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DEGREE OF APPROXIMATION OF A FUNCTION BELONGING

TO WEIGHTED (Lr ,ξ(t )) CLASS BY (C , 1)(E , q) MEANS

HARE KRISHNA NIGAM

Abstract. In this paper, a new theorem on degree of approximation of a function f ∈

W (Lr ,ξ(t)) class by (C ,1)
(

E , q
)

product summability means of Fourier series has been

proved.

1. Introduction

A good amount of work on degree of approximation of functions belonging to Lipα,

Lip(α,r ), Lip(ξ (t ) ,r ) and W (Lr ,ξ (t )) classes using Cesàro, Nörlund and generalized Nörlund

single summability methods has been done by number of researchers like Alexits [1], Sahney

and Geol [12], Qureshi and Neha [10], Qureshi [7, 8, 9], Chandra [2], Khan [4], Leindler [5] and

Rhoades [11]. But till now nothing seems to have been done in the direction of present work.

Therefore, in this paper, we establish a theorem on degree of approximation of function f be-

longing to weighted i.e. W (Lr ,ξ (t ))-class, r ≥ 1, by
(

E , q
)

(C ,1) summability means of Fourier

series.

Let
∑∞

n=0 un be a given infinite series with sequence of its nt h partial sum {sn}.

The (C ,1) transform is defined as the nt h partial sum of (C ,1) summability and is given

by

tn =
s0 + s1 + s2 +·· ·+ sn

n +1

=
1

n +1

n
∑

k=0

sn → s as n →∞

then the series
∑∞

n=0 un is summable to the definite number s by (C ,1) method.

If

(E , q)= E
q
n =

1

(1+q)n

n
∑

k=0

(

n

k

)

qn−k sk → s as n →∞
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then the infinite series
∑∞

n=0un with partial sum sn is said to be summable by
(

E , q
)

method

to a definite number s (Hardy [3]).

A product of (C ,1) transform of (E , q) transform defines (C ,1)(E , q) transform and it can

be denoted by C 1
nE

q
n .

Thus if

C 1
nE

q
n =

1

n +1

n
∑

k=0

E
q

k
→ s as n →∞

where E
q
n denotes the (E , q) transform, then the series

∑

∞
n=0 un is said to be summable by

(C ,1)(E , q) means or summable (C ,1)(E , q) to a definite number s.

Let f (x) be periodic with period 2π and integrable in the sense of Lebesgue. The Fourier

series of f (x) is given by

f (x) ∽
a0

2
+

∞
∑

n=1

(an cos nx +bn sin nx) (1.1)

with nth partial sum sn( f ; x).

A function f ∈ Lipα if

f (x + t )− f (x) =O(|t |α) for 0 <α≤ 1,

f ∈ Lip(α,r ) if

(

∫2π

0
| f (x + t )− f (x)|r d x

)
1
r
= O(|t |α), 0 <α≤ 1, r ≥ 1

(Definition 5.38 of Mc Fadden [6], 1942).

Given a positive increasing function ξ(t ) and an integer r ≥ 1, f ∈ Lip(ξ(t ),r ) if

(

∫2π

0
| f (x + t )− f (x)|r d x

)
1
r
=O(ξ(t )),

and that f (t )∈W (Lr ,ξ(t )) if

(

∫2π

0

∣

∣

∣

{

f (x + t )− f (x)
}

sinβ x
∣

∣

∣

r
d x

)
1
r
=O(ξ(t )), β≥ 0.

Ifβ= 0 then W (Lr ,ξ (t )) coincides with the class Lip (ξ (t ) ,r ) and if ξ (t )= tα then Lip(ξ (t ) ,r )

class coincides with the class Lip(α,r ) and if r →∞ then Lip(α,r ) class reduces to the class

Lipα.

Now we define norm by

‖ f ‖r =

(

∫2π

0
| f (x)|r d t

)
1
r

, r ≥ 1 (1.2)
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and let the degree of approximation En( f ) be given by

En( f )= min‖ f −Tn‖r (Zygmund [14]) (1.3)

where Tn(x) is a trigonometric polynomial of degree n.

The following notations are used through out the paper:

φ(t ) = f (x + t )+ f (x − t )−2 f (x)

Kn(t ) =
1

2π(n +1)

n
∑

k=0

[

1

(1+q)k

k
∑

ν=0

{

(

k

ν

)

qk−ν
sin(ν+ 1

2 )t

sin( t
2 )

}

]

.

