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Existence and multiplicity solutions for a singular

elliptic p(x)-Laplacian equation

Shahrbanoo Aboulfazli, Mohsen Alimohammady and Asieh Rezvani

Abstract. This paper deals with the existence and multiplicity of nontrivial weak

solutions for the following equation involving variable exponents:− △p(x) u+
|u|r−2u

|x|r
= λh(x, u), in Ω,

u = 0, on ∂Ω,

where Ω is a bounded domain of RN with smooth enough boundary which is subject

to Dirichlet boundary condition. Using a variational method and Krasnoselskii’s

genus theory, we would show the existence and multiplicity of the solutions. Next,

we study closedness of set of eigenfunctions, such that p(x) ≡ p.

Keywords. p(x)-Laplacian, variational method, genus theory, Sobolev space.

1 Introduction

In this paper, we study the following problem− △p(x) u+
|u|r−2u

|x|r
= λh(x, u), in Ω,

u = 0, on ∂Ω,

(1.1)

where Ω is a bounded domain of RN with smooth enough boundary. Let λ be a positive real
parameter and p be real continuous function on Ω with 1 < r < p(x) < p∗(x), where p∗(x) =
Np(x)

N − p(x)
and p(x) < N for all x ∈ Ω, △p(x) u = div

(
|▽u|p(x)−2▽u

)
denotes the p(x) -Laplacian

operator ( for details, see [8, 10] ).

We assume throughout this paper that the function h satisfies the following hypotheses:
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(H1) h : Ω×R → R is a continuous function such that C1|t|β(x)−1 ≤ h(x, t) ≤ C2t
α(x)−1, for all

t ≥ 0 and for all x ∈ Ω, where C1, C2 are positive constants and α, β ∈ C(Ω) such that
1 < β(x) < α(x) < p∗(x) for all x ∈ Ω.

(H2) h is an odd function according to t, that is h(x, t) = −h(x,−t) for all t ∈ R and for x ∈ Ω.

In recent years, the study of p(x)-Laplacian problems in the variable exponent Lebesgue
Sobolev spaces is an interesting topic. For many problems, authors studied the existence one, two
and three solutions. For example, in 2021, Ragusa- Razani- Safari [2], considered the existence of
one solution for a p(x)-Laplacian problem with Dirichlet boundary condition, by using variational
principle. In 2022, Yucedag [22, 23], for Steklov boundary problems and in 2023, Chu- Xie- Zhou
[7], for a new p(x)-Kirchhoff problem, proved the existence of one solution by using the Mountain
pass theorem. In 2022, Heidarkhani- Ghobadi- Avci [14], considered the existence two weak
solutions for p(x)-equations. In 2014, Allaoui [1], for a Robin problem and in 2021, Aydin-
Unal [5], for a Steklov problem, studied the existence three weak solutions by using Ricceri,s
variational principle.

In [3], the authors studied the Kirchhoff type equation:−M

(
1

p(x)

∫
Ω
|▽u|p(x)dx

)
△p(x) u = f(x, u), in Ω,

u = 0, on ∂Ω.
(1.2)

They established the existence and multiplicity of the solutions of the problem (1.2).
The authors in [4], by using the mountain pass theorem, the fountain theorem, the dual fountain
theorem and the theory of the variable exponent Sobolev spaces, obtained results on existence
and multiplicity of solutions for the following problem:M

(∫
Ω

|▽u|p(x)

p(x)
dx

)(
− △p(x) u

)
= f(x, u), in Ω,

u = 0, on ∂Ω.

(1.3)

In [9], Z. El Allali and S. Taarabti studied the p(x)- Kirchhoff equation:

−M

(
1

p(x)

∫
Ω

|▽u|p(x)dx
)

△2
p(x) u = f(x, u),in Ω, (1.4)

with Neumann boundary conditions, by using the Krasnoselskii’s genus theory.
In [18], R. M. Khanghahi and A. Razani showed that the following problem:

− △p(x) u+
|u|s−2u

|x|s
= λf(x, u), in Ω,

u = 0, on ∂Ω,

(1.5)

have two weak solutions in the case when f : Ω × R → R is a Caratheodory function satisfying
f(x, t) ≤ a1 + a2t

q(x)−2, for all (x, t) ∈ Ω× R, where a1, a2 are two positive constants.
Here, we prove at least m pairs of distinct critical points and then infinitely many solutions for
equation (1.1) by using variational method and Krasnoselskii’s genus theory.
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2 Preliminaries

We recall some necessary definitions and propositions concerning the Lebesgue and Sobolev
spaces.

