\square
 Some inequalities for the numerical radius and spectral norm for operators in Hilbert C^{*}-modules space

Mohammad H.M. Rashid

Abstract

This paper introduces a new method for studying the numerical radius of bounded operators on Hilbert C^{*}-modules. Our approach leads to unique discoveries and expands existing theorems for bounded adjointable operators in Hilbert C^{*} module spaces. Moreover, we find an upper bound for power of the numerical radius of $t^{\alpha} y s^{1-\alpha}$ under assumption $0 \leq \alpha \leq 1$. In fact, we prove

$$
w_{c}\left(t^{\alpha} y s^{1-\alpha}\right) \leq\|y\|^{r}\left\|\alpha t^{r}+(1-\alpha) s^{r}\right\|
$$

for all $0 \leq \alpha \leq 1$ and $r \geq 2$.
Keywords. Numerical radius, inner product space, C^{*}-algebra, A-module

1 Introduction

The notion of a Hilbert C^{*}-module initiated by Kaplansky [4] as a generalization of a Hilbert space in which the inner product takes its values in a C^{*}-algebra (see also $[7,8,10,11]$).

Let \mathfrak{A} be a C^{*}-algebra. A pre-Hilbert \mathfrak{A}-module or an inner product \mathfrak{A}-module is a complex linear space \mathfrak{E} which is a right A-module with compatible scalar multiplication $\lambda(x a)=(\lambda x) a=$ $x(\lambda a)$ for all $x \in \mathfrak{E}, a \in \mathfrak{A}$ and $\lambda \in \mathbb{C}$, together with an \mathfrak{A}-valued inner product $\langle\cdot, \cdot\rangle: \mathfrak{E} \times \mathfrak{E} \longrightarrow \mathfrak{A}$ that satisfies the following properties:
(i) $\langle x, \alpha y+\beta z\rangle=\alpha\langle x, y\rangle+\beta\langle x, z\rangle$;
(ii) $\langle x, y a\rangle=\langle x, y\rangle a$;
(ii) $\langle x, y\rangle=\langle y, x\rangle^{*}$;
(iv) $\langle x, x\rangle \geq 0$; if $\langle x, x\rangle=0$, then $x=0$
for each $x, y, z \in \mathfrak{E}, a \in \mathfrak{A}$ and $\alpha, \beta \in \mathbb{C}$.

The notion of a left Hilbert \mathfrak{A}-module can be defined similarly. Note that the condition (i) is understood as a statement in the C^{*}-algebra \mathfrak{A}, where an element a is called positive if it
can be represented as $b b^{*}$ for some $b \in \mathfrak{A}$. The conditions (ii) and (iv) imply the inner product to be conjugate-linear in its first variable. Validity of a useful version of the classical CauchySchwartz inequality follows that $\|x\|=\|\langle x, x\rangle\|^{\frac{1}{2}}$ defines a norm on \mathfrak{E} making it into a normed right A-module. An inner product \mathfrak{A}-module \mathfrak{E} which is complete with respect to the norm $\|x\|$ is called a Hilbert \mathfrak{A}-module or a Hilbert C^{*}-module over the C^{*}-algebra \mathfrak{A}. Every C^{*}-algebra \mathfrak{A} is a Hilbert \mathfrak{A}-module under the \mathfrak{A}-valued inner product $\langle a, b\rangle=a^{*} b(a, b \in \mathfrak{A})$. Every complex Hilbert space is a left Hilbert \mathbb{C}-module.

Suppose that \mathfrak{E} and \mathfrak{F} are Hilbert \mathfrak{A}-modules. We define $\mathscr{L}(\mathfrak{E}, \mathfrak{F})$ to be the set of all maps $t: \mathfrak{E} \longrightarrow \mathfrak{F}$ for which there is a map $t^{*}: \mathfrak{F} \longrightarrow \mathfrak{E}$ such that $\langle t x, y\rangle=\left\langle x, t^{*} y\right\rangle$, for all $x \in \mathfrak{E}$, $y \in \mathfrak{F}$. It is known that t must be a bounded \mathfrak{A}-linear map (that is, t is bounded linear map and $t(x a)=t(x) a$ for all $x \in \mathfrak{E}, a \in \mathfrak{A})$. If $\mathfrak{E}=\mathfrak{F}$, then $\mathscr{L}(\mathfrak{E})$ is a C^{*}-algebra together with the operator norm.

Suppose that \mathfrak{A} is an abelian C^{*}-algebra. Recall that a character ψ on \mathfrak{A} is a non-zero *homomorphism $\psi: \mathfrak{A} \longrightarrow \mathbb{C}$ such that $\|\psi\|=1$. We denote the set of all characters on \mathfrak{A} by $\varpi(\mathfrak{A})$.

Throughout this paper assume that \mathfrak{A} is abelian C^{*}-algebra.

2 Definitions and Complementary results

Lemma 2.1. Let \mathfrak{E} be a Hilbert \mathfrak{A}-module. Then for all $x, y \in \mathfrak{E}$ and $\psi \in \varpi(\mathfrak{A})$, we have
(i) (Cauchy-Schwartz inequality) $|\psi(\langle x, y\rangle)| \leq \psi(|x|) \psi(|y|)$.
(ii) (triangle inequality) $\psi(|x+y|) \leq \psi(|x|)+\psi(|y|)$.
(iii) (Parallelogram Law) $\psi\left(|x+y|^{2}\right)+\psi\left(|x-y|^{2}\right)=2\left(\psi\left(|x|^{2}\right)+\psi\left(|y|^{2}\right)\right)$.

Proof. (i) For every $\lambda \in \mathbb{C}$, we have

$$
\begin{align*}
0 \leq \psi(\langle x-\lambda y, x-\lambda y\rangle) & =\psi(\langle x, x\rangle)-\psi(\langle x, \lambda y\rangle)-\psi(\langle\lambda y, x\rangle)+\psi(\langle\lambda y, \lambda y\rangle) \\
& =\psi\left(|x|^{2}\right)-\bar{\lambda} \psi(\langle x, y\rangle)-\lambda \psi(y, x)+|\lambda|^{2} \psi\left(|y|^{2}\right) \\
& =\psi\left(|x|^{2}\right)-2 \operatorname{Re}(\lambda \psi(\langle y, x\rangle))+|\lambda|^{2} \psi\left(|y|^{2}\right) . \tag{2.1}
\end{align*}
$$

If $\psi(\langle x, y\rangle)=0$, then the inequality is trivial. Suppose that $\psi(\langle x, y\rangle) \neq 0$, letting $\lambda=\frac{\psi\left(|x|^{2}\right)}{\psi(\langle y, x\rangle)}$ in (2.1) gives

$$
0 \leq-\psi\left(|x|^{2}\right)+\frac{\psi\left(|x|^{4}\right) \psi\left(|y|^{2}\right)}{|\psi(\langle x, y\rangle)|^{2}}
$$

Hence

$$
\psi\left(|x|^{2}\right) \leq \frac{\psi\left(|x|^{4}\right) \psi\left(|y|^{2}\right)}{|\psi(\langle x, y\rangle)|^{2}}
$$

and this implies that $|\psi(\langle x, y\rangle)|^{2} \leq \psi\left(|x|^{2}\right) \psi\left(|y|^{2}\right)$ and so

$$
|\psi(\langle x, y\rangle)| \leq \psi(|x|) \psi(|y|) .
$$

(ii) By (i), we have

$$
\begin{aligned}
\psi\left(|x+y|^{2}\right) & =\psi(\langle x+y, x+y\rangle)=\psi\left(|x|^{2}\right)+2 \operatorname{Re} \psi(\langle x, y\rangle)+\psi\left(|y|^{2}\right) \\
& \leq \psi\left(|x|^{2}\right)+2 \psi(|x|) \psi(|y|)+\psi\left(|y|^{2}\right) \\
& =(\psi(|x|)+\psi(|y|))^{2}
\end{aligned}
$$

and so the result.
(iii) We have

$$
\begin{aligned}
\psi\left(|x+y|^{2}\right)+\psi\left(|x-y|^{2}\right) & =\psi\left(|x|^{2}\right)+2 \operatorname{Re} \psi(\langle x, y\rangle)+\psi\left(|y|^{2}\right) \\
& +\psi\left(|x|^{2}\right)-2 \operatorname{Re} \psi(\langle x, y\rangle)+\psi\left(|y|^{2}\right) \\
& =2\left(\psi\left(|x|^{2}\right)+\psi\left(|y|^{2}\right)\right) .
\end{aligned}
$$

Definition 1. Let $t \in \mathscr{L}(\mathfrak{E})$ and $\psi \in \varpi(\mathfrak{A})$. Then

$$
\begin{equation*}
\|t\|:=\sup \{\psi(|t x|): x \in \mathfrak{E}, \psi \in \varpi(\mathfrak{A}), \psi(|x|)=1\}, \tag{2.2}
\end{equation*}
$$

where $|x|=\langle x, x\rangle^{\frac{1}{2}}$.
It is known from [10] that $\|\cdot \cdot\|$ is a norm on $\mathscr{L}(\mathfrak{E})$. And $\mathfrak{f} \mathfrak{E}$ is a Hilbert space, then $\|t\|=\|t\| \|$. The following result was investigated in [10].