2. Main theorem

If f is a 2π-periodic function, Lebesgue integrable on [0,2π] and belongs to W (Lr ,ξ (t ))

class, then its degree of approximation is given by

‖C 1
nE

q
n − f ‖r =O

[

(n +1)β+
1
r ξ

( 1

n +1

)]

(2.1)

provided ξ (t ) satisfies the following conditions:

{ξ(t )

t

}

be a decreasing sequence, (2.2)

{
∫ 1

n+1

0

( t |φ(t )|

ξ(t )

)r
sinβr t d t

}
1
r

= O
( 1

n +1

)

(2.3)

and
{

∫π

1
n+1

( t−δ|φ(t )|

ξ(t )

)r
d t

}
1
r

= O
{

(n +1)δ
}

(2.4)

where δ is an arbitrary number such that s(1−δ)−1 > 0, 1
r +

1
s = 1, conditions (2.3) and (2.4)

hold uniformly in x and C 1
nE

q
n is (C ,1)(E , q) means of the Fourier series (1.1).

3. Lemmas

Following lemmas are required for the proof of our theorem:

Lemma 1.

|Kn (t )| =O (n +1), for 0 ≤ t ≤
1

n +1
.

Proof. For 0 ≤ t ≤ 1
n+1

, sin nt ≤n sin t

|Kn(t )| ≤
1

2π(n +1)

∣

∣

∣

∣

∣

n
∑

k=0

[ 1

(1+q)k

k
∑

ν=0

(

k

ν

)

qk−ν
(2ν+1)sin( t

2 )

sin( t
2 )

]

∣

∣

∣

∣

∣
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≤
1

2π(n +1)

∣

∣

∣

∣

∣

n
∑

k=0

[ 1

(1+q)k
(2k +1)

k
∑

ν=0

(

k

ν

)

qk−ν
]

∣

∣

∣

∣

∣

=
1

2π(n +1)

n
∑

k=0

(2k +1)

=O(n +1) �

Lemma 2.

|Kn(t )| =O
(1

t

)

, for
1

n +1
≤ t ≤π.

Proof. For 1
n+1 ≤ t ≤π, by applying Jordan’s lemma, sin

(

t
2

)

≥
t
π and sin nt ≤ 1

|Kn(t )| ≤
1

2π(n +1)

∣

∣

∣

∣

∣

∣

n
∑

k=0

[ 1

(1+q)k

k
∑

ν=0

(

k

ν

)

qk−ν 1
(

t
π

)

]

∣

∣

∣

∣

∣

∣

≤
1

2t (n +1)

n
∑

k=0

[ 1

(1+q)k
(1+q)k

]

=
1

2t (n +1)

n
∑

k=0

1

=O
(1

t

)

. �

4. Proof of main theorem

Following Titchmarsh [13] and using Riemann-Lebesgue theorem, sn

(

f ; x
)

of the series

(1.1) is given by

sn( f ; x)− f (x) =
1

2π

∫π

0
φ(t )

sin
(

n +
1
2

)

t

sin t
2

d t .

Therefore, using (1.1) the
(

E , q
)

transform
(

E
q
n

)

of sn

(

f ; x
)

is given by

E
q
n − f (x)=

1

2π(1+q)k

∫π

0

φ(t )

sin
(

t
2

)

{

n
∑

k=0

(

n

k

)

qn−k sin

(

k +
1

2

)

t

}

d t .

Now denoting (C ,1)
(

E , q
)

transform of sn

(

f ; x
)

as C 1
nE

q
n , we write

C 1
nE

q
n − f (x) =

1

2π(n +1)

n
∑

k=0

[

1

(1+q)k

∫π

0

φ(t )

sin( t
2

)

{ k
∑

ν=0

(

k

ν

)

qn−k sin
(

ν+
1

2

)

t
}

d t

]

=

[
∫ 1

n+1

0
+

∫π

1
n+1

]

φ(t )Kn(t )d t

= I1 + I2 (say). (4.1)
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Now

|I1| ≤

∫ 1
n+1

0
|φ(t )| |Kn(t )|d t .

We have

|φ(x + t )−φ(x)| ≤ | f (u +x + t )− f (u +x)|+ | f (u −x − t )− f (u −x)|.

Hence, by Minkowiski’s inequality,

[
∫2π

0

{

∣

∣φ (x + t )−φ (x)
}

sinβ x
∣

∣

∣

r
d x

]

1
r

≤

[
∫2π

0

∣

∣

∣

{

f (u +x + t )− f (u +x)
}

sinβ x
∣

∣

∣

r
d x

]

1
r

+

[
∫2π

0

∣

∣

∣

{

f (u −x − t )− f (u −x)
}

sinβ x
∣

∣

∣

r
d x

]

1
r

= O {ξ (t )} .