Let Ω be a bounded domain of RN . Set

C+(Ω̄) :=
{
s(x) ∈ C(Ω̄); s(x) > 1, ∀ x ∈ Ω̄

}
.

For any continuous function s : Ω → (1,∞),

s− := inf
x∈Ω

s(x) and s+ := sup
x∈Ω

s(x).

For s ∈ C+(Ω̄), define

Ls(x)(Ω) :=

{
u : Ω → R is a measurable function :

∫
Ω

|u(x)|s(x)dx < +∞
}
.

Endowed with the norm:

∥u∥s(x) := inf

{
µ > 0:

∫
Ω

∣∣∣∣u(x)µ

∣∣∣∣s(x) dx ≤ 1

}
.

Ls(x)(Ω) is well known that is a separable reflexive Banach space [6, 12, 16].
The modular of Ls(x)(Ω) is defined by

σs(x)(u) :=

∫
Ω

|u(x)|s(x)dx.

Proposition 2.1. [10, 13].
(
Ls(x)(Ω), ∥u∥s(x)

)
is separable, uniformly convex, reflexive and its

conjugate space is
(
Ls′(x)(Ω), ∥u∥s′(x)

)
, where

1

s(x)
+

1

s′(x)
= 1, ∀x ∈ Ω.

For all u ∈ Ls(x)(Ω), w ∈ Ls′(x)(Ω), we have∣∣∣∣∫
Ω

uw dx

∣∣∣∣ ≤ (
1

s−
+

1

s′−

)
∥u∥s(x) ∥w∥s′(x) ≤ 2∥u∥s(x) ∥w∥s′(x). (2.1)

Proposition 2.2. [11, 16] Suppose that u, un ∈ Ls(x)(Ω), we have

∥u∥s(x) > 1 ⇒ ∥u∥s
−

s(x) ≤ σs(x)(u) ≤ ∥u∥s
+

s(x);

∥u∥s(x) < 1 ⇒ ∥u∥s
+

s(x) ≤ σs(x)(u) ≤ ∥u∥s
−

s(x);

∥u∥s(x) > 1 (respectively,= 1;< 1) ⇔ σs(x)(u) > 1 (respectively, = 1;< 1) ;

∥un∥s(x) −→ 0(respectively, −→ +∞) ⇔ σs(x)(un) −→ 0(respectively, −→ +∞);

lim
n→∞

∥un − u∥s(x) = 0 ⇐⇒ lim
n→∞

σs(x)(un − u) = 0.

The Sobolev space W 1,s(x)(Ω) is defined by

W 1,s(x)(Ω) :=
{
u ∈ Ls(x)(Ω): |∇u| ∈ Ls(x)(Ω)

}
.
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It is a separable and reflexive Banach spaces with norm:

∥u∥1,s(x) = ∥u∥s(x) + ∥∇u∥s(x).

(For more details, we refer to [8, 16]). Denote by W
1,s(x)
0 (Ω) the closure of C∞

0 (Ω) with respect
to the following norm:

∥u∥ = inf

{
µ > 0:

∫
Ω

∣∣∣∣∇u(x)

µ

∣∣∣∣s(x) dx ≤ 1

}
.

It is well known that

W
1,s(x)
0 (Ω) =

{
u ∈ Ls(x)(Ω);u

∣∣
∂Ω

= 0, |∇u| ∈ Ls(x)(Ω)
}
.

For more details, we refer to [6, 11, 15].

Proposition 2.3. (Sobolev Embedding[10]) For s, s′ ∈ C+(Ω̄) and 1 < s′(x) < s∗(x) for all
x ∈ Ω̄, there is a continuous compact embedding

W
1,s(x)
0 (Ω) ↪→ Ls′(x)(Ω),

which is continuous and compact. Therefore, there is a constant c0 > 0 such that

∥u∥s′(x) ≤ c0∥u∥.

Proposition 2.4. (Poincare Inequality [19]) There is a constant c > 0 such that

∥u∥s(x) ≤ c∥∇u∥s(x), (2.2)

for all u ∈ W
1,s(x)
0 (Ω).