Lemma 2.2. Let $t \in \mathscr{L}(\mathfrak{E})$. Then

$$
\|\|t\| \mid=\sup \{|\psi(\langle x, t y\rangle)|: x, y \in \mathfrak{E}, \psi \in \varpi(\mathfrak{A}), \psi(|x|)=\psi(|y|)=1\} .
$$

Definition 2. Let $t \in \mathscr{L}(\mathfrak{E})$. Then the spectrum of t, denoted by $\sigma(t)$, is defined by

$$
\sigma(t)=\{\lambda \in \mathbb{C}: t-\lambda 1 \text { is not invertible }\} .
$$

And $\lambda \in \mathbb{C}$ is called an eigenvalue of t if there is a non-zero vector $x \in \mathfrak{E}$ such that $t x=\lambda x$. Equivalently, λ is an eigenvalue if there is a vector $x \in \mathfrak{E}$ with $\psi(|x|)=1$ such that $\||(t-\lambda 1) x \||=$ 0.

Definition 3. $\lambda \in \mathbb{C}$ is called an approximate point spectrum of $t \in \mathscr{L}(\mathfrak{E})$ if there is a sequence $\left\{x_{n}\right\}$ of vectors in \mathfrak{E} with $\psi\left(\left|x_{n}\right|\right)=1$ such that $\left\|\left\|(t-\lambda 1) x_{n}\right\| \longrightarrow 0\right.$, the set of approximate point spectrum is denoted by $\sigma_{a}(t)$.

Definition 4. If $t \in \mathscr{L}(\mathfrak{E})$, then the spectral radius of t is the number defined by

$$
r(t)=\sup \{|\lambda|: \lambda \in \sigma(t)\} .
$$

Clearly, $0 \leq r(t) \leq\|t\| \|$ and it follows from spectral theorem that $r\left(t^{n}\right)=(r(t))^{n}$. Moreover, it is well-known that $r(t)=\lim _{n \rightarrow \infty}\left\|t^{n}\right\|^{\frac{1}{n}}$ (see [8]). Recall that a function f which maps A Hilbert \mathfrak{A}-module \mathfrak{E} into \mathbb{C} is called a functional. If f is in $\mathscr{L}(\mathfrak{E}, \mathbb{C})$, then f is called a linear functional on \mathfrak{E}.

Lemma 2.3. If f is a bounded linear functional on a Hilbert \mathfrak{A}-module \mathfrak{E}, then there exists a unique $y \in \mathfrak{E}$ such that for all $x \in \mathfrak{E}, f(x)=\psi(\langle y, x\rangle)$. Moreover, $\|f\| \|=\psi(|y|)$.

Proof. If $f=0$, take $y=0$. Suppose that $f \neq 0$. Then (f) is a proper closed subspace of \mathfrak{E}. Hence there exists a $v \neq 0$ in $(f)^{\perp}$.

Let $y=\alpha v$, where $\alpha=\frac{\overline{f(v)}}{\psi\left(\mid v v^{2}\right)}$. Then $y \perp(f)$ (because $\left.v \perp(f)\right)$ and $f(y)=\psi(\langle y, y\rangle)$ since

$$
\begin{aligned}
f(y) & =\alpha f(v)=\frac{|f(v)|^{2}}{\psi\left(|v|^{2}\right)} \text { and } \\
\psi(\langle y, y\rangle) & =|\alpha|^{2} \psi\left(|v|^{2}\right)=\frac{|f(v)|^{2}}{\psi\left(|v|^{4}\right)} \psi\left(|v|^{2}\right)=\frac{|f(v)|^{2}}{\psi\left(|v|^{2}\right)} .
\end{aligned}
$$

Now, given $x \in \mathfrak{E}$, then x can be represented as $x=\beta y+z$, where $\beta \in \mathbb{C}$ and $z \in(f)$. From the previous arguments, we have

$$
f(x)=f(\beta y)=\beta f(y)=\beta \psi(\langle y, y\rangle)=\psi(\langle y, \beta y+z\rangle)=\psi(\langle y, x\rangle) .
$$

To show that y is unique, suppose there is $w \in \mathfrak{E}$ such that $f(x)=\psi(\langle w, x\rangle)$ for all $x \in \mathfrak{E}$. Then

$$
0=f(x)-f(x)=\psi(\langle y-w, x\rangle) \text { for all } x \in \mathfrak{E} .
$$

In particular, $\psi(\langle y-w, y-w\rangle)=0$ and so $y=w$.
Finally, for each $y \in \mathfrak{E}$ the functional f defined on \mathfrak{E} is linear. Moreover

$$
|f(x)|=|\psi(y, x)| \leq \psi(|x|) \psi(|y|) \text { for all } x \in \mathfrak{E} .
$$

Thus f is bounded and $\|\|f\| \leq \psi(|y|)$. Since

$$
\left\|\|f\| \psi(|y|) \geq|f(y)|=\psi(\langle y, y\rangle)=\psi\left(|y|^{2}\right)\right.
$$

and so $\|\mid f\| \| \geq(|y|)$ and consequently $\|\mid f\| \|=\psi(|y|)$.
Lemma 2.4. [10] If $t \in \mathscr{L}(\mathfrak{E})$, then

$$
\|t\| \|=\sup \{|\psi(x, t x)|: x \in \mathfrak{E}, \psi \in \varpi(\mathfrak{A}), \psi(|x|)=1\}
$$

The following results are very useful in the sequel.
Proposition 2.1. [11] Let $t \in \mathscr{L}(\mathfrak{E})$ and $\psi \in \varpi(\mathfrak{A})$. The following statements are equivalent:
(a) $\psi(\langle x, t x\rangle)=0$ for every $x \in \mathfrak{E}$ with $\psi(|x|)=1$;
(b) $\psi(\langle x, t x\rangle)=0$ for every $x \in \mathfrak{E}$.

Proposition 2.2. [11] For every $t \in \mathscr{L}(\mathfrak{E})$, the following assertions hold.
(i) $t=0$ if and only if $\psi(\langle x, t x\rangle)=0$ for every $x \in \mathfrak{E}$.
(ii) t is positive if and only if $\psi(\langle x, t x\rangle)$ is positive for every $x \in \mathfrak{E}$.
(iii) t is self-adjoint if and only if $\psi(\langle x, t x\rangle)$ is self-adjoint for every $x \in \mathfrak{E}$.
(iv) $t=0$ if and only if $\psi(\langle x, t x\rangle)=0$ for every $x \in \mathfrak{E}$ and $\psi \in \varpi(\mathfrak{A})$.
(v) $\operatorname{Re} \psi(\langle x, t x\rangle)=\psi(\langle x, \operatorname{Re}(t) x\rangle)$ for all $x \in \mathfrak{E}$.

Lemma 2.5. [10] If $t \in \mathscr{L}(\mathfrak{E})$ is self-adjoint, then

$$
\||t|\|=\sup \{|\psi(\langle x, t x\rangle)|: x \in \mathfrak{E}, \psi \in \varpi(\mathfrak{A}), \psi(|x|)=1\} .
$$

Theorem 2.1. Suppose $t \in \mathscr{L}(\mathfrak{E})$ is self-adjoint.
(i) Let

$$
\lambda=\inf \{\psi(\langle x, t x\rangle): x \in \mathfrak{E}, \psi \in \varpi(\mathfrak{A}), \psi(|x|)=1\} .
$$

If there exists an $x_{0} \in \mathfrak{E}$ such that $\psi\left(\left|x_{0}\right|\right)=1$ and $\lambda=\psi\left(\left\langle x_{0}, t x_{0}\right\rangle\right)$, then λ is an eigenvalue of t with corresponding eigenvector x_{0}.
(ii) Let

$$
\mu=\sup \{\psi(\langle x, t x\rangle): x \in \mathfrak{E}, \psi \in \varpi(\mathfrak{A}), \psi(|x|)=1\} .
$$

If there exists an $x_{1} \in \mathfrak{E}$ such that $\psi\left(\left|x_{1}\right|\right)=1$ and $\mu=\psi\left(\left\langle x_{1}, t x_{1}\right\rangle\right)$, then μ is an eigenvalue of t with corresponding eigenvector x_{1}.

Proof. (i) For every $\alpha \in \mathbb{C}$ and every $y \in \mathfrak{E}$, it follows from the definition of λ that

$$
\psi\left(\left\langle x_{0}+\alpha y, t\left(x_{0}+\alpha y\right)\right\rangle\right) \geq \lambda \psi\left(\left\langle x_{0}+\alpha y, x_{0}+\alpha y\right\rangle\right) .
$$

Expanding the inner product and setting $\lambda=\psi\left(\left\langle x_{0}, t x_{0}\right\rangle\right)$, we get the inequality

$$
2 \operatorname{Re} \alpha \psi\left(\left\langle(t-\lambda 1) x_{0}, y\right\rangle\right)+|\alpha|^{2} \psi(\langle y,(t-\lambda 1) y\rangle) \geq 0 .
$$

Taking $\alpha=\overline{r \psi\left(\left\langle(t-\lambda 1) x_{0}, y\right\rangle\right)}$, where $r \in \mathbb{R}$, it follows that

$$
2 r\left|\psi\left(\left\langle(t-\lambda 1) x_{0}, y\right\rangle\right)\right|^{2}+r^{2}\left|\psi\left(\left\langle(t-\lambda 1) x_{0}, y\right\rangle\right)\right|^{2} \psi(\langle y,(t-\lambda 1) y\rangle) \geq 0
$$

Since r is arbitrary, it follows that $\psi\left(\left\langle(t-\lambda 1) x_{0}, y\right\rangle\right)=0$ and since y is arbitrary, we have $t x_{0}=\lambda x_{0}$ as required.
(ii) The second statement of the theorem follows from part(i) applied to the self-adjoint $-A$.

