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Some fixed point results for nonlinear F -type

contractions in strong partial b-metric spaces

Savita Rathee, Neelam Kumari and Monika Swami

Abstract. In this article, we demonstrate some fixed point results that generalises
the Banach contraction principle in a different way from the previously established
literature findings. We provide some fixed point findings for nonlinear F type
contractions in Strong Partial b-Metric Spaces (SPbMS). We also include some
examples that demonstrates the applicability of our findings.
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1 Introduction

Fixed point theory has emerged as a highly useful tool in the study of nonlinear processes
during the last few decades. Fixed point concepts and findings in pure and applied analysis,
topology, and geometry have been developed in particular. The well-known Banach contraction
principle [4] is a key of this theory. It has been widely investigated and extended in a variety of
scenarios ([6],[7],[12],[13],[19],[20],[18],[22]). The works of Bourbaki [5] and Bakhtin [3] influenced
the concept of b-metric. In 1993, Czerwik [8] provided a weaker assumption than the triangle
inequality and explicitly defined a b-metric space in order to generalise the Banach contraction
mapping theorem. Matthews [16], in 1994 proposed the concept of partial metric space as part of
the research of denotational semantics of dataflow networks and demonstrated how the Banach
contraction principle may be adapted to the partial metric context for programme verification
applications. In [17], the notion of SPbMSs was introduced. They also discussed the relationship
between strong b-metric and SPbMSs.

A novel concept of contraction known as F -contraction was first proposed by Wardowski
[23]. As a result, Wardowski demonstrated fixed point theorems in a novel manner that differed
from how the prior known theorems of the same class had been established, generalising the
Banach-Caccioppoli fixed point theorem. In 2014, Jleli et al. [10],[9] examined an extension of
the Banach fixed point theorem in a brand-new field of contraction mappings on metric spaces
known as θ contraction. In a new class of contraction mappings on metric spaces known as (θ, F )-
contraction (nonlinear F -contraction), Wardowski [24] examined an extension of the Banach
fixed point theorem in 2018.

Inspired by the outcomes of Kari et al. [11] and Wardowski [23], we establish some fixed
point results for nonlinear F -contraction type mappings in the case of SPbMSs.
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2 Preliminaries

Here, we provide the relevant definitions and findings for different spaces and different type of
contractions that will be helpful for further explanation.

Definition 1. [16] “A partial metric on a set E is a function d : E × E → R+
0 such that for all

a, b, c ∈ E, the following conditions hold:

(PM1) a = b ⇔ d(a, a) = d(b, b) = d(a, b);

(PM2) d(a, a) ≤ d(a, b);

(PM3) d(a, b) = d(b, a);

(PM4) d(a, b) ≤ d(a, c) + d(c, b)− d(c, c).

Then (E, d) is called a partial metric space.”

Definition 2. [14] “A map d : E ×E → R+
0 is a strong b-metric on a non empty set E if for all

a, b, c ∈ E and α ≥ 1 the following conditions hold:

(SB1) a = b iff d(a, b) = 0;

(SB2) d(a, b) = d(b, a);

(SB3) d(a, b) ≤ d(a, c) + αd(c, b).

The triple (E, d, α) is called a strong b-metric space.”

Definition 3. [17] “A map d : E × E → R+
0 is a strong partial b-metric on a non empty set E

if for all a, b, c ∈ E and α ≥ 1 the following conditions hold:

(SPbM1) a = b ⇔ d(a, a) = d(b, b) = d(a, b);

(SPbM2) d(a, a) ≤ d(a, b);

(SPbM3) d(a, b) = d(b, a);

(SPbM4) d(a, b) ≤ d(a, c) + αd(c, b)− d(c, c).

The triple (E, d, α) is called a Strong Partial b-Metric Space (SPbM).”

Remark 1. [17] “Every metric space is a strong b-metric space but converse is not neccessarily
true. Every strong b-metric space is a SPbM but not conversely.”

Definition 4. [17] “ Let (E, d, α) be a SPbM. Then

(i) A sequence {an} in (E, d, α) converges to a point a ∈ E if d(a, a) = limn d(an, a) =
limn d(an, an).

(ii) A sequence {an} in (E, d, α) is Cauchy if the limn,m d(an, am) exists and finite.”

Definition 5. [23] “Let F be the family of all continuous functions F : R+ → R such that

(F1) F is strictly increasing;

(F2) For each sequence {an} ∈ N of positive numbers

lim
n→∞

an = 0 if and only if lim
n→∞

F (an) = −∞; (2.1)
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(F3) There exists k ∈ (0, 1) such that limα→0+ αkF (α) = 0.

A mapping S : E×E is said to be an F -contraction if there exists τ > 0 such that for all u, v ∈ E

(d(Su, Sv)) > 0 =⇒ τ + F (d(Su, Sv)) ≤ F (d(u, v)).” (2.2)

Turinici [21] observed that the condition (F2) can be relaxed to the form
(F2’) limn→∞ F (an) = −∞.