Remark 1. From Proposition 2.4, ∥▽u∥s(x) and ∥u∥1,s(x) are equivalent norms on W
1,s(x)
0 (Ω).

Proposition 2.5. [10, 13] The functional Λ : W
1,s(x)
0 (Ω) → R defined by Λ =

∫
Ω

1

s(x)
|▽u|s(x)dx

is convex. The mapping Λ′ : W
1,s(x)
0 (Ω) →

(
W

1,s(x)
0 (Ω)

)∗
is a strictly monotone, bounded

homeomorphism and of (S+) type, if un → u (weakly) as n → ∞ and limn→∞ (Λ′(un), un − u) ≤
0 implies un → u (strongly).

Definition 1. [20] Let 1 < r < N , we have∫
Ω

|u(x)|r

|x|r
dx ≤ 1

M

∫
Ω

|▽u(x)|rdx, (2.3)

for all u ∈ W
1,s(x)
0 (Ω), where M :=

(
N − r

r

)r

.

Definition 2. Let U be a real Banach space. SetR := {B ⊂ U−{0}; B is compact and symmetric}.
Let B ∈ R and we define the genus of B as follows:

γ(B) := inf{m ≥ 1; ∃g ∈ C(B,Rm\{0}); g is odd}.

And γ(B) = ∞, if does not exist such a map g. γ(∅) = 0 by definition. For more details, we refer
to [9].
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3 Main results

Let E : W
1,p(x)
0 (Ω) → R is a functional defined by

E(u) :=

∫
Ω

1

p(x)
|▽u|p(x)dx+

1

r

∫
Ω

|u|r

|x|r
dx, (3.1)

where 1 < r < p(x) < ∞. By [21] and [[16], Theorem 3.1],

• E ∈ C1.

• For all u,w ∈ W
1,p(x)
0 (Ω),

E′(u)(w) :=

∫
Ω

(
|▽u|p(x)−2▽u▽w +

|u|r−2uw

|x|r

)
dx. (3.2)

• E′ : W
1,p(x)
0 (Ω) →

(
W

1,p(x)
0 (Ω)

)∗
defined by (3.2) is strictly monotone.

• E′ : W
1,p(x)
0 (Ω) →

(
W

1,p(x)
0 (Ω)

)∗
is homeomorphism and a mapping of type (S+).

Now, let h : Ω× R → R be a Caratheodory function. For all (x, z) ∈ W
1,p(x)
0 (Ω), define

H(x, z) :=

∫ Z

Ω

h(x, t)dt. (3.3)

For u ∈ W
1,p(x)
0 (Ω), define F : W

1,p(x)
0 (Ω) → R by

F (u) :=

∫
Ω

H(x, u(x))dx, (3.4)

F ∈ C1 and has compact derivative such that

F ′(u)(w) :=

∫
Ω

h(x, u(x))w(x)dx, (3.5)

for u,w in W
1,p(x)
0 (Ω) (see [21]).

Definition 3. u ∈ W
1,p(x)
0 (Ω) is called a weak solution of (1.1) if∫

Ω

(
|∇u|p(x)−2∇u∇w +

|u|r−2uw

|x|r

)
dx = λ

∫
Ω

h(x, u)w dx,

for all w ∈ W
1,p(x)
0 (Ω).

The energy functional associated with problem (1.1) can obtained by

τ(u) =

∫
Ω

1

p(x)
|∇u|p(x) dx+

1

r

∫
Ω

|u|r

|x|r
dx− λ

∫
Ω

H(x, u) dx,

for all u ∈ W
1,p(x)
0 (Ω). It is well defined, C1 functional and for all u,w ∈ W

1,p(x)
0 (Ω)

⟨τ ′(u), w⟩ =
∫
Ω

(
|∇u|p(x)−2▽u▽w +

|u|r−2uw

|x|r

)
dx− λ

∫
Ω

h(x, u)w dx.