Definition 5. An operator $t \in \mathscr{L}(\mathfrak{E}, \mathfrak{F})$ is said to be compact if for each sequence $\left\{x_{n}\right\}$ in \mathfrak{E} with $\psi\left(\left|x_{n}\right|\right)=1$ and $\psi \in \varpi(\mathfrak{A})$, the sequence $\left\{t x_{n}\right\}$ has a subsequence which converges in \mathfrak{F}.

Theorem 2.2. If $t \in \mathscr{L}(\mathfrak{E})$ is compact and self-adjoint, then at least one the numbers $\|t \mid\|$ or $-\|\mid t\|$ is an eigenvalue of t.

Proof. The result is trivial if $t=0$. Assume that $t \neq 0$, since

$$
\|t\| \|=\sup \{|\psi(\langle x, t x\rangle)|: x \in \mathfrak{E}, \psi \in \varpi(\mathfrak{A}), \psi(|x|)=1\}
$$

then there exists a sequence $\left\{x_{n}\right\}$ in \mathfrak{E} with $\psi\left(\left|x_{n}\right|\right)=1$ and a real number λ such that $|\lambda|=$ $\|t \mid\| \neq 0$ and $\psi\left(\left\langle x_{n}, t x_{n}\right\rangle\right) \longrightarrow \lambda$.
Now

$$
\begin{aligned}
0 \leq \psi\left(\left|t x_{n}-\lambda x_{n}\right|^{2}\right) & =\psi\left(\left|t x_{n}\right|^{2}\right)-2 \lambda \psi\left(x_{n}, t x_{n}\right)+\lambda^{2} \\
& \leq 2 \lambda^{2}-2 \lambda \psi\left(x_{n}, t x_{n}\right) \longrightarrow 2 \lambda^{2}-2 \lambda^{2}=0
\end{aligned}
$$

and so

$$
\begin{equation*}
t x_{n}-\lambda x_{n} \longrightarrow 0 . \tag{2.3}
\end{equation*}
$$

Since t is compact, there exists a subsequence $\left\{t x_{n^{\prime}}\right\}$ of $\left\{t x_{n}\right\}$ which converges to some $y \in \mathfrak{E}$. Thus (2.3) implies that $x_{n^{\prime}} \longrightarrow \frac{1}{\lambda} y$ and by the continuity of $t, y=\lim _{n^{\prime} \rightarrow \infty} t x_{n^{\prime}}=\frac{1}{\lambda} t y$. Hence $t y=\lambda y$ and $y \neq 0$. Since

$$
\psi(|y|)=\lim _{n^{\prime} \longrightarrow \infty} \psi\left(\left|\lambda x_{n^{\prime}}\right|\right)=|\lambda|=\|t\|
$$

and so λ is an eigenvalue of t, as required.
Definition 6. Let $t \in \mathscr{L}(\mathfrak{E})$. Then the numerical range of t is defined by

$$
W_{c}(t)=\{\psi(\langle x, t x\rangle): x \in \mathfrak{E}, \psi \in \varpi(\mathfrak{A}), \text { and } \psi(|x|)=1\} .
$$

The next result represent some of the basic properties for the numerical range (see [10]).
Lemma 2.6. Let $t, s \in \mathscr{L}(\mathfrak{E})$. Then the following assertions hold.
(i) $W_{c}\left(t^{*}\right)=\overline{W_{c}(T)}$, where $\overline{W_{c}(T)}$ is the conjugate of $W_{c}(t)$.
(ii) $W_{c}(T) \subseteq \mathbb{R}$ if and only if t is a self-adjoint.
(iii) If u is unitary, then $W_{c}\left(u^{*} t u\right)=W_{c}(t)$.
(iv) If $\alpha, \beta \in \mathbb{C}$, then $W_{c}(\alpha t+\beta 1)=\alpha W_{c}(t)+\beta$.
(v) $W_{c}(t+s) \subset W_{c}(t)+W_{c}(s)$.

Definition 7. Let $t \in \mathscr{L}(\mathfrak{E})$. Then the numerical radius of t is defined by

$$
w_{c}(t)=\sup \{|\psi(\langle x, t x\rangle)|: x \in \mathfrak{E}, \psi \in \varpi(\mathfrak{A}), \text { and } \psi(|x|)=1\} .
$$

It is easy to show that $w_{c}(\cdot)$ is a norm on $\mathscr{L}(\mathfrak{E})$.
The following is useful in the sequel.
Lemma 2.7. If \mathfrak{E} is a Hilbert \mathfrak{A}-module, then for every $\psi \in \varpi(\mathfrak{A}), x \in \mathfrak{E}$,

$$
\psi(|\langle x, t x\rangle|) \leq \psi\left(|x|^{2}\right) w_{c}(t)
$$

Theorem 2.3. If $t \in \mathscr{L}(\mathfrak{E})$ is normal, then

$$
\|t\|=r(t)=w_{c}(t) .
$$

Proof. First we want to show $\left\|t^{n}\right\|\|=\| t \|^{n}$. by induction, for $n=1$ the equality is trivial. Assume that its true for k such that $1 \leq k \leq n$.

$$
\begin{aligned}
\left\|t^{n} x\right\|^{2} & =\psi\left(\left\langle t^{n} x, t^{n} x\right\rangle\right)=\psi\left(\left\langle t^{*} t^{n} x, t^{n-1} x\right\rangle\right) \\
& \leq\left\|t^{*} t^{n} x\right\|\| \| t^{n-1} x|\|\leq\|| \mid t^{n+1} x\| \|\left\|t^{n-1}\right\| \| \psi\left(|x|^{2}\right) \quad(t \text { is normal })
\end{aligned}
$$

and so, $\left\|t^{n}\right\|^{2} \leq\| \| t^{n+1}\| \|\left\|t^{n-1}\right\| \|$. But $\left\|t^{n}\right\|=\|t\|^{n}$ for all k such that $1 \leq k \leq n$ and this implies that $\|\mid t\|^{2 n} \leq\| \| t^{n+1}\| \|\|t t\|^{n-1}$ and hence $\left\|\left\|t^{n}\right\|=\right\| t \|^{n}$ for all $n \in \mathbb{N}$.

Now, $r(t)=\lim _{n \longrightarrow \infty}\left\|t^{n}\right\|^{\frac{1}{n}}=\|t t\|$. But its known that $r(t) \leq w_{c}(t) \leq\|t\|$ and so we have the desired equality.

Lemma 2.8. If $t \in \mathscr{L}(\mathfrak{E})$ is normal and $\lambda \notin \sigma(t)$, then

$$
\left\|\mid(t-\lambda 1)^{-1}\right\| \|=\frac{1}{d(\lambda, \sigma(t))},
$$

where $d(\lambda, \sigma(t))$ is the distance from λ to $\sigma(t)$.
Proof. we have

$$
r\left((t-\lambda 1)^{-1}\right)=\sup \left\{\frac{1}{|\mu-\lambda|}: \mu \in \sigma(t)\right\}=\frac{1}{\inf \{\mid \mu-\lambda: \mu \in \sigma(t)\}}=\frac{1}{d(\lambda, \sigma(t))}
$$

So, if t is normal, then $(t-\lambda 1)^{-1}$ is normal for $\lambda \notin \sigma(t)$ and hence

$$
\left\|\left\|(t-\lambda 1)^{-1}\right\|=r\left((t-\lambda 1)^{-1}\right)=\frac{1}{d(\lambda, \sigma(t))} .\right.
$$

Theorem 2.4. If $t \in \mathscr{L}(\mathfrak{E})$ is normal, then $\overline{W_{c}(t)}=\operatorname{Conv} \sigma(t)$, where Conv $\sigma(t)$ is the convex hull of the spectrum of t.

Proof. We need only to show $\overline{W_{c}(t)} \subset \operatorname{Conv} \sigma(t)$. To see this, it sufficient to show that any closed half-plane which contains $\sigma(t)$ also contain $\overline{W_{c}(t)}$. By translation and rotation this reduces to shown that $\operatorname{Re} \sigma(t) \leq 0$ implies $\operatorname{Re} \overline{W_{c}(t)} \leq 0$.