Definition 6. [24] “A mapping S : E → E is said to be a (ϕ, F )-contraction (or nonlinear
F -contraction) if there exist the functions F : (0,∞) → R and ϕ : (0,∞) → (0,∞) satisfying the
following

(H1) F satisfies (F1) and (F2’);

(H2) lim infs→t+ ϕ(s) > 0 for all t ≥ 0;

(H3) ϕ(d(u, v)) + F (d(Su, Sv)) ≤ F (d(u, v)) for all u, v ∈ E such that Su ̸= Sv.”

Theorem 2.1. [24] “Let (E, d) be a complete metric space and S : E → E be a
(ϕ, F )-contraction. Then S has a unique fixed point.”

3 Main Results

Throughout the paper, F is a family of all functions F : R+ → R which satisfies (F1), (F2),
(F2’), (F3). R represents the set of real numbers and N is the set of natural numbers. Φ is the
family of all functions ϕ : (0,∞) → (0,∞) with the condition lim infs→t+ ϕ(s) > 0 for all t ≥ 0.

Theorem 3.1. Let (E, d, α) be a complete SPbMS with parameter α and S : E → E be a
continuous map. Suppose

(i) there exist F ∈ F and ϕ ∈ Φ such that for any u, v ∈ E with Su ̸= Sv,

F [αd(Su, Sv)] + ϕ(d(u, v)) ≤ F [d(u, v)], (3.1)

(ii) for each sequence {an} ∈ R+ such that ϕ(an) + F (αan+1) ≤ F (αan) for each n ∈ N, then
ϕ(an) + F (αnan+1) ≤ F (αn−1an). (3.2)

Then S has exactly one fixed point.

Proof. Define a sequence {un} ∀ n ∈ N, as follow, by using the point u0 in E as an arbitrarily
chosen point

Sun = un+1 = sn+1u0.

Assume that there is p0 ∈ N such that d(up0
, up0+1) = 0. Then by (SPbM2)

d(up0
, up0

) ≤ d(up0
, up0+1) and d(up0+1, up0+1) ≤ d(up0

, up0+1).
So, d(up0

, up0
) = d(up0

, up0+1) = d(up0+1, up0+1). Thus, by (SPbM1) up0
= up0+1, the proof is

completed.
So, we assume that d(un, un+1) > 0 ∀ n ∈ N.
From inequality (3.1), for all n ∈ N, we get

F (d(Sun−1, Sun)) < F (αd(un, un+1)) + ϕ(d(un−1, un) ≤ F (d(un−1, un),

that is

F (d(un, un+1)) < F (d(un−1, un)). (3.3)
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From inequality (3.1) and (3.2), we have

F (αnd(un, un+1)) ≤ F (αn−1d(un−1, un))− ϕ(d(un−1, un)). (3.4)

Repeating the same process, we get

F (αnd(un, un+1)) ≤ F (αn−1d(un−1, un))− ϕ(d(un−1, un))

≤ F (αn−2d(un−2, un−1))− ϕ(d(un−2, un−1))− ϕ(d(un−1, un))

≤ ...

≤ F (d(u0, u1))−
n∑

j=0

ϕ(d(xj , xj+1)).

Since according to our assumption lim infα→t+ ϕ(α) > 0, so

lim inf
n→∞

ϕ(d(un−1, un)) > 0.

Using the definition of limit, ∃ n1 ∈ N and c1 > 0, so that for each n ≥ n1

ϕ(d(un−1, un)) ≥ c1.

Thus

F (αnd(un, un+1)) ≤ Fd(u0, u1)−
n1∑
j=0

ϕd(uj , uj+1)−
n∑

j=n1+1

ϕ(d(uj , uj+1))

≤ Fd(u0, u1)−
n∑

n1+1

c1

≤ Fd(u0, u1)− (n− n1)c1.

Applying limn → ∞, we have

lim
n→∞

F (αnd(un, un+1)) ≤ lim
n→∞

[Fd(u0, u1)− (n− n1)c1]. (3.5)

Thus, limn→∞ F (αnd(un, un+1)) = −∞. From condition (F2) of function F , we conclude

lim
n→∞

αnd(un, un+1) = 0. (3.6)

Now, we prove limn→∞ αnd(un, un+2) = 0. Supppose, un ̸= up for each n, p ∈ N with n ̸= p.
If possible, let un = up for some n = p+ k, where k > 0. Using inequation (3.3), we have

d(up, up+1) = d(un, un+1) < d(un−1, un). (3.7)