We consider Ω ⊂ RN (N > 3) as a bounded domain with smooth boundary and p ∈ C+(Ω) such
that

1 < β− ≤ β(x) ≤ β+ < α− ≤ α(x) ≤ α+ < r < p− ≤ p(x) ≤ p+ ≤ p∗(x) (3.6)

and p(x) < N for all x ∈ Ω̄.
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Definition 4. The functional τ satisfies in the Palais-Smale condition at the level c, (PS)c, if

for every sequence {un} ⊂ W
1,p(x)
0 (Ω) satisfying

τ(un) → c and τ ′(un) → 0 as n → ∞,

has a convergence subsequence.

Theorem 3.1. [9]. Let τ ∈ C1(W
1,p(x)
0 ,R) and satisfies the (PS)C condition. We assume the

following conditions:

i) τ is even and bounded from below;

ii) There exists a T ∈ R such that γ(T ) = m and supx∈T τ(x) < τ(0).

Then problem (1.1) has at least m pairs of distinct critical points and their corresponding critical
values are less than τ(0).

Theorem 3.2. If (3.6), (H1) and (H2) hold, then there are at least m pairs of distinct critical
point for (1.1).

Lemma 3.1. Under assumptions (3.6), (H1) and (H2), τ is coercive on W
1,p(x)
0 (Ω) and bounded

from below.

Proof. For any u ∈ W
1,p(x)
0 (Ω), we have

τ(u) =

∫
Ω

1

p(x)
|∇u|p(x) dx+

1

r

|u|r

|x|r
dx− λ

∫
Ω

H(x, u) dx

≥ 1

p+

∫
Ω

|∇u|p(x) dx− λ
C2

a−

∫
Ω

|u|α(x) dx.

If σp(x)(u) =
∫
Ω
|u|p(x) dx, by Proposition 2.2 and Proposition 2.4, we have two cases:

i) If σp(x)(u) > 1,

τ(u) ≥ 1

p+
∥u∥p

−
− λ

C2

a−
∥u∥a

+

.

According to (3.6), τ is coercive and bounded from below.
ii) If σp(u) < 1,

τ(u) ≥ 1

p+
∥u∥p

+

− λC2

a−
∥u∥a

−
.

Because of (3.6), so τ is coercive and bounded from below too.

Lemma 3.2. If (3.6), (H1) and (H2) hold, then τ := E − λF satisfies the (PS)c condition.

Proof. Let {un} ⊂ W
1,p(x)
0 (Ω) be a (PS)c sequence. Initially we prove that {un} is bounded in

W
1,p(x)
0 (Ω). Assume by contradiction the contrary. Then, passing eventually to a subsequence,

∥un∥ → +∞ as n → +∞. We choose θ, 0 < θ <
1

p+
. By Definition 4, for large enough n,

C + ∥un∥ ≥ τ(un)− θ⟨τ ′(un), un⟩

=

∫
Ω

1

p(x)
|▽un|p(x) dx+

1

r

∫
Ω

|un|r

|x|r
dx− λ

∫
Ω

H(x, un) dx
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− θ

∫
Ω

(
|▽un|p(x) +

|un|r

|x|r

)
dx− λ

∫
Ω

h(x, un)un dx

≥ 1

p+

∫
Ω

|▽un|p(x) dx− C2

α−

∫
Ω

|un|α(x) dx− θ

∫
Ω

|▽un|p(x) dx+ λθC2

∫
Ω

|un|α(x) dx

=

(
1

p+
− θ

)∫
Ω

|▽un|p(x) dx− λC2

(
1

α− − θ

)∫
Ω

|▽un|α(x) dx.

By Proposition 2.3, there is a constant C0 > 0, such that

−λ

(
1

α− − θ

)
∥un∥α ≥ −λC0

(
1

α− − θ

)
∥un∥.

So

C + ∥un∥ ≥
(

1

p+
− θ

)
∥un∥p

−
− λC3

(
1

α− − θ

)
∥un∥.

It follows from (3.6),when we divide the last inequality by ∥un∥ and pass to the limit as n → +∞,

we obtion a contradiction. Thus {un} is bounded in W
1,p(x)
0 (Ω). Then, we prove that {un}

has a convergent subsequence in W
1,p(x)
0 (Ω). It follows from Proposition 2.3 and reflexivity of

W
1,p(x)
0 (Ω), we may assume that

un ⇀ u in W
1,p(x)
0 (Ω), un → u in Ls(x)(Ω), un(x) → u(x), a.e. in Ω, (3.7)

where 1 ≤ s(x) < p∗(x).