Let $x \in \mathfrak{E}$ such that $\psi(|x|)=1$ and $t x=(a+i b) x+y$ with a, b are real and x orthogonal to y. Now from Lemma 2.8, we have $\|\|(t-c) x\| \geq \operatorname{dist}(c, \sigma(t)) \geq c$ for all $c>0$. Indeed, if $c \notin \sigma(t)$, then $\left\|(t-c)^{-1} x\right\|\|\|(t-c) x\| \geq\|\left\|(t-c)^{-1}(t-c) x\right\| \|=\psi(|x|)=1$ and so $\|(t-c) x\| \geq$ $\frac{1}{\left\|\left\|(t-c)^{-1}\right\|\right.}=d(c, \sigma(t)) \geq c$. So that

$$
\begin{aligned}
c^{2} & \leq\|(t-c) x\|^{2}=\|(a-c) x+i b x+y\|^{2}=\| \|(a-c) x+i b x \|^{2}+\psi\left(|y|^{2}\right) \\
& =(a-c)^{2}+b^{2}+\psi\left(|y|^{2}\right)
\end{aligned}
$$

Consequently,

$$
2 a c \leq a^{2}+b^{2}+\psi\left(|y|^{2}\right) .
$$

Since this hold for all $c>0$. This implies that $\operatorname{Re} \psi(x, t x)=a \leq 0$ as required.

3 A numerical radius inequality

In order to prove our desired numerical radius inequality, we need the following lemmas. The first lemma, which is a generalized Schwartz inequality, can be found in [11, Corollary 3.11]

Lemma 3.1. (Geralized-Cauchy Schwartz) For $\psi \in \varpi(\mathfrak{A}), \psi(\langle\cdot, \cdot\rangle)$ is a semi-inner product. Suppose that $t \in \mathscr{L}(\mathfrak{E})$ and $\alpha \in[0,1]$, then

$$
\left.\left.|\psi(\langle x, t y\rangle)|^{2} \leq \psi\left(\left.\langle x,| t\right|^{2 \alpha} x\right\rangle\right) \psi\left(\left.\langle y,| t^{*}\right|^{2(1-\alpha)} y\right\rangle\right), x, y \in \mathfrak{E} .
$$

If $\alpha=\frac{1}{2}$, then

$$
|\psi(\langle x, t y\rangle)|^{2} \leq \psi(\langle x,| t|x\rangle) \psi\left(\langle y,| t^{*}|y\rangle\right), \quad x, y \in \mathfrak{E} .
$$

Here $|t|$ stands for the positive (semi-definite) operator $\left(t^{*} t\right)^{\frac{1}{2}}$.

The second lemma contains a special case of a more general norm inequality that is equivalent to some Löwner-Heinz type inequalities. See [6].

Lemma 3.2. If $t, s \in \mathscr{L}(\mathfrak{E})$ are positive, then

$$
\left\|\left.\left\|t^{\frac{1}{2}} s^{\frac{1}{2}}\right\| \right\rvert\, \leq\right\| t s \|^{\frac{1}{2}} .
$$

The third lemma contains a recent norm inequality for sums of positive operators that is sharper than the triangle inequality.

Lemma 3.3. If $t, s \in \mathscr{L}(\mathfrak{E})$ are positive, then

$$
\begin{equation*}
\|t+s\| \leq \frac{1}{2}\left(\|t \mid\|+\| \| s \|+\sqrt{(\|t\|\|-\|\|s\|)^{2}+4\left|\left\|\left.t^{\frac{1}{2}} s^{\frac{1}{2}} \right\rvert\,\right\|^{2}\right.}\right) . \tag{3.1}
\end{equation*}
$$

Now we are in a position to present our refined numerical radius inequality.
Theorem 3.1. If $t \in \mathscr{L}(\mathfrak{E})$, then

$$
\begin{equation*}
w_{c}(t) \leq \frac{1}{2}\left(\|t t\|+\| \| t^{2}\| \|^{\frac{1}{2}}\right) \tag{3.2}
\end{equation*}
$$

Proof. By Lemma 3.1 and by the arithmetic-geometric mean inequality, we have for every $x \in \mathfrak{E}$ and $\psi \in \varpi(\mathfrak{A})$,

$$
\begin{aligned}
|\psi(\langle x, t x\rangle)| & \leq \psi(\langle x,| t|x\rangle)^{\frac{1}{2}} \psi\left(\langle x,| t^{*}|x\rangle\right)^{\frac{1}{2}} \\
& \leq \frac{1}{2}\left(\psi(\langle x,| t|x\rangle)+\psi\left(\langle x,| t^{*}|x\rangle\right)\right) \\
& =\frac{1}{2}\left(\psi\left(\left\langle x,\left(|t|+\left|t^{*}\right|\right) x\right\rangle\right)\right)
\end{aligned}
$$

Thus

$$
\begin{align*}
w_{c}(t) & =\sup \{|\psi(\langle x, t x\rangle)|: x \in \mathfrak{E}, \psi \in \varpi(\mathfrak{A}), \psi(|x|)=1\} \\
& \leq \frac{1}{2} \sup \left\{\left(\psi\left(\left\langle x,\left(|t|+\left|t^{*}\right|\right) x\right\rangle\right)\right): x \in \mathfrak{E}, \psi \in \varpi(\mathfrak{A}), \psi(|x|)=1\right\} \\
& \left.=\frac{1}{2}\| \||t|+\left|t^{*}\right| \right\rvert\, \| . \tag{3.3}
\end{align*}
$$

Applying Lemmas 3.2 and 3.3 to the positive operators $|t|$ and $\left|t^{*}\right|$, and using the facts that $\left|\left\||t|\left|\left|\left|=\left|\left\|\left|\left|t^{*}\right|\left\|\left|=\|\left|\left|\left|| |\right.\right.\right.\right.\right.\right.\right.\right.\right.\right.\right.\right.\right.$ and $\left\|| | t| | t^{*}\left|\left\|\left|=\left|\left|\left|t^{2}\right| \|\right.\right.\right.\right.\right.\right.$, we have

$$
\begin{equation*}
\left|\left\||t|+\left|t^{*}\right|\right\|\right| \leq\|t\|| |+\left\|t^{2}\right\| \|^{\frac{1}{2}} \tag{3.4}
\end{equation*}
$$

The desired inequality (3.2) now follows from (3.3) and (3.4).
To see that (3.2) is a refinement of the second inequality in [11, Theorem 2.13], one has to recall that $\left\|t^{2}\right\|\|\leq\| t \|^{2}$ for every $t \in \mathscr{L}(\mathfrak{E})$.
It has been mentioned in [11, Theorem 2.17] that if $t \in \mathscr{L}(\mathfrak{E})$ is such that $t^{2}=0$, then $w_{c}(t)=$ $\frac{1}{2}\|t t\|$. This can be easily seen as an immediate consequence of the first inequality in [11, Theorem 2.13] and the inequality (3.2).

Corollary 3.2. If $t \in \mathscr{L}(\mathfrak{E})$ is such that $t^{2}=0$, then $w_{c}(t)=\frac{1}{2}\|t \mid\|$.
Proof. Combining the first inequality [11, Theorem 2.13] and the inequality (3.2), we have

$$
\begin{equation*}
\frac{1}{2}\|t\| w_{c}(t) \leq \frac{1}{2}\left(\|t\|\|+\| t^{2} \|^{\frac{1}{2}}\right) \tag{3.5}
\end{equation*}
$$

for every $t \in \mathscr{L}(\mathfrak{E})$. Thus, if $t^{2}=0$, then $w_{c}(t)=\frac{1}{2}\|t\| \|$ as required.
The following result is another consequence of the inequality (3.2).
Corollary 3.3. If $t \in \mathscr{L}(\mathfrak{E})$ is such that $w_{c}(t)=\|t\| \|$, then $\left\|t^{2}\right\|\|=\| t \|^{2}$.
Proof. It follows from the inequality (3.2) that

$$
2 w_{c}(t) \leq\|t\|\|+\| t^{2} \|^{\frac{1}{2}}
$$

for every $t \in \mathscr{L}(\mathfrak{E})$. Thus, if $w_{c}(t)=\| \| t \|$, then $\|t\| \leq \leq\left\|t^{2}\right\| \|^{\frac{1}{2}}$, and hence $\|t\|^{2} \leq\| \| t^{2}\| \|$. But the reverse inequality is always true. Thus $\left\|\mid t^{2}\right\|\|=\| t t \|^{2}$ as required.

4 Power Inequalities For The Numerical Radius

To prove our generalized numerical radius, we need several well-known lemmas.
Lemma 4.1. [9] Let $a, b \geq 0,0 \leq \alpha \leq 1$ and $p, q>1$ satisfy $\frac{1}{p}+\frac{1}{q}=1$. Then
(i) $a^{\alpha} b^{1-\alpha} \leq \alpha a+(1-\alpha) b \leq\left(\alpha a^{r}+(1-\alpha) b^{r}\right)^{\frac{1}{r}}$;
(ii) $a b \leq \frac{a^{p}}{p}+\frac{b^{q}}{q} \leq\left(\frac{a^{p r}}{p}+\frac{b^{q r}}{q}\right)^{\frac{1}{r}}$;
for all $r \geq 1$.
Lemma 4.2. Let $t, s \in \mathscr{L}(\mathfrak{E})$, and let f and g be non-negative functions on $[0, \infty)$ which are continuous such that $f(\tau) g(\tau)=\tau$ for all $\tau \in[0, \infty)$ Then

$$
|\psi(y, t x)| \leq\| \| f(|t|) x\| \|\left\|g\left(\left|t^{*}\right|\right) y\right\|,
$$

for all $x, y \in \mathfrak{E}$ and $\psi \in \varpi(\mathfrak{A})$.
Lemma 4.3. [11, Hölder-McCarthy inequality in Hilbert C^{*}-Modules] Let $t \in \mathscr{L}(\mathfrak{E}), t>0$, then for every $\psi \in \mathfrak{S}(\mathfrak{A})$
(i) $\left(\psi\langle x, t x\rangle_{\mathfrak{A}}\right)^{r} \leq\|x\|^{2(1-r)} \psi\left\langle x, t^{r} x\right\rangle_{\mathfrak{A}}$ for $r>1$ and
(ii) $\left(\psi\langle x, t x\rangle_{\mathfrak{A}}\right)^{r} \geq\|x\|^{2(1-r)} \psi\left\langle x, t^{r} x\right\rangle_{\mathfrak{A}}$ for $0<r \leq 1$

