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Some inequalities for the numerical radius and
spectral norm for operators in Hilbert C*-modules

space

Mohammad H.M. Rashid

Abstract. This paper introduces a new method for studying the numerical radius of
bounded operators on Hilbert C*-modules. Our approach leads to unique discoveries
and expands existing theorems for bounded adjointable operators in Hilbert C*-
module spaces. Moreover, we find an upper bound for power of the numerical radius
of t*ys' = under assumption 0 < o < 1. In fact, we prove

we (t%ys' =) < lyll"llat” + (1 = a)s"||
forall 0 <a<1andr>2.
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1 Introduction

The notion of a Hilbert C*-module initiated by Kaplansky [4] as a generalization of a Hilbert
space in which the inner product takes its values in a C*-algebra (see also [7, 8, 10, 11]).

Let 2 be a C*-algebra. A pre-Hilbert 2-module or an inner product 2-module is a complex
linear space € which is a right A-module with compatible scalar multiplication A(za) = (Ax)a =
x(Aa) for all z € €, a € A and X € C, together with an 2-valued inner product (-,-) : Ex ¢ — 2
that satisfies the following properties:

(i
(ii
(

(z,ay + B2) = a(z,y) + B (z,2);
(z,ya) = (z,y) a
(z,y) = (y,2)";
(x,x) > 0; if (x,2) =0, then z =0

)
)
ii)
(iv)
for each z,y,2z € €, a € A and o, 5 € C.

The notion of a left Hilbert A-module can be defined similarly. Note that the condition
(i) is understood as a statement in the C*-algebra 2, where an element a is called positive if it
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can be represented as bb* for some b € 2. The conditions (ii) and (iv) imply the inner product
to be conjugate-linear in its first variable. Validity of a useful version of the classical Cauchy-

Schwartz inequality follows that ||z| = ||(x, £U>H% defines a norm on & making it into a normed
right A-module. An inner product 2-module € which is complete with respect to the norm ||z||
is called a Hilbert 2-module or a Hilbert C*-module over the C*-algebra . Every C*-algebra 2
is a Hilbert 2-module under the 2A-valued inner product {(a,b) = a*b (a,b € 2A). Every complex
Hilbert space is a left Hilbert C-module.

Suppose that € and § are Hilbert 2-modules. We define .Z(€&,F) to be the set of all maps
t: € — § for which there is a map t* : § — € such that (tz,y) = (z,t*y), for all z € €&,
y € §. It is known that ¢ must be a bounded 2-linear map (that is, ¢ is bounded linear map
and t(za) = t(x)a for all x € € a € A). If € = F, then £ (€) is a C*-algebra together with the

operator norm.

Suppose that 2 is an abelian C*-algebra. Recall that a character 1) on 2 is a non-zero *-
homomorphism ¢ : 2 — C such that |||| = 1. We denote the set of all characters on 2 by w(2).

Throughout this paper assume that 2 is abelian C*-algebra.

2 Definitions and Complementary results

Lemma 2.1. Let € be a Hilbert A-module. Then for all x,y € € and i € w(A), we have

(1) (Cauchy-Schwartz inequality) [¢ ((z,y))| < ¢ (Jz]) ¥ (|y])-
(i) (triangle inequality) ¢ (|z +y[) < ¢ ([z]) + ¢ (Jy])-
(iii) (Parallelogram Law) ¥ (|z + y|?) + ¢ (|2 — y|*) =2 (¥ (|z]?) + ¢ ([y[?))-

Proof. (i) For every A € C, we have

0<y((z—Ay,z—Ay)) = Y ((z,2) = (2, 2y) — ¥ (g, 2)) + ¥ ((Ay, Ay))
¥ (J212) = M ((z, 1)) — M (g, 2) + AP (lyl?)
= ¢ (|z]*) = 2Re (M ((y, 2))) + [AP¥ (Jy)?) - (2.1)

2
If ¥ ((x,y)) = 0, then the inequality is trivial. Suppose that ¥ ((z,y)) # 0, letting A = QZ}&ZCL)))

in (2.1) gives
¥ (=) ¥ (Iy*)
W ({z,9) 2

2y o (=) ¥ (lyl?)
v D) = T
and this implies that [¢ ((z,v)) [* < ¥ (|z]?) ¢ (Jy[?) and so

Y ((z, ) < (|=]) ¥ (ly]) -

0 < —¢ (j*) +

Hence
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(ii) By (i), we have
Y (Jz+yl?)

O ((x+y.z+y) = ([2?) +2Rey (2, 9)) + ¢ (Jy?)
¥ (|2?) +2¢ (lz]) ¥ (Jy) + ¢ (Jy?)
(W (|z]) + % (Jy]))?