From (H1), (2.1) and (3.7)∣∣∣∣∫
Ω

h(x, un)(un − u) dx

∣∣∣∣ ≤ C2

∣∣∣∣∫
Ω

|un|α(x)−2un(un − u) dx

∣∣∣∣ ≤ C2

∫
Ω

|un|α(x)−1|un − u|dx

≤ C4

∣∣∣|un|α(x)−1
∣∣∣

α(x)
α(x)−1

|un − u|α(x).

Because {un} converges strongly to u in Lα(x)(Ω), that is |un − u|α(x) → 0 as n → ∞, we get∫
Ω

h(x, un)(un − u) dx → 0. (3.8)

Similarly, by (2.1) and (2.3), we have∫
Ω

|un|r−2un(un − u)

|x|r
dx → 0. (3.9)

From Definition 4,

⟨τ ′(un), un − u⟩ → 0.

Thus,

⟨τ ′(un), un − u⟩ =
∫
Ω

|▽un|p(x)−2▽un(▽un − ▽u)dx+

∫
Ω

|un|r−2un(un − u)

|x|r
dx

− λ

∫
Ω

h(x, un)(un − u) dx → 0.
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From (3.8) and (3.9), we have

Λ′ =

∫
Ω

|▽un|p(x)−2▽un(▽un − ▽u)dx → 0. (3.10)

Then by (3.10) and Proposition 2.5, the sequence {un} converges strongly to u in W
1,p(x)
0 (Ω).

Therefore, τ satisfies the (PS)c condition.

Proof of Theorem 3.2. Set Rm = {B ⊂ R; γ(B) ≥ m} and dm = inf
B∈Rm

sup
u∈B

τ(u),

m = 1, 2, · · · , then we have

−∞ < d1 ≤ d2 ≤ · · · ≤ dm ≤ dm+1 ≤ · · · .

We will show that dm < 0 for every m ∈ N. Because W 1,p(x)
0 is a separable Banach space, for any

m ∈ N, let Xm be a m-dimensional linear subspace of W
1,p(x)
0 such that Xm ⊂ C∞

0 (Ω). As the
norms on Xm are equivalent, there exists rm ∈ (0, 1) such that u ∈ Xm with ∥u∥ ≤ rm implies
|u|L∞ ≤ δ.
Set Sm

rm = {u ∈ Xm; ∥u∥ = rm}. By the compactness of Sm
rm and condition (H1), there exists a

constant ρm > 0 such that∫
Ω

H(x, u) dx ≥ C2

β+

∫
Ω

|u|β(x) dx ≥ ρm, ∀u ∈ Sm
rm .

For u ∈ Sm
rm and t ∈ (0, 1), we have

τ(tu) =

∫
Ω

1

p(x)
|t▽u|p(x) dx+

1

r

∫
Ω

|tu|r

|x|r
dx− λ

∫
Ω

H(x, tu) dx

<
tp

−

p−

∫
Ω

|▽u|p(x) dx+
tr

r

∫
Ω

|u|r

|x|r
dx− λρm.

Then

lim
t→0

τ(tu) ≤ lim
t→0

[
tp

−

p−

∫
Ω

|▽u|p(x) dx+
tr

r

∫
Ω

|u|r

|x|r
dx− λρm

]
= −λρm.

Consider tm ∈ (0, 1) converging to zero such that

lim
tm→0

τ(tmu) ≤ −λρm.

Then

τ(tmu) ≤ λρm
2

− λρm ≤ −1

2
λρm.

Since ∥tmu∥ = tmrm, so

τ(tmu) ≤ −1

2
λρm < 0, ∀u ∈ Sm

rm ,

and

τ(u) ≤ −1

2
λρm < 0, ∀u ∈ Sm

tmrm ,
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so

sup
u∈Sm

tmrm

τ(u) ≤ −1

2
λρm < 0.

It is well known that γ(Sm
tmrm) = m, dm ≤ −1

2
λρm < 0. Since τ is even, so by Theorem 3.1, τ

has least m pairs of different critical points.

Corollary 3.3. If (3.6) holds. Then there are infinitely many solutions for (1.1).

Proof. Since m is arbitrary, so there are infinitely many critical points of τ .