Theorem 4.1. Let $t \in \mathscr{L}(\mathfrak{E})$ be self-adjoint. Then

$$
w_{c}^{2}(t) \leq \frac{1}{2}\left(w_{c}\left(t^{2}\right)+\|t\|^{2}\right) .
$$

Proof. We recall the following refinement of the Cauchy-Schwartz inequality obtained by Dragomir in [1] with slight modification. It says that

$$
\begin{align*}
\psi(|u|) \psi(|v|) & \geq|\psi(\langle u, v\rangle)-\psi(\langle u, z\rangle) \psi(\langle z, v\rangle)|+|\psi(\langle u, z\rangle) \psi(\langle z, v\rangle)| \\
& \geq|\psi(\langle u, v\rangle)| \tag{4.1}
\end{align*}
$$

for all $u, v, z \in \mathfrak{E}$ with $\psi(|z|)=1$. From inequality (4.1), we deduce that

$$
\begin{equation*}
|\psi(\langle u, z\rangle) \psi(\langle z, v\rangle)| \leq \frac{1}{2}(\psi(|u|) \psi(|v|)+|\psi(\langle u, v\rangle)|) \tag{4.2}
\end{equation*}
$$

In the inequality (4.2), put $z=x$ with $\psi(|x|)=1, u=t^{*} x$ and $v=t x$, we get

$$
\left|\psi\left(\left\langle t^{*} x, x\right\rangle\right) \psi(\langle x, t x\rangle)\right| \leq \frac{1}{2}\left(\psi\left(\left|t^{*} x\right|\right) \psi(|t x|)+\left|\psi\left(\left\langle t^{*} x, t x\right\rangle\right)\right|\right) .
$$

Hence

$$
\begin{equation*}
|\psi(\langle x, t x\rangle)|^{2} \leq \frac{1}{2}\left(\psi(|t x|)^{2}+\psi\left(\left\langle x, t^{2} x\right\rangle\right)\right) \tag{4.3}
\end{equation*}
$$

Taking the supremum over all vectors $x \in \mathfrak{E}$ with $\psi(|x|)=1$, we get the desired result.
Theorem 4.2. Let $t \in \mathscr{L}(\mathfrak{E})$ and let f and g be as in Lemma 4.2. Then we have

$$
\begin{equation*}
w_{c}^{2}(t) \leq \frac{1}{2}\left(\| \| t\left\|^{2}+\right\| \frac{1}{p} f^{p}\left(|t|^{2}\right)+\frac{1}{q} g^{q}\left(|t|^{2}\right)\| \|\right) \tag{4.4}
\end{equation*}
$$

for all $p \geq q>1$ with $\frac{1}{p}+\frac{1}{q}=1$.
Proof. Let $x \in \mathfrak{E}$ such that $\psi(|x|)=1$. We have

It follows from the inequality (4.3)that

$$
|\psi(\langle x, t x\rangle)|^{2} \leq \frac{1}{2}\left(\psi(|t x|)^{2}+\psi\left(\left\langle x,\left(\frac{1}{p} f^{p}\left(\left|t^{2}\right|\right)+\frac{1}{q} g^{q}\left(\left|\left(t^{*}\right)^{2}\right|\right)\right) x\right\rangle\right)\right) .
$$

Taking the supremum over all vectors $x \in \mathfrak{E}$ with $\psi(|x|)=1$, we get the desired result.
The following lemma is useful in the sequel.
Lemma 4.4. [11] Let $t \in \mathscr{L}(\mathfrak{E})$ and $\psi \in \varpi(\mathfrak{A})$ then for every $x \in \mathfrak{E}$

$$
\operatorname{Re} \psi(\langle x, t x\rangle)=\psi(\langle x, \operatorname{Re}(t) x\rangle),
$$

where $\operatorname{Re}(t)$ denotes the real part of the operator $t \in \mathscr{L}(\mathfrak{E})$.

Theorem 4.3. Let $t, s \in \mathscr{L}(\mathfrak{E})$. Then

$$
w_{c}\left(s^{*} t\right) \leq \frac{1}{4}\left|\left\|\left|t^{*}\right|^{2}+\left|s^{*}\right|^{2}\right\|\right|+\frac{1}{2} w_{c}\left(t s^{*}\right) .
$$

Proof. First of all, we note that

$$
\begin{equation*}
w_{c}(t)=\sup _{\theta \in \mathbb{R}}\| \| R e\left(e^{i \theta} t\right)\| \| . \tag{4.5}
\end{equation*}
$$

For every vector $x \in \mathfrak{E}$ and $\psi \in \varpi(\mathfrak{A})$ with $\psi(|x|)=1$, we have

$$
\begin{aligned}
\operatorname{Re} \psi\left(\left\langle x, e^{i \theta} s^{*} t x\right\rangle\right) & =\operatorname{Re\psi }\left(s x, e^{i \theta} t x\right) \\
& =\frac{1}{4}\| \|\left(e^{i \theta} t+s\right) x\left\|^{2}-\frac{1}{4}\right\|\left\|\left(e^{i \theta} t+s\right) x\right\| \|^{2} \quad \text { (by Polarization identity) } \\
& \leq \frac{1}{4}\| \|\left(e^{i \theta} t+s\right) x\left\|^{2} \leq \frac{1}{4}\right\|\left\|e^{i \theta} t+s\right\| \|^{2} \\
& =\frac{1}{4}\| \|\left(e^{-i \theta} t^{*}+s^{*}\right)\| \|^{2} \quad\left(\text { since }\|y\|\|=\| y^{*}\| \|\right) \\
& =\frac{1}{4}\| \|\left(e^{-i \theta} t^{*}+s^{*}\right)^{*}\left(e^{-i \theta} t^{*}+s^{*}\right) \| \quad\left(\text { since }\|y\|^{2}=\left\|y^{*} y\right\|\right) \\
& =\frac{1}{4}\| \| t t^{*}+s s^{*}+e^{i \theta} t s^{*}+e^{-i \theta} s t^{*} \| \\
& \leq \frac{1}{4}\left\|t t t^{*}+s s^{*}\right\|+\frac{1}{2}\| \| \operatorname{Re}\left(e^{i \theta} t s^{*}\right) \|
\end{aligned}
$$

Taking the supremum over all vectors $x \in \mathfrak{E}$ with $\psi(|x|)=1$, we obtain

$$
w_{c}\left(s^{*} t\right) \leq \frac{1}{4}\left|\left\|\left|t^{*}\right|^{2}+\left|s^{*}\right|^{2} \mid\right\|+\frac{1}{2} w_{c}\left(t s^{*}\right)\right.
$$

as required.
The following theorem gives us a new bound for powers of the numerical radius.
Theorem 4.4. Suppose $t, s, y \in \mathscr{L}(\mathfrak{E})$ such that t, s are positive. Then

$$
w_{c}\left(t^{\alpha} y s^{\alpha}\right) \leq\|y\|^{r}\| \| \frac{1}{p} t^{p r}+\frac{1}{q} s^{q r}\| \|^{\alpha}
$$

for all $0 \leq \alpha \leq 1, r \geq 1$ and $p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ and $p r, q r \geq 2$.
Proof. For every vector $x \in \mathfrak{E}$ with $\psi(|x|=1), \psi \in \varpi(\mathfrak{A})$, we have

$$
\begin{aligned}
\left|\psi\left(\left\langle x, t^{\alpha} y s^{\alpha} x\right\rangle\right)\right|^{r} & =\left|\psi\left(\left\langle t^{\alpha} x, y s^{\alpha} x\right\rangle\right)\right|^{r} \\
& \leq\|y\|^{r}\left\|t^{\alpha} x\right\|\left\|^{r}\right\| s^{\alpha} x \|^{r} \\
& \leq\|y\|^{r} \psi\left(\left\langle x, t^{2 \alpha} x\right\rangle^{\frac{r}{2}}\right) \psi\left(\left\langle x, s^{2 \alpha} x\right\rangle^{\frac{r}{2}}\right) \\
& \leq\|y\|^{r}\left(\frac{1}{p} \psi\left(\left\langle x, t^{2 \alpha} x\right\rangle\right)^{\frac{r p}{2}}+\frac{1}{q} \psi\left(\left\langle x, s^{2 \alpha} x\right\rangle\right)^{\frac{q r}{2}}\right) \quad \text { (by Lemma 4.1(ii)) } \\
& \leq\|y\|^{r}\left(\frac{1}{p} \psi\left(\left\langle x, t^{p r} x\right\rangle\right)^{\alpha}+\frac{1}{q} \psi\left(\left\langle x, s^{q r} x\right\rangle\right)^{\alpha}\right) \quad \text { (by Lemma 4.3) }
\end{aligned}
$$

$$
\begin{aligned}
& \leq\|y\|^{r}\left(\frac{1}{p} \psi\left(\left\langle x, t^{p r} x\right\rangle\right)+\frac{1}{q} \psi\left(\left\langle x, s^{q r} x\right\rangle\right)\right)^{\alpha} \quad\left(\text { by the concavity of } f(\tau)=\tau^{\alpha}\right) \\
& =\|y\|^{r} \psi\left(\left\langle x,\left(\frac{1}{p} t^{p r}+\frac{1}{q} t^{q r}\right) x\right\rangle\right)^{\alpha}
\end{aligned}
$$

Taking the supremum over all vectors $x \in \mathfrak{E}$ with $\psi(|x|)=1$, we obtain the desired result.
Our next result is to find an upper bound for power of the numerical radius of $t^{\alpha} y s^{1-\alpha}$ under assumption $0 \leq \alpha \leq 1$.