Applying this step again and again, we have d(up, up+1) = d(un, un+1) < d(up, up+1).
From this contradiction, un ̸= up ∀ n, p ∈ N.
Now, we prove d(un, up) > 0 ∀ n, p ∈ N, where n ̸= p. If d(un, up) = 0, by (SPbM2)
d(un, un) ≤ d(un, up) and d(up, up) ≤ d(un, up).
So, d(un, un) = d(up, up) = d(un, up) = 0.
Using (SPbM1), un = up. Again a contradiction. So, d(un, up) > 0 ∀ n, p ∈ N and n ̸= p. Again,
using inequality (3.1) and (3.2), we have

F (αnd(un, un+2)) ≤ F (αn−1d(un−1, un+1))− ϕ(d(un−1, un+1)). (3.8)

Repeating the same process, we get,

F (αnd(un, un+2)) ≤ F (αn−1d(un−1, un+1))− ϕ(d(un−1, un+1))

≤ F (αn−2d(un−2, un))− ϕ(d(un−1, un+1))− ϕ(d(un−2, un))

≤ ...

≤ F (d(u0, u2))−
n∑

j=0

ϕ(d(xj , xj+2)).

According to our assumption lim infα→t+ ϕ(α) > 0, so

lim inf
n→∞

ϕ(d(un−1, un+1)) > 0.
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Using the definition of limit, ∃ n2 ∈ N and c2 > 0, so that for each n ≥ n2

ϕ(d(un−1, un+1)) ≥ c2.

Thus

F (αnd(un, un+2)) ≤ Fd(u0, u2)−
n2∑
j=0

ϕd(uj , uj+2)−
n∑

j=n2+1

ϕ(d(uj , uj+2))

≤ Fd(u0, u2)−
n∑

n2+1

c2

≤ Fd(u0, u2)− (n− n2)c2.

Applying limn → ∞, we have

lim
n→∞

F (αnd(un, un+2)) ≤ lim
n→∞

[Fd(u0, u2)− (n− n2)c2]. (3.9)

Thus, limn→∞ F (αnd(un, un+2)) = −∞. From condition (F2) of function F , we conclude

lim
n→∞

αnd(un, un+2) = 0. (3.10)

Next, by demonstrating that limp,q→∞ d(up, uq) = 0, we demonstrate that {un} is a Cauchy
sequence. Using (F2), there exists k ∈ (0, 1), so that

lim
p→∞

[αpd(up, up+1)]
kF (αpd(up, up+1)).

Because

F [αpd(up, up+1)] ≤ F [d(u0, u1)]− (p− p1)c1
so,

[αpd(up, up+1)]
kF [αpd(up, up+1)] ≤ [αpd(up, up+1)]

k[Fd(u0, u1)− (p− p1)c1],

that implies

[αpd(up, up+1)]
kF [αpd(up, up+1)] ≤ [αpd(up, up+1)]

k[Fd(u0, u1)]− [(p− p1)c1][α
pd(up, up+1)]

k.

Thus,

[αpd(up, up+1)]
kF [αpd(up, up+1)]− αpd(up, up+1)]

kF [d(u0, u1)] ≤ −(p− p1)c1[α
pd(up, up+1)]

k ≤ 0.

As n → ∞, we conclude

lim
p→∞

(p− p1)c1[α
pd(up, up+1)]

k = 0.

So, ∃ h1 ∈ N, such that for all p > h1

αpd(up, up+1) ≤
1

[(p− p1)c1]k
. (3.11)

Again using (F2), there exists k ∈ (0, 1), so that

lim
p→∞

[αpd(up, up+2)]
kF (αpd(up, up+2)).

Because

F [αpd(up, up+2)] ≤ F [d(u0, u2)]− (p− p2)c2.

So,

[αpd(up, up+2)]
kF [αpd(up, up+2)] ≤ [αpd(up, up+2)]

k[Fd(u0, u2)− (p− p2)c2],

that implies

[αpd(up, up+2)]
kF [αpd(up, up+2)] ≤ [αpd(up, up+2)]

k[Fd(u0, u2)]− [(p− p2)c2][α
pd(up, up+2)]

k.

Thus,

[αpd(up, up+2)]
kF [αpd(up, up+2)]− αpd(up, up+2)]

kF [d(u0, u2)] ≤ −(p− p2)c2[α
pd(up, up+2)]

k ≤ 0.

As n → ∞, we conclude

lim
p→∞

(p− p2)c2[α
pd(up, up+2)]

k = 0.
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So, ∃ h2 ∈ N, such that for all p > h2

αpd(up, up+2) ≤
1

[(p− p2)c2]k
. (3.12)

We demonstrate that lim p → ∞d(up, up+q) = 0 for each q ∈ N.
The proofs for situations r = 1 and r = 2 are given in equation (3.6) and (3.10).
Now taking q ≥ 3. Examining only two cases are enough.
Case I): Assume q = 2m+ 1, where m ≥ 1. By using (SPbM4),

d(up, up+q) = d(up, up+2m+1)

≤ d(up, up+1) + α(d(up+1, up+2m+1))− d(up+1, up+1)

≤ d(up, up+1) + α(d(up+1, up+2m+1))

≤ d(up, up+1) + α[d(up+1, up+2) + αd(up+2, up+2m+1)− d(up+2, up+2)]

≤ d(up, up+1) + αd(up+1, up+2) + α2d(up+2, up+2m+1) ≤ ...