Example 1. The function h(x, u) = u4 sinu, satisfies hypotheses H1 and H2 and the following
problem satisfies Theorem 3.1.− △p(x) u+

ur−2u

|x|r
= λu4 sinu, in Ω,

u = 0, on ∂Ω.

4 Closedness of the set of eigenfunctions

We study closedness of the set of eigenfunctions of the problem (1.1) in typical conditions. We
consider the following problem:−div

(
|∇u|p−2∇u

)
+

|u|p−2u

|x|p
= λ|u|q−2u, in Ω,

u = 0, on ∂Ω,

(4.1)

where
1 < q ≤ p < p∗. (4.2)

The pair (u, λ) ∈ W 1,p
0 × R+ is a eigenpair of (4.1) if∫
Ω

(
|∇u|p−2∇u∇w +

|u|p−2uw

|x|p

)
dx = λ

∫
Ω

|u|q−2uw dx, (4.3)

for all w ∈ W 1,p
0 (Ω). Let

⟨Au,w⟩ =
∫
Ω

|u|q−2uw dx, (4.4)

and

⟨Bu,w⟩ =
∫
Ω

|∇u|p−2∇u∇w dx+

∫
Ω

|u|p−2uw

|x|p
dx. (4.5)

Then (4.3) becomes Bu = λAu.

Theorem 4.1. The sets of eigenvalues of the problem (4.1) are closed.

Proof. Let {(un, µn)} be a sequence of eigenpairs of (4.3) such that µn → µ for some µ ≥ 0. We
show that there is u such that un → u and (u, µ) is a eigenpair of (4.1). First we prove that {un}
is bounded in W 1,p

0 (Ω). Assume by contradiction for large enough n, by (4.3), we have:∫
Ω

|∇un|p dx+

∫
Ω

|un|p

|x|p
dx = µn

∫
Ω

|un|q dx.
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So

∥un∥p ≤ µn∥un∥q.

By Sobolev embedding we have:

∥un∥p ≤ µnc0∥un∥q.

It follows from (4.2), when we divide the last inequality by ∥un∥q and pass to the limit as n → ∞,
we obtion a contradiction. Thus {un} is bounded in W 1,p

0 (Ω). We can assume ∥un∥ = 1 and thus
{un} has a weakly convergent subsequence. We may assume that un ⇀ u in W 1,p

0 (Ω). By (4.3),
(4.4) and (4.5) we have:

⟨B(un), un − u⟩ = µn⟨A(un), un − u⟩. (4.6)

By (2.1) we have:

⟨A(un), un − u⟩ = |
∫
Ω

|un|q−2un(un − u) dx| ≤ ||un|q−1| q

q − 1

|un − u|q. (4.7)

Because {un} converges strongly to u in Lq(Ω), that is |un − u|q → 0, as n → ∞, we get
⟨A(un), un − u⟩ → 0, as n → ∞. From (4.6), ⟨B(un), un − u⟩ → 0, as n → ∞. Then by
Proposition (2.5), the sequence {un} converges strongly to u in W 1,p

0 (Ω).
To show that µ is an eigenvalue of (4.3) and u is an associated eigenfunction we need to show
for any w ∈ W 1,p

0 (Ω) as n → ∞,∫
Ω

|∇un|p−2∇un ∇w dx →
∫
Ω

|∇u|p−2∇u∇w dx, (4.8)

∫
Ω

|un|p−2un w

|x|p
dx →

∫
Ω

|u|p−2uw

|x|p
dx (4.9)

and ∫
Ω

|un|q−2un w dx →
∫
Ω

|u|q−2uw dx. (4.10)

Let tn = |∇un|p−2∇un and t = |∇u|p−2∇u. Then as un → u in W 1,p
0 (Ω), tn → t, a.e. in Ω and

∫
Ω

|tn|
p

p− 1 dx →
∫
Ω

|t|
p

p− 1 dx.

It follows from Lemma A.1 of [17], that tn → t in L

p

p− 1 (Ω). Thus, by (2.1) and (2.3), we obtain
(4.8). Similarly, we have (4.9) and (4.10).

Conclusion

Here, we proved multiplicity and infinitely of solutions for the problem (1.1) by using variational
method and genus theory. We also proved the closedness of the set of eigenfunctions for problem
(4.1), such that p(x) ≡ p.
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