IN

and so the result.

(iii) We have

(lz+y?) +v (o —y?) = ¥ (lz*) +2Rey (2, 9)) + ¢ (Jy*)
+ ¢ (|l2°) — 2Rew ((z,y)) + ¢ (ly|?)

= 2(¢ (|o1) + ¥ (Iy))-
O
Definition 1. Let t € Z(€) and ¢ € w(A). Then
llEllf = sup { (|tz]) : x € €4 € w(A), ¥(|]) =1}, (2.2)

where |z| = (x,o:)%

It is known from [10] that |||-|| is a norm on .Z(€). And if € is a Hilbert space, then ||¢]| = |||¢]|-
The following result was investigated in [10].

Lemma 2.2. Lett € Z(€). Then

£l = sup {4 (2, ty))| - 2,y € € € (@A), P(|z]) = ¢(|y]) = 1}
Definition 2. Let t € Z(€). Then the spectrum of ¢, denoted by o(t), is defined by
o(t)={A e C:t— Al is not invertible} .

And A € C is called an eigenvalue of ¢ if there is a non-zero vector z € & such that tz = Ax.
Equivalently, A is an eigenvalue if there is a vector x € € with ¢ (|z|) = 1 such that |||(t — A\1)z|| =
0.

Definition 3. A € C is called an approximate point spectrum of ¢t € Z(€) if there is a sequence
{zn} of vectors in € with ¢ (|z,|) = 1 such that [||(¢ — Al)a,|| — 0, the set of approximate
point spectrum is denoted by o, (t).

Definition 4. If t € Z(€), then the spectral radius of ¢ is the number defined by
r(t) =sup{|A\|: A€ a(t)}.

Clearly, 0 < r(t) < ||¢|| and it follows from spectral theorem that 7(t") = (r(t))". Moreover,

it is well-known that r(¢) = lim, |Ht"|||% (see [8]). Recall that a function f which maps A
Hilbert 2-module € into C is called a functional. If f is in Z(€,C), then f is called a linear
functional on €.

Lemma 2.3. If f is a bounded linear functional on a Hilbert A-module &, then there exists a
unique y € € such that for all x € €, f(x) = ((y,x)). Moreover, ||f|l =¥ (|y]).
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Proof. If f = 0, take y = 0. Suppose that f # 0. Then (f) is a proper closed subspace of €.
Hence there exists a v # 0 in (f)*.

Let y = av, where a = wJ(CITU\)Q)' Then yL(f) (because vL(f)) and f(y) = ¢ ((y,y)) since

e @P
(o2 - HOPR o )
¢(<y7i‘/>) = | ‘ ¢(| | ) 7/)(|U\4)w(| ‘ ) 1/}(‘142)'

Now, given z € €, then x can be represented as © = Sy + 2z, where 5 € C and z € (f). From the
previous arguments, we have

f@) = f(By) = Bf(y) = By ({y,9) =¥ ({y, By + 2)) = ¥ ({y,2)) -
To show that y is unique, suppose there is w € € such that f(z) = ¢ ((w,z)) for all x € €. Then
0= f(z)— f(z) =9 ({y —w,x)) forall x € €.

In particular, ¢ ((y — w,y — w)) =0 and so y = w.

Finally, for each y € € the functional f defined on € is linear. Moreover

[f@) =¥ (y,2) < ¢ (jz)) ¢ (|yl) forall z € €.
Thus f is bounded and ||| f|| < (|y|). Since

£l () = 1f ()] = (g 90) = v (lyl*)
and so [[f[ll = ¢ (|y|) and consequently [ f[| =4 (|yl)- O
Lemma 2.4. [10] If t € £(€), then
It = sup{|¢) (=, tz)| : 2 € € € @A), ¢ (Jx]) = 1}
The following results are very useful in the sequel.
Proposition 2.1. [11] Let t € £(€) and ¢ € w(A). The following statements are equivalent:
(a) ¥ ((z,tz)) =0 for every x € € with ¢ (|z]) = 1;
(b) Y ((z,tx)) =0 for every x € €.
Proposition 2.2. [11] For every t € L(€), the following assertions hold.
(i) t =0 if and only if Y ((z,tx)) =0 for every x € €.
(i) t is positive if and only if ¥ ((x,tx)) is positive for every x € €.
(iii) t is self-adjoint if and only if ¥ ({x,tx)) is self-adjoint for every x € €.
(iv) t =0 if and only if ¢ ({(x,tx)) = 0 for every x € € and ¢ € w(A).
(v) Reyp ((z,tx)) = ¢ ((z, Re(t)x)) for all z € €.
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Lemma 2.5. [10] If t € £(€) is self-adjoint, then

ll#lll = sup {[¢ ((z, t2))| : = € €, 4p € w(A), ¢ (|2]) = 1}
Theorem 2.1. Suppose t € Z(€) is self-adjoint.