Theorem 4.5. Suppose $t, s, y \in \mathscr{L}(\mathfrak{E})$ such that t, s are positive. Then

$$
w_{c}\left(t^{\alpha} y s^{1-\alpha}\right) \leq\|y\|^{r}\left\|\alpha t^{r}+(1-\alpha) s^{r}\right\|
$$

for all $0 \leq \alpha \leq 1$ and $r \geq 2$.
Proof. For every vector $x \in \mathfrak{E}$ with $\psi(|x|=1), \psi \in \varpi(\mathfrak{A})$, we have

$$
\begin{aligned}
\left|\psi\left(\left\langle x, t^{\alpha} y s^{1-\alpha} x\right\rangle\right)\right|^{r} & =\left|\psi\left(\left\langle t^{\alpha} x, y s^{1-\alpha} x\right\rangle\right)\right|^{r} \\
& \leq\|y\|^{r}\| \| t^{\alpha} x\left\|^{r} \mid\right\| s^{1-\alpha} x \|^{r} \\
& \leq\|y\|^{r} \psi\left(\left\langle x, t^{2 \alpha} x\right\rangle\right)^{\frac{r}{2}} \psi\left(\left\langle x, s^{2(1-\alpha)} x\right\rangle\right)^{\frac{r}{2}} \\
& \leq\|y\|^{r} \psi\left(\left\langle x, t^{r} x\right\rangle\right)^{\alpha} \psi\left(\left\langle x, s^{r} x\right\rangle\right)^{1-\alpha} \quad \text { (by Lemma 4.3) } \\
& \leq\|y\|^{r} \psi\left(\left\langle x,\left(\alpha t^{r}+(1-\alpha) s^{r}\right) x\right\rangle\right) \quad \text { (by Lemma 4.1(i)). }
\end{aligned}
$$

Hence

$$
\begin{equation*}
\left|\psi\left(\left\langle x, t^{\alpha} y s^{1-\alpha} x\right\rangle\right)\right|^{r} \leq\|y\|^{r} \psi\left(\left\langle x,\left(\alpha t^{r}+(1-\alpha) s^{r}\right) x\right\rangle\right) \tag{4.6}
\end{equation*}
$$

Taking the supremum over all vectors $x \in \mathfrak{E}$ with $\psi(|x|)=1$, we obtain the desired result.
Remark 1. Note that our inequality in the previous theorem is a generalization of the second inequality in Theorem 2.13 of [11] when we set $s=t=1$.

Now assume that $t, s, y \in \mathscr{L}(\mathfrak{E})$. The Heinz mean for matrices are defined by

$$
H_{\alpha}(t, s)=\frac{t^{\alpha} y s^{1-\alpha}+t^{1-\alpha} y s^{\alpha}}{2}
$$

in which $\alpha \in[0,1]$ and $t, s \geq 0$, see [7].
The goal of the following result is to find a numerical radius inequality for Heinz means. For this purpose, we use Theorem 4.5 and the convexity of function $f(\tau)=\tau^{r}(r \geq 1)$.
Theorem 4.6. Suppose $t, s, y \in \mathscr{L}(\mathfrak{E})$ such that t, s are positive. Then

$$
\begin{aligned}
w_{c}^{r}\left(t^{\frac{1}{2}} y s^{\frac{1}{2}}\right) & \leq w_{c}^{r}\left(\frac{t^{\alpha} y s^{1-\alpha}+t^{1-\alpha} y s^{\alpha}}{2}\right) \\
& \leq\|y\|^{r} w_{c}\left(\frac{t^{r}+s^{r}}{2}\right) \\
& \leq \frac{\|y\| \|^{r}}{2}\left(\| \| \alpha t^{r}+(1-\alpha) s^{r}\|+\| \alpha s^{r}+(1-\alpha) t^{r} \|\right)
\end{aligned}
$$

for all $r \geq 2$ and $\alpha \in[0,, 1]$.

To prove Theorem 4.6, we need the following lemma.
Lemma 4.5. Let $t, s \in \mathscr{L}(\mathfrak{E})$ be invertible self-adjoint operators and $y \in \mathscr{L}(\mathfrak{E})$. Then

$$
\begin{equation*}
w_{c}(y) \leq w_{c}\left(\frac{t y s^{-1}+t^{-1} y s}{2}\right) \tag{4.7}
\end{equation*}
$$

Proof. First of all, we shall show the case $t=s$ and y is self-adjoint. Let $\lambda \in \sigma(y)$. Then

$$
\lambda \in \sigma(y)=\sigma\left(t y t^{-1}\right) \subseteq \overline{W\left(t y t^{-1}\right)} .
$$

Since $\lambda \in \mathbb{R}$ we have

$$
\lambda=\operatorname{Re}(\lambda) \in \operatorname{Re} \overline{W\left(t y t^{-1}\right)}=\overline{W\left(\operatorname{Re}\left(t y t^{-1}\right)\right)} .
$$

So we obtain

$$
w_{c}(y)=r(y) \leq w_{c}\left(\operatorname{Re}\left(t y t^{-1}\right)\right)=w_{c}\left(\frac{t y s^{-1}+t^{-1} y s}{2}\right) .
$$

Next we shall show this lemma for arbitrary $y \in \mathscr{L}(\mathfrak{E})$ and invertible self-adjoint operators t and s. Let $\tilde{y}=\left(\begin{array}{cc}0 & y \\ y^{*} & 0\end{array}\right)$ and $\tilde{t}=\left(\begin{array}{cc}t & 0 \\ 0 & s\end{array}\right)$. Then \tilde{y} and \tilde{t} are self-adjoint. Hence we have

$$
w_{c}(\tilde{y}) \leq w_{c}\left(\frac{\tilde{t} \tilde{y} \tilde{t}^{-1}+\tilde{t}^{-1} \tilde{y} \tilde{t}}{2}\right)
$$

Here $w_{c}(\tilde{y})=w_{c}(y)$ and

$$
\begin{aligned}
w_{c}\left(\frac{\tilde{t} \tilde{y} \tilde{t}^{-1}+\tilde{t}^{-1} \tilde{y} \tilde{t}}{2}\right) & =\frac{1}{2} w_{c}\left(\left(\begin{array}{cc}
0 & t y s^{-1}+t^{-1} y s \\
s^{-1} y^{*} t+s y^{*} t^{-1} & 0
\end{array}\right)\right) \\
& =\frac{1}{2} w_{c}\left(t y s^{-1}+t^{-1} y s\right) .
\end{aligned}
$$

Therefore we obtain the desired inequality.
Proof of Theorem 4.6. We may assume that t and s are invertible. By Lemma 4.5, we have

$$
\begin{aligned}
w_{c}^{r}\left(t^{\frac{1}{2}} y s^{\frac{1}{2}}\right) & \leq w_{c}^{r}\left(\frac{t^{\alpha-\frac{1}{2}} t^{\frac{1}{2}} y s^{\frac{1}{2}} s^{\frac{1}{2}-\alpha}+t^{\frac{1}{2}-\alpha} t^{\frac{1}{2}} y s^{\frac{1}{2}} s^{\alpha-\frac{1}{2}}}{2}\right) \\
& =w_{c}^{r}\left(\frac{t^{\alpha} y s^{1-\alpha}+t^{1-\alpha} y s^{\alpha}}{2}\right)
\end{aligned}
$$

On the other hand, by inequality (4.6), for $r \geq 2$ we have

$$
\left|\psi\left(\left\langle x, t^{\alpha} y s^{1-\alpha} x\right\rangle\right)\right|^{r} \leq\|y\|^{r} \psi\left(\left\langle x,\left(\alpha t^{r}+(1-\alpha) s^{r}\right) x\right\rangle\right) .
$$