≤ d(up, up+1) + αd(up+1, up+2) + α2d(up+2, up+3) + ...+ α2md(up+2m, up+2m+1)

=
1

αp

{
αpd(up, up+1) + αp+1d(up+1, up+2) + ...+ αp+2md(up+2m, up+2m+1)

}
=

1

αp

p+2m∑
j=p

αjd(uj , uj+1)

=
1

αp

p+q−1∑
j=p

αjd(uj , uj+1).

Thus, for each p ≥ max{p1, ph1
} and q ∈ N, inequality (3.11) implies

d(up, up+q) ≤
1

αp

p+q−1∑
j=p

αjd(uj , uj+1) ≤
1

αp

∞∑
j=p

αjd(uj , uj+1) ≤
1

αp

∞∑
j=p

1

[(j − p1)c1]k
→ 0.

Case II): Assume q = 2m, where m ≥ 1. By using (SPbM4),

d(up, up+q) = d(up, up+2m)

≤ d(up, up+2) + α(d(up+2, up+2m))− d(up+2, up+2)

≤ d(up, up+2) + α(d(up+2, up+2m))

≤ d(up, up+2) + α[d(up+2, up+3) + αd(up+3, up+2m)− d(up+3, up+3)]

≤ d(up, up+2) + αd(up+2, up+3) + α2d(up+3, up+2m) ≤ ...

≤ d(up, up+2) + αd(up+2, up+3) + α2d(up+3, up+4) + ...+ α2m−2d(up+2m−1, up+2m)

=
1

αp

{
αpd(up, up+2) + αp+1d(up+2, up+3) + ...+ αp+2m−2d(up+2m−1, up+2m)

}
=

1

αp
αpd(up, up+2) +

1

αp+1

p+2m−1∑
j=p+2

αjd(uj , uj+1)

=
1

αp
αpd(up, up+2) +

1

αp+1

p+q−1∑
j=p+2

αjd(uj , uj+1).

Thus, for each p ≥ max{p1, p2, ph2} and q ∈ N, inequality (3.11) and (3.12) implies

d(up, up+q) ≤
1

αp
αpd(up, up+2) +

1

αp+1

p+q−1∑
j=p+2

αjd(uj , uj+1)
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≤ 1

αp
αpd(up, up+2) +

1

αp+1

∞∑
j=p+2

αjd(uj , uj+1)

≤ 1

αp

{
1

[(p− p2)c2]k
+

1

α

∞∑
j=p

1

[(p− p1)c1]k

}
→ 0.

Thus limn→∞ d(un, up+q) = 0.
Hereof, {un} is a Cauchy sequence in E. Because of completeness of (E, d), ∃ u∗ ∈ E such that

lim
n→∞

d(un, u
∗) = 0.

We now demonstrate that d(Su∗, u∗) = 0.
By using contradiction to our method of argument d(Su∗, u∗) > 0.
On the other side, F is incresing and
F (d(Su, Sv) ≤ ϕ(d(u, v)) + F (d(Su, Sv) ≤ F (d(u, v)) for all u, v ∈ E and d(Su, Sv) > 0. We
have d(Su, Sv) ≤ d(u, v) for each u, v ∈ E. This indicates

d(Sun, Su
∗) ≤ d(un, u

∗).

As n → ∞, un → u∗, then we conclude,
1

α
d(u∗, Su∗) ≤ lim

n→∞
sup d(Sun, Su

∗) ≤ αd(u∗, Su∗).

So,
1

α
d(u∗, Su∗) ≤ lim

n→∞
sup d(Sun, Su

∗) ≤ lim
n→∞

sup d(un, u
∗) = 0.

Using (SPbM2), d(Su∗, Su∗), d(u∗, u∗) ≤ d(Su∗, u∗). Thus Su∗ = u∗. To demonstrate
uniqueness, assume u∗, v∗ ∈ E are different fixed points of E. So,

d(u∗, v∗) = d(Su∗, Sv∗) > 0.

Using inequation (3.1), we get

F (d(u∗, v∗)) = F (d(Su∗, Sv∗))

≤ F (αd(Su∗, Sv∗))

≤ F (d(u∗, v∗))− ϕ(d(u∗, v∗))

< F (d(u∗, v∗))

Here, we have a contradiction. Hence u∗ = v∗. This completes the proof.

Corollary 3.2. If we replace codition (i) of Theorem (3.1) by

αd(Su, Sv) ≤ e
−1

d(u,v)+1 ,

for each u, v ∈ E such that Su ̸= Sv. Then S has only one fixed point.

