lall = w2 L — Lol
+ 270 (g(pn) = 1,00 — 1+ n(g(en) — @n))
+ eszCn - CnleQ + 2€nl[Cn — elll[¢n — Cr—al|- (3-29)
Taking limit n — oo in equation (3.29) and using equation (3.26), remark (1) and lim,— e vn = 0, we
get
lim ||kn —¥n|| = 0. (3.30)
n— oo
From equations (3.21), (3.30) and triangle inequality, we have
lim ||kn — @n|| = 0. (3.31)
n— oo
Consider
160 = @nll = llen(n = Ga)l (332
By using Remark (1) and taking limit n — oo in equation (3.32), we get
lim [¢n — @nl| = 0. (3.33)
n— oo
By using equations (3.31), (3.33) and triangle inequality, we deduce
lim ||kn — |l = 0. (3.34)
n—r o0
From equations (3.30) and (3.34), we have
Jim||yhn — Gall = 0. (3.35)
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Again using equations (3.20), (3.30) and (3.34), we get

lim ||¢n — vnl| = 0. (3.36)
n— 00

Now, consider

[Cnsr = e)? = [ JAN (I — 7 BN)JAY (I = T -1 Bn—1) TN 2 (I = Tn—aBy—2).. JAN(I — 71 B1 )y — o)

AN = B )oY e — .
As JAN (I — 7w By) is firmly nonexpansive, we have
[t = dll* < (Gutr = 1,6™ T hn — 1), (3.37)

Using Lemma (2.3) and equation (3.37), we obtain

[ =2l + 16" sn = all” = llGns1 = 6V in?] - (3.38)

N | —

[Gns1 — o)) <
From equation (3.38), we have
Gntr = ol® < 16™ ki = ol* = [IGnir = 6™ i,
which implies
ICnta = 6™ rnll® < NS™ hom = ol =l Gnr = ol (3.39)
Taking limit n — co in equation (3.39) and using equations (3.3) and (3.34), we have
im [Gors = " al® < Tim (167 e — ol = iGnsr = o)
n— oo n—r 00
< lim (o — efl* = [IGass — ll?)
n—oo
= tim (ln — Cal? + 20l — Gl el

1 =l = s — o)
< lim (s = Gall® + 2l = Gall1Gn )

T aim (16— 1l ~ iGrs — o)
<0.
Therefore,
lim ([Gogr — 6™ Rl = 0. (3.40)
Using the similar argument as in (3.39) , we get
6™ i = 6N real® < (1070 = ol = " — o) - (3.41)
Taking limit n — oo in equation (3.41) and using equations (3.3), (3.34) and (3.40), we have

B g e S AR )
< lim (|lrn = efl* = [Gnsr = elf)
= 1im (I = Gall” +2l18n = GalllGn — ¢l
160 = el = Gnsa = el?)
< lim (Jl5n = Gall® + 2llsn = Calllln — ell)
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+ nlggo (HCn - LH2 - ||<n+1 - LHQ)

<0. (3.42)
Hence, lim, oo H¢N_1l{n — ¢N_2l€nH =0.
Continuing like this,
lim [|¢”kn — ¢’ TRal =0 forall j=1,2,...N. (3.43)
n—oo
Also, using triangle inequality, we obtain
1Gnt1 = fnll S 167 kn = 6™ hnll + 167 on — 6™ ka4 o+ (|9 Kn — Konl- (3.44)

Taking limit n — oo in equation (3.44) and using equation (3.43), we have
Hm [|Cot1 — k| = 0. (3.45)
n—oo

From equations (3.30), (3.35) and (3.45), we obtain
lim [|Gny1 — Gull = 0. (3.46)
n— o0

As the sequence {(,} is bounded, so there exists a subsequence {(y,, } of {¢x} such that {¢,, } converges
to ¢g. Using equations (3.35) and (3.36), there exists subsequences {vn, } of {v,} and {¢n, } of {¢n}
that converges weakly to g. Hence, by demiclosedness of S; at zero and using equation (3.16), we have
q € Fiz(S;) for each i = 1,2,...m. We next show that g € VI(L, Q). Let the mapping M’ be defined by

M () = {L(z*) + No(z%) iz €Q
6 it 2" ¢ Q

where Ng(2*) = {t' € H: (z* —p/,t') > 0 for all p’ € Q} is the normal cone at Q and M’ is maximal
monotone, which implies 0 € M'(2*) if and only if 2* € VI(L,Q). Let us assume that (z*,t") € G(M’),
where G(M') denotes graph of mapping M'. So, t' € M'(2*) = L(z*)+ Ng(z*) which implies t' — L(z*) €
NQ (Z*)

Hence, we obtain (z* — p’,t' — L(2*)) > 0 for all p’ € Q. Also, from equation (3.1) and using that
2" € Q, we get (n—nnLipp—kn, kn—2") > 0. Hence, (2" —kn, "”'{%Jern) >0.As (z*—p,t'—=Lz*) >0
for all p’ € Q, kn € Q and monotonicity of L, we have

(2" — K, t') > (2" — ki, L2")