Hence we have

$$
\begin{aligned}
\left|\psi\left(\left\langle x,\left(\frac{t^{\alpha} y s^{1-\alpha}+t^{1-\alpha} y s^{\alpha}}{2}\right) x\right\rangle\right)\right|^{r} \leq & \left(\frac{\left|\psi\left(\left\langle x, t^{\alpha} y s^{1-\alpha} x\right\rangle\right)\right|+\left|\psi\left(\left\langle x, t^{1-\alpha} y s^{\alpha} x\right\rangle\right)\right|}{2}\right)^{r} \\
\leq & \frac{\left|\psi\left(\left\langle x, t^{\alpha} y s^{1-\alpha} x\right\rangle\right)\right|^{r}+\left|\psi\left(\left\langle x, t^{1-\alpha} y s^{\alpha} x\right\rangle\right)\right|^{r}}{2} \\
& \text { (by the convexity of } \left.f(\tau)=\tau^{r}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \leq \frac{\|y\|^{r}}{2}\left[\psi\left(\left\langle x,\left(\alpha t^{r}+(1-\alpha) s^{r}\right) x\right\rangle\right)+\psi\left(\left\langle x,\left((1-\alpha) t^{r}+\alpha s^{r}\right)\right\rangle\right)\right] \\
& =\|y\| \psi\left(\left\langle x, \frac{t^{r}+s^{r}}{2} x\right\rangle\right)
\end{aligned}
$$

Thus we obtain

$$
\begin{aligned}
w_{c}^{r}\left(\frac{t^{\alpha} y s^{1-\alpha}+t^{1-\alpha} y s^{\alpha}}{2}\right) & \leq\|y\| w_{c}\left(\frac{t^{r}+s^{r}}{2}\right) \\
& \leq \frac{\|y\|}{2}\left(w_{c}\left(\alpha t^{r}+(1-\alpha) s^{r}\right)+w_{c}\left((1-\alpha) t^{r}+\alpha s^{r}\right)\right) \\
& =\frac{\|y\|}{2}\left(\left\|\alpha t^{r}+(1-\alpha) s^{r}\right\|+\left\|(1-\alpha) t^{r}+\alpha s^{r}\right\|\right)
\end{aligned}
$$

Theorem 4.7. Let $a, b, c, d \in \mathscr{L}(\mathfrak{E})$ and $\mu, \nu \geq 1$. Then

$$
\begin{equation*}
\left.\left\|b^{*} a+d^{*} c\right\|^{2} \leq 2^{2-\left(\frac{1}{\mu}+\frac{1}{\nu}\right)}\| \||a|^{2 \mu}+|b|^{2 \mu}| |{ }^{\frac{1}{\mu}}\| \||c|^{2 \nu}+|d|^{2 \nu} \right\rvert\, \|^{\frac{1}{\nu}} . \tag{4.8}
\end{equation*}
$$

Proof. By the Cauchy-Schwartz inequality, we have

$$
\begin{align*}
\left|\psi\left(\left\langle y,\left(b^{*} a+d^{*} c\right) x\right\rangle\right)\right|^{2} & =\left|\psi\left(\left\langle y, b^{*} a x\right\rangle\right)+\psi\left(\left\langle y, d^{*} c x\right\rangle\right)\right|^{2} \\
& \leq\left[\left|\psi\left(\left\langle y, b^{*} a x\right\rangle\right)\right|+\left|\psi\left(\left\langle y, d^{*} c x\right\rangle\right)\right|\right]^{2} \tag{4.9}\\
& \leq\left[\psi\left(\left\langle x, a^{*} a x\right\rangle\right)^{\frac{1}{2}} \psi\left(\left\langle y, b^{*} b y\right\rangle\right)^{\frac{1}{2}}+\psi\left(\left\langle x, c^{*} c x\right\rangle\right)^{\frac{1}{2}} \psi\left(\left\langle y, d^{*} d y\right\rangle\right)^{\frac{1}{2}}\right]^{2}
\end{align*}
$$

for all $x, y \in \mathfrak{E}$.

Now, on utilizing the elementary inequality

$$
\left(\kappa_{1} \kappa_{2}+\kappa_{3} \kappa_{4}\right)^{2} \leq\left(\kappa_{1}^{2}+\kappa_{3}^{2}\right)\left(\kappa_{2}^{2}+\kappa_{4}^{2}\right), \kappa_{i} \in \mathbb{R}(i=1,2,3,4) .
$$

we then conclude that

$$
\begin{align*}
& {\left[\psi\left(\left\langle x, a^{*} a x\right\rangle\right)^{\frac{1}{2}} \psi\left(\left\langle y, b^{*} b y\right\rangle\right)^{\frac{1}{2}}+\psi\left(\left\langle x, c^{*} c x\right\rangle\right)^{\frac{1}{2}} \psi\left(\left\langle y, d^{*} d y\right\rangle\right)^{\frac{1}{2}}\right]^{2}} \\
& =\left(\psi\left(\left\langle x, a^{*} a x\right\rangle\right)+\psi\left(\left\langle x, c^{*} c x\right\rangle\right)\right)\left(\psi\left(\left\langle y, b^{*} b y\right\rangle\right)+\psi\left(\left\langle y, d^{*} d y\right\rangle\right)\right) \tag{4.10}
\end{align*}
$$

for all $x, y \in \mathfrak{E}$.
Utilizing the arithmetic mean - geometric mean inequality and then the convexity of the function $f(\tau)=\tau^{\delta}, \delta \geq 1$, we have successively,

$$
\begin{align*}
& \left(\psi\left(\left\langle x, a^{*} a x\right\rangle\right)+\psi\left(\left\langle x, c^{*} c x\right\rangle\right)\right)\left(\psi\left(\left\langle y, b^{*} b y\right\rangle\right)+\psi\left(\left\langle y, d^{*} d y\right\rangle\right)\right) \tag{4.11}\\
& \leq 4\left(\frac{\psi\left(\left\langle x,\left(\left(a^{*} a\right)^{\mu}+\left(c^{*} c\right)^{\mu}\right) x\right\rangle\right)}{2}\right)^{\frac{1}{\mu}}\left(\frac{\psi\left(\left\langle y,\left(\left(b^{*} b\right)^{\nu}+\left(d^{*} d\right)^{\nu}\right) y\right\rangle\right)}{2}\right)^{\frac{1}{\nu}}
\end{align*}
$$

for all $x, y \in \mathfrak{E}$ with $\psi(|x|)=\psi(|y|)=1$ and for all $\mu \geq 1$ and $\nu \geq 1$. Consequently, by (4.9)-(4.11) we have

$$
\left|\psi\left(\left\langle y,\left(b^{*} a+d^{*} c\right) x\right\rangle\right)\right|^{2}
$$

$$
\leq 2^{2-\left(\frac{1}{\mu}+\frac{1}{\nu}\right)}\left(\psi\left(\left\langle x,\left(\left(a^{*} a\right)^{\mu}+\left(c^{*} c\right)^{\mu}\right) x\right\rangle\right)\right)^{\frac{1}{\mu}}\left(\psi\left(\left\langle y,\left(\left(b^{*} b\right)^{\nu}+\left(d^{*} d\right)^{\nu}\right) y\right\rangle\right)\right)^{\frac{1}{\nu}}
$$

for all $x, y \in \mathfrak{E}$ with $\psi(|x|)=\psi(|y|)=1$. Taking the supremum over $x, y \in \mathfrak{E}$ with $\psi(|x|)=$ $\psi(|y|)=1$ we deduce the desired inequality (4.8).

Remark 2. (i) If $\mu=\nu$, then the inequality (4.8) is equivalent to

$$
\begin{equation*}
\left\|b^{*} a+d^{*} c\right\|^{2 \mu} \leq 2^{2 \mu-2}\left\|\left(a^{*} a\right)^{\mu}+\left(c^{*} c\right)^{\mu}\right\|\| \|\left(b^{*} b\right)^{\mu}+\left(d^{*} d\right)^{\mu} \| \tag{4.12}
\end{equation*}
$$

(ii) If $b=d=1$, then inequality (4.8) is equivalent to

$$
\begin{equation*}
\|a+c\|^{2 \mu} \leq 2^{2 \mu-1}\| \|\left(a^{*} a\right)^{\mu}+\left(c^{*} c\right)^{\mu} \| \tag{4.13}
\end{equation*}
$$

for all $\mu \geq 1$.
(iii) If $b=a^{*}$ and $d=c^{*}$, then inequality (4.8) is equivalent to

$$
\begin{equation*}
\left\|a^{2}+c^{2}\right\|\left\|^{2} \leq 2^{2-\left(\frac{1}{\mu}+\frac{1}{\nu}\right)}\right\|\left(a^{*} a\right)^{\mu}+\left(c^{*} c\right)^{\mu}\| \|^{\frac{1}{\mu}}\left\|\left(b^{*} b\right)^{\nu}+\left(d^{*} d\right)^{\nu}\right\| \|^{\frac{1}{\nu}} \tag{4.14}
\end{equation*}
$$

for all $\mu, \nu \geq 1$.
If we put $d=a$ and $c=b$ in the equality (4.8), we get the following result.
Corollary 4.8. If $a, b \in \mathscr{L}(\mathfrak{E})$. Then

$$
\begin{equation*}
\left\|\left|b^{*} a+a^{*} b\left\|^{2} \leq 2^{2-\left(\frac{1}{\mu}+\frac{1}{\nu}\right)}\left|\left\||a|^{2 \mu}+|b|^{2 \mu}\right\|\left\|^{\frac{1}{\mu}}\right\|\left\||a|^{2 \nu}+|b|^{2 \nu}\right\| \|^{\frac{1}{\nu}},\right.\right.\right.\right. \tag{4.15}
\end{equation*}
$$

for $\mu, \nu \geq 1$. In particular

$$
\begin{equation*}
\left\|b^{*} a+a^{*} b\right\|^{\mu} \leq 2^{\mu-1}\| \||a|^{2 \mu}+|b|^{2 \mu}\| \| \tag{4.16}
\end{equation*}
$$

for all $\mu \geq 1$.
Another particular case that might be of interest is the following one.
Corollary 4.9. For $a, d \in \mathscr{L}(\mathfrak{E})$, we have

$$
\begin{equation*}
\|a+d\|\left\|^{2} \leq 2^{2-\left(\frac{1}{\mu}+\frac{1}{\nu}\right)}\right\|\left\||a|^{2 \mu}+1\left|\left\|^{\frac{1}{\mu}}\right\|\left\||d|^{2 \nu}+1\right\|^{\frac{1}{\nu}},\right.\right. \tag{4.17}
\end{equation*}
$$

for all $\mu, \nu \geq 1$. In particular

$$
\begin{equation*}
\|a\|^{2 \mu} \leq \frac{1}{4}\| \||a|^{2 \mu}+1\| \|^{2} \tag{4.18}
\end{equation*}
$$

for all $\mu \geq 1$.
Proof. The proof of the inequality (4.17) is obvious by the inequality (4.8) on choosing $b=1, c=1$ and writing the inequality for d^{*} instead of d.