Proof. By applying logrithm on both sides, we get

log(αd(Su, Sv)) ≤ log

[
−1

d(u, v) + 1

]
= log(d(u, v)) +

−1

d(u, v) + 1

With ϕ(z) = 1
z+1 and F (z) = log(z), we find the same inequality (3.1). Hence the proof.

Example 1. Let E = {0, 1, 2} and d : E × E → [0,∞) be defined by

d(0, 0) = d(2, 2) = 0, d(1, 1) =
1

4
,

d(1, 0) =
1

2
= d(0, 1),
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d(1, 2) = 6 = d(2, 1),

d(2, 0) = 8 = d(0, 2).

Here d(u, u) ≤ d(u, v) ∀ u, v ∈ E. And

d(0, 1) ≤ d(0, 2) + αd(2, 1)− d(2, 2), ∀ α ≥ 1,

d(1, 0) ≤ d(1, 2) + αd(2, 0)− d(2, 2), ∀ α ≥ 1,

d(0, 2) ≤ d(0, 1) + αd(1, 2)− d(1, 1), ∀ α ≥ 31

24
,

d(2, 0) ≤ d(2, 1) + αd(1, 0)− d(1, 1), ∀ α ≥ 9

2
,

d(1, 2) ≤ d(1, 0) + αd(0, 2)− d(0, 0), ∀ α ≥ 1,

d(2, 1) ≤ d(2, 0) + αd(0, 1)− d(2, 2), ∀ α ≥ 1.

So, (E, d, α) is a SPbMS, for α = 5 but it is neither metric nor strong b-metric space, because
d(1, 1) = 1

4 ̸= 0.
Let S : E → E be a self map defined by S0 = 0, S1 = 0, S2 = 1 and f ∈ F and ϕ ∈ Φ be
represented as

F (u) = log(u), ϕ(u) =
1

u+ 1
.

For Su ̸= Sv, we have only two choices (u, v) = (0, 2) and (u, v) = (1, 2).
If (u, v) = (0, 2), then

F [αd(Su, Sv)] + ϕ(d(u, y))− F [d(u, y)] = F [5(d(S0, S2))] + ϕd(0, 2)− F [d(0, 2)]

= F [5(d(0, 1))] + ϕd(0, 2)− F [d(0, 2)]

= F [5(
1

2
)] + ϕ(8)− F (8)

= log
5

2
+

1

9
− log(8)

= 0.3979 + 0.1111− 0.9030 = −0.394 < 0.

If (u, v) = (1, 2), then

F [αd(Su, Sv)] + ϕ(d(u, y))− F [d(u, y)] = F [5(d(S1, S2))] + ϕd(1, 2)− F [d(1, 2)]

= F [5(d(0, 1))] + ϕd(1, 2)− F [d(1, 2)]

= F [5(
1

2
)] + ϕ(6)− F (6)

= log
5

2
+

1

7
− log(6)

= 0.3979 + 0.1428− 0.7781 = −0.2374 < 0.

As a result, all of the requirements are met. Therefore, S has a single fixed point u∗ = 0.

Corollary 3.3. “Let (E, d, α) be a complete strong b-metric space with parameter α and
S : E → E be a continuous map. Suppose

(i) there exists F ∈ F and ϕ ∈ Φ such that for any u, v ∈ E with Su ̸= Sv,

F [αd(Su, Sv)] + ϕ(d(u, v)) ≤ F [d(u, v)],

(ii) for each sequence {an} ∈ R+ such that ϕ(an) + F (αan+1) ≤ F (αan) for each n ∈ N, then
ϕ(an) + F (αnan+1) ≤ F (αn−1an).

Then S has exactly one fixed point.”
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Corollary 3.4. “Let (E, d, α) be a complete metric space with parameter α and
S : E → E be a continuous map. Suppose

(i) there exists F ∈ F and ϕ ∈ Φ such that for any u, v ∈ E with Su ̸= Sv,

F [αd(Su, Sv)] + ϕ(d(u, v)) ≤ F [d(u, v)],

(ii) for each sequence {an} ∈ R+ such that ϕ(an) + F (αan+1) ≤ F (αan) for each n ∈ N, then
ϕ(an) + F (αnan+1) ≤ F (αn−1an).

Then S has exactly one fixed point.”

Lemma 3.1. Let (E, d) be a SPbMS and {un} be a sequence in E, so as

lim
n→∞

d(un, un+1) = lim
n→∞

d(un, un+2) = 0. (3.13)

If {un} is not a Cauchy sequence, then there must be a positive δ and two sequence of positive
numbers, {pk} and {qk} such that

δ ≤ lim
k→∞

inf d(upk
, uqk) ≤ lim

k→∞
sup d(upk

, uqk) ≤ αδ,

δ ≤ lim
k→∞

inf d(uqk , upk+1
) ≤ lim

k→∞
sup d(uqk , upk+1

) ≤ αδ,

δ ≤ lim
k→∞

inf d(upk
, uqk+1

) ≤ lim
k→∞

sup d(upk
, uqk+1

) ≤ αδ,

δ ≤ lim
k→∞

inf d(upk+1
, uqk+1

) ≤ lim
k→∞

sup d(upk+1
, uqk+1

) ≤ α2δ.