Then f ∈W (Lr ,ξ (t )) ⇒φ ∈W (Lr ,ξ (t )).

Using Hölder’s inequality and the fact that φ (t )∈W (Lr ,ξ (t )), (2.3), Lemma 1 and second

mean value theorem for integrals, we have

|I1| ≤

[

∫ 1
n+1

0

{

t
∣

∣φ (t )
∣

∣sinβ t

ξ (t )

}r

d t

]
1
r
[

∫ 1
n+1

0

{

ξ (t ) |Kn (t )|

t sinβ t

}s

d t

]
1
s

= O

(

1

n +1

)

[

∫ 1
n+1

0

{

(n +1)ξ (t )

t 1+β

}s

d t

]
1
s

= O

{

ξ

(

1

n +1

)}

[

∫ 1
n+1

∈

d t

t (1+β)s

]
1
s

for some 0 <∈<
1

n +1

= O

{

(n +1)β+
1
r ξ

(

1

n +1

)}

since
1

r
+

1

s
= 1. (4.2)

Now using Hölder’s inequality, |sin t | < 1, sin t ≥
(

2t
π

)

, Lemma 2, (2.2), (2.4) and mean

value theorem,

|I2| ≤

[

∫π

1
n+1

{

t−δ
∣

∣φ (t )
∣

∣sinβ t

ξ (t )

}r

d t

]
1
r
[

∫π

1
n+1

{

ξ (t ) |Kn (t )|

t−δ sinβ t

}s

d t

]
1
s

= O
{

(n +1)δ
}

[

∫π

1
n+1

{

ξ (t )

tβ+1−δ

}s

d t

]
1
s

= O
{

(n +1)δ
}







∫n+1

1
π







ξ
(

1
y

)

yδ−1−β







s

d y

y2







1
s
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= O

{

(n +1)δ ξ

(

1

n +1

)}

[

∫n+1

1
π

d y

y s(δ−1−β)+2

]
1
s

= O

{

(n +1)δ ξ

(

1

n +1

)}

[

(n +1)s(1+β−δ)−1 −πs(δ−1−β)+1

s
(

1+β−δ
)

−1

]
1
s

= O

{

(n +1)δ ξ

(

1

n +1

)}

[

(n +1)(1+β−δ)− 1
s

]

= O

{

(n +1)β+
1
r ξ

(

1

n +1

)}

since
1

r
+

1

s
= 1. (4.3)

Now combining (4.1), (4.2) and (4.3), we get

∣

∣C 1
nE

q
n − f (x)

∣

∣ = O

{

(n +1)β+
1
r ξ

(

1

n +1

)}

∥

∥C 1
nE

q
n − f

∥

∥

r =

{
∫2π

0
O

{

(n +1)β+
1
r ξ

(

1

n +1

)}r

d x

}

1
r

= O

{

(n +1)β+
1
r ξ

(

1

n +1

)}

[

{
∫2π

0
d x

}

1
r

]

= O

{

(n +1)β+
1
r ξ

(

1

n +1

)}

.

This completes the proof of the main theorem. �

5. Corollaries

Following corollaries can be derived from our main theorem:

Corollary 1. Ifβ= 0 and ξ (t )= tα, then the degree of approximation of a function f ∈ Lip(α,r ) ,0 <

α≤ 1, is given by

∥

∥C 1
nE

q
n − f (x)

∥

∥

r =O

{

1

(n +1)α−
1
r

}

.

Corollary 2. If r →∞ in Corollary 1, then for 0 <α< 1,

∥

∥C 1
nE

q
n − f (x)

∥

∥

∞
=O

{

1

(n +1)α

}

.

Corollary 3. If β = 0, ξ (t ) = tα and qn = 1 ∀n, then the degree of approximation of a function

f ∈ Lip(α,r ) ,0 <α≤ 1, is given by

∥

∥C 1
nE 1

n − f (x)
∥

∥

r =O

{

1

(n +1)α−
1
r

}

.
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Corollary 4. If r →∞ in Corollary 3, then for 0 <α< 1, we have

∥

∥C 1
nE 1

n − f (x)
∥

∥

∞
=O

{

1

(n +1)α

}

.

Remark. Independent proofs of Corollaries 1 and 3 can be obtained along the same lines of

our theorem.
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