> (2" — kn, L2") — (2" — kn,

i —Wn | L)

= (2" — kn, L2" — Lky) — (2" — kn, ’%?7_7%) + (2" — Kn, Lk — Lpn)

> (2" = Kn, Lisy, — Laby) — (27 — Kn, ’%77_7%>

As L is continuous, taking limit n — oo, we obtain (z* —q,t') > 0. Since, M’ is maximal monotone, so we
obtain ¢ € M'7!(0) and therefore 0 € M’(q) and hence ¢ € VI(L, Q). Now, we prove q € (A;+ B;)™*(0).
Let us denote Tj = (I + 7;A4;)""(I — 7;B;) for all j = 1,2,...N. Putting j = 1 in equation (3.43), we
obtain

. 1 o
Jim[|¢" kp — #a]| =0, (3.47)
which implies

lim ||Tikn — Knl|| = 0. (3.48)
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As T} is nonexpansive, we have

ITren — @nll = [[Trpn — Tikn + Tikin — @ul|
< NTrpn — Tiknll + | Takn — @nl|
< len = Banll + [[T16n — @nll
< ln = Ball + [ T1kn — Kn + Kn — @al|
< len = Bnll + [[T16n = Bnll + |60 — @nll-

Taking limit n — oo in equation (3.49), we get
lim [[Tion — ¢n| = 0.
n— oo
From equation (3.50) and Lemmas (2.4) and (2.5), we deduce that
q € (A1 4+ B1)"Y0) = Fiz(Ty).
Putting j = 2 in equation (3.43), we get
lim ||¢°kn — ¢' k|| =0,
n— o0
which implies
lim ||T2T1F{n — Tll-’in” =0.
n—oo
Consider

| T26n — Enl| = | T2kn — ToT16n + ToT1kn — Enl|
< NTokn — ToTi6n || 4+ [|T2TiEn — En |
Sl = Taknll + 1 T2Tokn — k|
= ||kn — Thkn|| + | T2T1 60 — Thkn + Thikn — Kn|
S lkn = Thkin || + [|T2T16n — Tikin|| + | T1kn — kil

Taking limit n — oo in equation (3.52) and using equations (3.48) and (3.51), we have
lim ||T2kn — Knl| = 0.
n— o0
Similarly, as equation (3.50), we obtain
lim ||T2¢n — ¢n] = 0.
n— o0
From equation (3.54), Lemmas (2.4) and (2.5), we obtain
qE F’LI(TQ) = (Az + 32)71(0).

Continuing like this, we have ¢ € Fixz(Tj) for all j = 1,2,...N. Hence,

(45 + B;)7(0).

=

N
q € () Fia(Ty) =
j=1

j=1
From equations (3.13) and (3.14), we obtain

[Gnra = ell® < (L= 3u){lICn = ell* + €xliGn = Caall” + 2€nllén — ellln — Caall}
+ 270 (9(@n) = t,0n — L+ Yn(g(wn) — @n)).

(3.49)

(3.50)

(3.51)

(3.52)

(3.53)

(3.54)

(3.55)
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Hence

2
€n

Tn
A2 ||Cn - Cn—1||2

lICnt1 — LH2 < (A =y)l6n — LH2 + ’Yn{2<g(§0n) — 1,00 =t +Yn(9(@n) — @n)) +

+ 22 =l = ol (3.56)
which gives
Tt < (1= n)rn + Ynsn, (3.57)
where 7, = ||¢, — ¢||* and

52 n €En

50 = 2(9(0n) — 19 — L+ W (9(Pn) — 9n)) + BLNGn = Guoal2 + 221160 — lliGn — Gl

Now, it remains to prove that limsup(g(¢n) — ¢, on — t + Yn(g(@n) — ¥n)) < 0.
n—oo

Let {¢n, } be a subsequence of {¢,}. Using equation (3.33) , {¢n, } weakly converges to q. Consider

limsup(g(¢n) = t;n — t +¥n(g(n) — ¢n)) < limsup(g(pn) — ¢, on — )

n—o0

+lim sup(g(n) — ¢, Yn(g(pn) — ¥n))

n—00

< limsup(g(¢n) — ¢, on — ¢)

n— oo

+ lim sup vn (g(¢n) — ¢, g(n) — ¥n)

n—oo

< limsup(g(pn) = t,n — 1)

n— o0
<Aglq) —t,q—1) <0.

Hence,

lim sup(g(¢n) — ¢, on — t + 1 (9(pn) — ¢n)) < 0. (3-58)

n—00

Using equation (3.58), Remark (1) and Lemma (2.1), {rn} converges to zero as n — co. Thus ¢, — ¢.

Case 2: Suppose that there exists a subsequence {rn; } of {r,} such that rn, <7, 11 for any j € N. From

Lemma (2.7), we observe that there exists a nondecreasing sequence {ny} of N such that klim nE = 00
— 00

which satisfy following inequalities for all £ € N.