Proof. According to the definition of Cauchy sequence, if {un} is not Cauchy, then there exist a
δ > 0, and two sequence of positive numbers {pk} and {qk}, such as for pk > qk > k,

δ ≤ d(upk
, uqk) and d(upk−1

, uqk) < δ. (3.14)

From (SPbMS4), we have

δ ≤ d(upk
, uqk) ≤ d(upk

, upk−1
) + αd(upk−1

, uqk)− d(upk−1
, upk−1

). (3.15)

As k → ∞, applying upper and lower limit in inequation (3.15) and using equation (3.13) and
inequation (3.14), we conclude

δ ≤ lim
k→∞

inf d(upk
, uqk) ≤ lim

k→∞
sup d(upk

, uqk) ≤ αδ. (3.16)

Again from (SPbMS4), we have

δ ≤ d(uqk , upk+1
) ≤ d(uqk , uqk+1

) + αd(uqk+1
, upk+1

)− d(uqk+1
, uqk+1

). (3.17)

As k → ∞, applying upper and lower limit in inequation (3.17) and using equation (3.13) and
inequation (3.14), we conclude

δ ≤ lim
k→∞

inf d(uqk , upk+1
) ≤ lim

k→∞
sup d(uqk , upk+1

) ≤ αδ. (3.18)

By (SPbMS4), we have

δ ≤ d(upk
, uqk+1

) ≤ d(upk
, upk−1

) + αd(upk−1
, uqk+1

)− d(upk−1
, upk−1

). (3.19)

As k → ∞, applying upper and lower limit in inequation (3.19) and using equation (3.13) and
inequation (3.14), we conclude

δ ≤ lim
k→∞

inf d(upk
, uqk+1

) ≤ lim
k→∞

sup d(upk
, uqk+1

) ≤ αδ. (3.20)

By using (SPbMS4), we have

δ ≤ d(upk+1
, uqk+1

) ≤ d(upk+1
, upk

) + αd(upk
, uqk+1

)− d(upk
, upk

). (3.21)

As k → ∞, applying upper and lower limit in inequation (3.20), (3.21) and using equation (3.13)
and inequation (3.14), we conclude

δ ≤ lim
k→∞

inf d(upk+1
, uqk+1

) ≤ lim
k→∞

sup d(upk+1
, uqk+1

) ≤ α2δ. (3.22)
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Theorem 3.5. Let (E, d, α) be a complete SPbMS with parameter α and S : E → E be a
continuous map. Suppose

1. there exists F ∈ F and ϕ ∈ Φ such that for any u, v ∈ E with Su ̸= Sv,

F [α2d(Su, Sv)] + ϕ(d(u, v)) ≤ F [M(u, v)], (3.23)

where M(u, v) = max{d(u, v), d(u, Su), d(v, Sv), d(v, Su)},

2. for each sequence {an} ∈ R+, condition (ii) of Theorem (3.1) hold.

Then S has exactly one fixed point.

Proof. Define a sequence {un} ∀ n ∈ N, as follow, by using the point u0 in E as an arbitrarily
chosen point

Sun = un+1 = sn+1u0.

Assume that there is p0 ∈ N such that d(up0
, up0+1) = 0. Then by (SPbM2)

d(up0 , up0) ≤ d(up0 , up0+1) and d(up0+1, up0+1) ≤ d(up0 , up0+1). So,
d(up0 , up0) = d(up0 , up0+1) = d(up0+1, up0+1). Thus, by (SPbM1) up0 = up0+1, the proof is
completed.
So, we assume that d(un, un+1) > 0 ∀ n ∈ N.
From inequality (3.23), for all n ∈ N, we get

F (d(Sun−1, Sun)) ≤ F (α2d(un, un+1)) + ϕ(d(un−1, un) ≤ F (M(un−1, un), (3.24)

where

M(un−1, un) = max{d(un−1, un), d(un−1, Sun−1), d(un, Sun), d(un, Sun−1)}.
If M(un−1, un) = d(un, un+1), then

F (d(un, un+1)) ≤ F (α2d(un, un+1)) + ϕ(d(un−1, un) ≤ F (d(un, un+1),

that means

d(un, un+1) < d(un−1, un). (3.25)

Here we get a contradiction, because ϕ(z) > 0, ∀ z > 0. So, M(un−1, un) = d(un−1, un). Thus
from inequality (3.24),

F (d(un, un+1)) ≤ F (d(un−1, un))− ϕ(d(un−1, un)).