Remark 3. If $t \in \mathscr{L}(\mathfrak{E})$ and $t=a+i c$, i.e., a and c are its Cartesian decomposition, then we get from (4.13) that

$$
\|t\|\left\|^{2 \mu} \leq 2^{2 \mu-1}\right\| a^{2 \mu}+c^{2 \mu} \|
$$

for all $\mu \geq 1$. Also, since $a=\operatorname{Re}(t)=\frac{t+t^{*}}{2}$ and $c=\operatorname{Im}(t)=\frac{t-t^{*}}{2 i}$, then from (4.13) we get the following inequalities as well

$$
\|R e(t)\|^{2 \mu} \leq \frac{1}{2}\| \||t|^{2 \mu}+\left|t^{*}\right|^{2 \mu}\| \|
$$

and

$$
\|\operatorname{Im}(t)\|^{2 \mu} \leq \frac{1}{2}\left\|\left.|t|\right|^{2 \mu}+\left|t^{*}\right|^{2 \mu}\right\| \|
$$

for any $\mu \geq 1$.
Theorem 4.10. Let $t=a+i b$ be the Cartesian decomposition of $t \in \mathscr{L}(\mathfrak{E})$. Then for $\mu, \nu \in \mathbb{R}$,

$$
\begin{equation*}
\sup _{\mu^{2}+\nu^{2}=1}\|\mu a+\nu b\| \|=w_{c}(t) . \tag{4.19}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
\frac{1}{2}\left\|t+t^{*}\right\| \leq w_{c}(t) \text { and } \frac{1}{2}\left\|\left\|t-t^{*}\right\| \leq w_{c}(t)\right. \tag{4.20}
\end{equation*}
$$

Proof. First of all, we note that

$$
\begin{equation*}
w(t)=\sup _{\theta \in \mathbb{R}}\| \| \operatorname{Re}\left(e^{i \theta} t\right) \| . \tag{4.21}
\end{equation*}
$$

In fact, $\sup _{\theta \in \mathbb{R}} \operatorname{Re}\left(e^{i \theta} \psi(\langle x, t x\rangle)\right)=|\psi(\langle x, t x\rangle)|$ yields that

$$
\sup _{\theta \in \mathbb{R}} \mid\left\|\operatorname{Re}\left(e^{i \theta} t\right)\right\| \|=\sup _{\theta \in \mathbb{R}} w_{c}\left(\operatorname{Re}\left(e^{i \theta} t\right)\right)=w_{c}(t) .
$$

On the other hand, let $t=a+i b$ be the Cartesian decomposition of t. Then

$$
\begin{align*}
\operatorname{Re}\left(e^{i \theta} t\right) & =\frac{e^{i \theta} t+e^{-i \theta} t^{*}}{2}=\frac{1}{2}\left[(\cos \theta+i \sin \theta) t+(\cos \theta-i \sin \theta) t^{*}\right] \\
& =\cos \theta\left(\frac{t+t^{*}}{2}\right)-\sin \theta\left(\frac{t-t^{*}}{2 i}\right)=(\cos \theta) a-(\sin \theta) b \tag{4.22}
\end{align*}
$$

Therefore, by putting $\mu=\cos \theta$ and $\nu=-\sin \theta$ in (4.22), we obtain (4.19). Especially, by setting $(\mu, \nu)=(1,0)$ and $(\mu, \nu)=(0,1)$, we reach (4.20).

Remark 4. By using (4.20), we get some known inequalities:
(i) $\|t t\|=\|a+i b\| \leq\|a|\|+\| b|\| \leq 2 w_{c}(t)$.
(ii) If t is self adjoint, then $t=a$. Hence we have $\|t\|\|=\| a\left\|\left\|\leq w_{c}(t) \leq\right\| t\right\| \|$ and so $w_{c}(t)=\| \| t \|$.
(iii) By an easy calculation, we have $\frac{t^{*} t+t t^{*}}{2}=a^{2}+b^{2}$. Hence,

$$
\begin{equation*}
\frac{1}{4}\left\|t^{*} t+t t^{*}\right\|\left\|=\frac{1}{2}\right\|\left\|a^{2}+b^{2}\right\| \| \leq \frac{1}{2}\left(\|a\|\left\|^{2}+\right\| b \|^{2}\right) \leq w_{c}^{2}(t) . \tag{4.23}
\end{equation*}
$$

(iv) Let $\mu, \nu \in \mathbb{R}$ satisfy $\mu^{2}+\nu^{2}=1$. Then for any vector $x \in \mathfrak{E}$ with $\psi(|x|)=1, \psi \in \varpi(\mathfrak{A})$, we have

$$
\begin{aligned}
\|(\mu a+\nu b) x\| & =\left\|\left[\begin{array}{ll}
a & b \\
0 & 0
\end{array}\right]\left[\begin{array}{c}
\mu x \\
\nu x
\end{array}\right]\right\| \leq\| \|\left[\begin{array}{ll}
a & b \\
0 & 0
\end{array}\right]\| \|=\| \|\left[\begin{array}{ll}
a & b \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
a & 0 \\
a & 0
\end{array}\right]\| \|^{\frac{1}{2}} \\
& =\left\|a^{2}+b^{2}\right\|\left\|^{\frac{1}{2}}=\frac{1}{\sqrt{2}}\right\| t^{*} t+t t^{*} \|^{\frac{1}{2}}
\end{aligned}
$$

Hence we have

$$
\begin{equation*}
w_{c}^{2}(t)=\sup _{\mu^{2}+\nu^{2}=1}\|\mu a+\nu b\|^{2} \leq \frac{1}{2}\left\|t^{*} t+t t^{*}\right\| . \tag{4.24}
\end{equation*}
$$

(v) Combining the inequalities (4.23) and (4.24), we obtain Theorem 3.2 of [11].

Acknowledgement

The author extends sincere gratitude to the referees for their invaluable feedback and corrections, greatly enhancing the quality of the research paper.

References

[1] S.S. Dragomir, Some refinements of Schwarz inequality, Simposional de Math. Si Appl. Polytechnical Inst. Timisoara, Romania, 1-2 (1985), 13-16.
[2] P.R. Halmos, A Hilbert space problem book, Springer Verlag, New York, 1982.
[3] G. H. Hardy and J. E. Littlewood, and G. Pólya, Inequalities, 2nd ed., Cambridge Univ. Press, Cambridge, 1988.
[4] I. Kaplansky, Modules Over Operator Algebras, Amer. J. Math. 75 (1953), 839-858.
[5] F. Kittaneh, Notes on some inequalities for Hilbert space operators, Publ. Res. Inst. Math. Sci. 24 (1988), 283-293.
[6] F. Kittaneh, Norm inequalities for certain operator sums, J. Funct. Anal. 143 (1997), 337348.
[7] R. Kaur, M. S. Moslehian, M. Singh and C. Conde, Further refinements of the Heinz inequality, Linear Algebra Appl. 447 (2014), 26-37.
[8] E. C. Lance, Hilbert C^{*}-module: A Toolkit for Operator Algebraists. London Mathematical Society Lecture Note Series 210. Cambridge University Press, Cambridge, 1995.
[9] J.Pemcariśc, T. Furuta, J. Miściśc Hot, and Y. Seo, Mondpencariéc method in operator inequalities, Inequalities for Bounded Selfadjoint Operators on a Hilbert Space, Element, Zagreb, 2005.
[10] M. Mehrazin, M. Amyari and M. E. Omidvar, A new type of numerical radius of operators on Hilbert C^{*}-module,Rendiconti del Circolo Matematico di Palermo Series 269 (2020), 29-37.
[11] S. F. Moghaddam, Numerical radius inequalities for Hilbert C^{*}-modules, Mathematica Bohemica 147 (4) (2022), 547-566.
[12] W. Reid, Symmetrizable completely continuous linear tarnsformations in Hilbert space, Duke Math. 18 (1951), 41-56.

Mohammad H.M. Rashid Dept. of Mathematics\& Statics-Faculty of Science P.O. Box(7)Mutah University, Alkark-Jordan
E-mail: Email:malik_okasha@yahoo.com; mrash@mutah.edu.jo