Tng < Tog+1 (3.59)
and

T < Tpg+l- (3.60)
Using equation (3.3), we obtain

”U"k — Pny H = |‘7nkg(pnk) + (1 - 'Ynk)pnk — Pny, H
= Yk lg(oni) = pnyl- (3.61)

Taking limit £k — oo in equation (3.61), we get
lm ||vn, — pn,ll =0. (3.62)
n— oo

From equation (3.19), we have

”1/}7% - Unk” < Zﬂ”kvi”SiUnk - Unk”' (363)

=1
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Taking limit kK — oo in above equation , we get

Jim [, — v, || = 0. (3.64)
Similarly as in Case 1, we can prove
Jim [, — || =0 and lim n, — Co | = 0. (3.65)
Also,
lIm ||Cny, — Un,ll =0and lim [|Gupg1 — Kng |l = 0. (3.66)
k—roo k=00

Similar to Case 1, ¢ € VI(L,Q) and ¢ € (A; + B;)™*(0). Hence, ¢ € Q. Using the same arguments as in
Case 1, we have

hmbup(Q(pnk) L Py — L + Tny (g(pnk) - pnk)> <0. (367)

k—oo

Using equation (3.57), we obtain
Trgpr < (1= Vg )Trp + Vg S (3.68)
Using equation (3.59) in equation (3.68), we get
YnpTng, < YngSng- (3.69)
AS Yn, > 0, we have 7, < sp,. So, we have

2
Enk 'Ynk

Han - LHQ < 2<g(pnk) L Pny — L + Yry (g(pnk) - pnk)) + v 2 Han - C”k—lHQ
nk
2e
+ =2 1Gnx = tllliGny, = Cri—1ll- (3.70)
’Ynk
As limg oo Yo, = 0,  limp—eo %HC’”k — (ny_, |l = 0 and from equation (3.67), we obtain r,, — 0
as k — oo. Also, using equation (3.68), we have limg_ o0 7n,+1 = 0 and from equation (3.60), we get
Trg+1 > Tk, which gives limy_, oo 7 = 0 that is, ||, — ¢|| = 0 as n — co. Hence {, — ¢ as n — 0. O

4 Numerical Example

In this section, we give numerical example and compare the convergence of algorithms [23, 24]
with the Algorithm (3.1).

Example 1. Let H =R*and Q = {¢ € R*: (1 + (2 — 33 + {4 < 0}, where ¢ = ((1,(2,(3,C4)-
Suppose A; : H — 2 are maximal monotone mappings defined by A;({) = NiN;(() for all
(€ H, j=1,2, where N; : R* — R* are created from a normal distribution with unit variance
and mean zero and the mappings By, By : H — H are defined by By(¢) = % for all ¢ € H,
Bsy(¢) = % for all ( € H. Clearly, By and By are 1- inverse strongly monotone mappings. The
mappings S; : H — H are defined as S;(¢) = ;izf for all ¢ € H,7 = 1,2,...7. It can be easily
shown that S; are iz_ﬂ demicontractive mappings. Further, L : Q — H is a mapping given by
L(¢) = ¢ for all ¢ € @, where L is 1- cocoercive mapping and the mapping g : H — H is defined
as g(¢) = % for all ¢ € H. Let «, = %/Yn = € =04,3,0 =3 5 = 10k=3 for all
=1

1
n+6’ 67k 469k
,2,..7,71 = 0.5 and 7 = 1 and we choose ||(,, — (,—1]| < 107* as stopping criterion.

We take following cases for various initial values of {y, and (; and plot the graphs of errors
E, = |¢n — Cn—1| against number of iterations n.
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Case 1. (o = (1,1,1,1),¢1 = (2,2,2,2);

Case 2. ¢y = (10,10,10,10), ¢ = (20, 20, 20, 20);

Case 3. ¢y = (100,100, 100, 100), ¢1 = (200, 200, 200, 200).

We also show that Algorithm (3.1) is more effective than Lorenz algorithm [23] and Cholamjiak
algorithm [24].

Cases iteration number cpu time in seconds

Case 1. 7 0.02158
Case 2. 10 0.02419
Case 3. 38 0.03042

Table 1: Numerical analysis of Algorithm (3.1) for various cases

_C0:[1‘1'1‘1]T
——(,=[10,10,10,10]

e (,=[100,100,100,100] " | |

5 10 15 20 25 30 35 40
Number of Iterations (n)

Figure 1: Numerical study of Algorithm (3.1) for various values of {y and (1

Algorithm iteration number cpu time (in seconds)
Algorithm (3.1) 7 0.01726
Lorenz Algorithm 38 0.01849
Cholamjiak Algorithm 431 0.01854

Table 2: Comparison of Algorithm (3.1) with Lorenz Algorithm [23] and Cholamjiak
Algorithm [24]
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[

Algorithm 3.1
0.045 = orenz Algorithm
Cholamijiak Algorithm

0.035

0.03

0.025

0.02

0.015

0 50 100 150 200 250 300 350 400 450
Number of Iterations (n)

Figure 2: Comparison of Algorithm (3.1) with Lorenz Algorithm [23] and Cholamjiak

Algorithm [24]
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