Repeating same process, we get

F (d(un, un+1)) ≤ F (d(un−1, un))− ϕ(d(un−1, un))

≤ F (d(un−2, un−1))− ϕ(d(un−2, un−1))− ϕ(d(un−1, un))

≤ ... ≤ F (d(u0, u1))−
n∑

j=0

ϕ(d(uj , uj+1)).

As lim infs→t+ ϕ(s) > 0, we have lim infn→∞ ϕ(d(un−1, un)) > 0. Now, according to definition of
limit, there must be a number N ∈ N and c1 > 0, such as for each n > N , ϕ(d(un−1, un)) > c1.
So,

F (d(un, un+1)) ≤ F (d(u0, u1))−
N∑
j=0

ϕ(d(uj , uj+1))−
n∑

j=N+1

ϕ(d(uj , uj+1))

≤ F (d(u0, u1))−
n∑

j=N+1

c1

= F (d(u0, u1))− (n−N)c1.
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As n → ∞, we conclude

lim
n→∞

F (d(un, un+1)) ≤ lim
n→∞

[F (d(u0, u1))− (n−N)].

This implies

lim
n→∞

d(un, un+1) = 0. (3.26)

We now demonstrate that limn→∞ d(un, un+2) = 0. Suppose d(un, up) > 0 for each n, p ∈ N.
Otherwise, if we assume that for some n = p+ q, where q > 0, un = up, then by using inequality
(3.25), we conclude

d(up, up+1) = d(un, un+1) < d(un−1, un).

By taking same step again and again, we have

d(up, up+1) = d(un, un+1) < d(up, up+1).

Here we get a contradiction. So, d(up, un) > 0 for all n, p ∈ N, where n ̸= p.
Now, with the help of inequality (3.23) we conclude

F [d(un, un+2)] = F [d(Sun−1, Sun+1)]

≤ F [α2d(Sun−1, Sun+1)] ≤ F [M(un−1, un+1)]− ϕ[d(un−1, un+1)],

where

M(un−1, un+1) = max{d(un−1, un+1), d(un−1, un), d(un+1, un+2), d(un+1, un)}.
Therefore,

F [d(un, un+2)] ≤ F [max{d(un−1, un+1), d(un−1, un)}]− ϕ(d(un−1, un+1)).

For our convenience, take d
′

n = d(un, un+2) and dn = d(un, un+1). So,

Fd
′

n ≤ F max{d
′

n−1, dn−1} − ϕ(d
′

n−1). (3.27)

Because of (F1) condition of function F , we get

d
′

n ≤ max{d
′

n−1, dn−1}.
Now, from inequation (3.25),

dn ≤ dn−1 ≤ max{d
′

n−1, dn−1}.
That means for each n ∈ N,

max{d
′

n, dn} ≤ max{d
′

n−1, dn−1}.
Clearly, sequence max{d′

n−1, dn−1} is decreasing sequence of non negative real numbers. So,
there must be a non negative real number β, so as

lim
n→∞

max{d
′

n, dn} = β.

Suppose β > 0, using equality (3.26), we conclude

lim
n→∞

sup dn′ = lim
n→∞

supmax{dn′ , dn} = lim
n→∞

max{dn′ , dn} = β.

By using continuity of F , and inequality (3.26), we obtain

F ( lim
n→∞

) ≤ F ( lim
n→∞

supmax{d
′

n−1, dn−1})− lim
n→∞

supϕ(d
′

n−1)

< F ( lim
n→∞

supmax{d
′

n−1, dn−1}).
Here we get a F (β) < F (β),which is cntradiction. Hence

lim
n→∞

d(un, un+2) = 0. (3.28)

After this, we have to prove that limp,q→∞ d(up, uq) = 0 for each p, q ∈ N. If it is not true then
according to Lemma (3.1), there is a δ > 0 and two sequences {pk} and {qk} such that

lim
k→∞

M(upk
, uqk) = lim

k→∞
max{d(upk

, uqk), d(upk
), upk+1

), d(uqk , uqk+1
), d(uqk , uqk+1

)} ≤ αδ.

(3.29)
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From inequation (3.23), we conclude

F [α2d(upk+1
, uqk+1

)] ≤ F [M(upk
, uqk)]− ϕ(d(upk

, uqk)).

As k → ∞, by using Lemma (3.1) and equality (3.29), we obtain

F

[
δ

α
α2

]
= F (δα)

≤ F [α2 lim
k→∞

sup d(upk+1
, uqk+1

)]

= lim
k→∞

supF [α2d(upk+1
, uqk+1

)]

≤ lim
k→∞

supF [M(upk
, uqk)]− lim

k→∞
supϕ[d(upk

, uqk)]

= F [ lim
k→∞

supM(upk
, uqk)]− lim

k→∞
supϕ[d(upk

, uqk)]

≤ F [ lim
k→∞

supM(upk
, uqk)]− lim

k→∞
inf ϕ[d(upk

, uqk)]

< F [ lim
k→∞

supM(upk
, uqk)]

< F (αδ).

Because of F1 condition, we obtain αδ < αδ. This contradiction means limp,q→∞ d(up, uq) = 0.
Hence, {un} is a Cauchy sequence. Because of completeness of (E, d), ∃ u∗ ∈ E, so that

lim
n→∞

d(un, u
∗) = 0.

To demonstrate Su∗ = u∗, we prove d(Su∗, u∗) = 0. Because if d(Su∗, u∗) = 0 then by (SPbM1)
and (SPbM2) we can say Su∗ = u∗. Let if possible d(Su∗, u∗) > 0. As un → u∗ for n → ∞, we
have

1

α
d(u∗, Su∗) ≤ lim

n→∞
sup d(Sun, Su

∗) ≤ αd(u∗, Su∗). (3.30)

From inequation (3.23) for each n ∈ N, we obtain

F [α2d(Sun, Su
∗)] ≤ F [M(un, u

∗)]− ϕ(d(un, u
∗))

Here

M(un, u
∗) = max{d(un, u

∗), d(un, Sun), d(u
∗, Su∗), d(u∗, Sun)}

and

lim
n→∞

supmax{d(un, u
∗), d(un, Sun), d(u

∗, Su∗), d(u∗, Sun)} = d(u∗, Su∗).

Taking n → ∞, we get

F

[
1

α
α2d(u∗, Su∗)

]
= F (αd(u∗, Su∗)

≤ F [α2 lim
k→∞

sup d(Sun, Su
∗)]

= lim
k→∞

supF [α2d(Sun, Su
∗)]

≤ lim
k→∞

supF [M(un, u
∗)]− lim

k→∞
ϕ[d(un, u

∗)]

= F [d(Su∗, u∗)]− lim
k→∞

ϕ[d(un, u
∗)]

< F ((Sun, Su
∗)).

Now, because of F1 condition of function F , we have

αd(u∗, Su∗) < d(u∗, Su∗),

which is a contradiction, because α ≥ 1. Now, it remains to prove that fixed point is unique.
For this, we assume that there u∗ and v∗ are two different fixed point of S. Therefore, we obtain

d(u∗, v∗) = d(Su∗, Sv∗) > 0.
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By inequation (3.23),

F [d(u∗, v∗)] = F [d(Su∗, Sv∗)] ≤ F [α2d(Su∗, Sv∗)] ≤ F [M(u∗, v∗)]− ϕ(d(u∗, v∗)).

Here,

M(u∗, v∗) = max{d(u∗, v∗), d(u∗, Su∗), (v∗, Sv∗), d(Su∗, v∗)} = d(u∗, v∗).

Thus, we get

F [d(u∗, v∗)] ≤ F [d(u∗, v∗)]− ϕ(d(u∗, v∗)) < F [d(u∗, v∗)]

That means d(u∗, v∗) < d(u∗, v∗), which is not true. So, u∗ = v∗. This completes the proof.

Corollary 3.6. “Let (E, d, α) be a complete SPbMS with parameter α and S : E → E be a
continuous map. Suppose

1. there exists F ∈ F and ϕ ∈ Φ such that for any u, v ∈ E with Su ̸= Sv,

F [α2d(Su, Sv)] + ϕ(d(u, v)) ≤ F

[
d(u, Su) + d(v, Sv)

2

]
,

2. for each sequence {an} ∈ R+, condtion (ii) of Theorem (3.1) hold.

Then S has exactly one fixed point.”

Proof. It is easy to demonstrate, because,

F [α2d(Su, Sv)] + ϕ(d(u, v)) ≤ F

[
d(u, Su) + d(v, Sv)

2

]
≤ F [max{d(u, Su), d(v, Sv)}]
≤ F [max{d(u, v), d(u, Su), d(v, Sv), d(Su, v)}].

Corollary 3.7. “Let (E, d, α) be a complete SPbMS with parameter α and S : E → E be a
continuous map. Suppose

1. there exists F ∈ F and ϕ ∈ Φ such that for any u, v ∈ E with Su ̸= Sv,

F [α2d(Su, Sv)] + ϕ(d(u, v)) ≤ F

[
d(u, v) + d(u, Su) + d(v, Sv)

3

]
,

2. for each sequence {an} ∈ R+, condtion (ii) of Theorem (3.1) hold.

Then S has exactly one fixed point.”

Proof. It is easy to demonstrate, because,

F [α2d(Su, Sv)] + ϕ(d(u, v)) ≤ F

[
d(u, v) + d(u, Su) + d(v, Sv)

3

]
≤ F [max{d(u, v), d(u, Su), d(v, Sv), d(Su, v)}].

4 Conclusion

Here, we provided some fixed point findings for nonlinear F -type contractions in Strong Partial
b-Metric Spaces (SPbMS). We also included some examples that demonstrates the applicability
of our findings.
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