(i) Let
=inf{¢ ((z,tz)) 1z € €, € w(A),?¥ (Jz|) = 1}.

If there exists an xg € € such that ¥ (|zo]) = 1 and X = o ((xo,tx0)), then A is an
eigenvalue of t with corresponding eigenvector x.

(i) Let
p=sup{y ((z,tz)) : v € €, € w(A), ¥ (|z|) =1} .

If there exists an 1 € € such that ¥ (|z1]) = 1 and p = ¢ ((x1,tx1)), then p is an
eigenvalue of t with corresponding eigenvector x1.

Proof. (i) For every o € C and every y € €&, it follows from the definition of A that

Y ((zo + ay, t(zo + ay))) > M ((xo + oy, v + ay)) .

Expanding the inner product and setting A = v ({xq, tzo)), we get the inequality

2Reat) (((t — A1)zo, 1)) + |al’y ((y, (t — Al)y)) > 0.

Taking oo = ¢ (((t — A1)xo,y)), where r € R, it follows that

2r b (((t = Ao, 1) |* + 7 [ ({(t = Ao, y))|* ¥ (g, (¢ = AD)y)) > 0.
Since r is arbitrary, it follows that ¥ (((t — Al)zo,y)) = 0 and since y is arbitrary, we have

trg = Axg as required.

(ii) The second statement of the theorem follows from part(i) applied to the self-adjoint
—A. O

Definition 5. An operator ¢t € .Z(€,5) is said to be compact if for each sequence {z,} in &
with 9 (Jz,|) = 1 and ¥ € w(A), the sequence {tx,} has a subsequence which converges in §.

Theorem 2.2. Ift € £(€) is compact and self-adjoint, then at least one the numbers ||t|| or
—Itll is an eigenvalue of t.

Proof. The result is trivial if £ = 0. Assume that ¢ # 0, since

lItllf = sup {|o ((z, t2))[ - & € €, ¢ € w(A), ¥ (|«]) = 1}

then there exists a sequence {x,} in € with ¢ (|z,|) = 1 and a real number A such that |A\| =
ll£llf 7 0 and ¢ ({zn, t2n)) — A
Now

¥ (Jten]?) — 20 (T, t2,) + A2
<202 =200 (2, t,) — 202 =202 =0

0<vy (|txn - )\zn\Q)
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and so
tr, — Az, — 0. (2.3)

Since ¢ is compact, there exists a subsequence {tx, } of {tz,} which converges to some y € €.
Thus (2.3) implies that z,, — %y and by the continuity of ¢, y = lim,/_, o tz,, = %ty. Hence
ty = Ay and y # 0. Since

W)= Jim v (Aawl) = X = [l
and so A is an eigenvalue of t, as required. O
Definition 6. Let ¢t € Z(€). Then the numerical range of ¢ is defined by
We(t) ={¢ ((z,t2)) : 2 € €, ¢ € w(A), and ¥ (Jz]) = 1}.
The next result represent some of the basic properties for the numerical range (see [10]).
Lemma 2.6. Lett,s € Z(€). Then the following assertions hold.
(i) We(t*) = W(T), where W.(T) is the conjugate of W,(t).
(i) W.(T) C R if and only if t is a self-adjoint.
(#i3) If w is unitary, then We(u*tu) = We(t).
(iv) If o, B € C, then W.(at + f1) = aW,(t) + 5.
(v) We(t+s) C We(t) + We(s).
Definition 7. Let ¢t € Z(€). Then the numerical radius of ¢ is defined by
we(t) = sup{|¢ ((z,tx))| : = € €9 € w(A), and ¢ (|]) = 1} .

It is easy to show that w.(-) is a norm on .Z(€).

The following is useful in the sequel.

Lemma 2.7. If € is a Hilbert A-module, then for every ¢ € w(A), x € &,
W ({2, ta)]) < ¢ (|J2]?) we(t)
Theorem 2.3. Ift € Z(€) is normal, then

lI#lll = 7(#) = we(t)-

Proof. First we want to show [[t"]| = [|¢]|". by induction, for n = 1 the equality is trivial.
Assume that its true for k such that 1 < k < n.

l[Enall* = o (", ")) = (1", " ')
< feealeel| < [l el e (212) (¢ is nomal).
and so, [[¢"[° < et HI[lle=2]]|- But [¢™[| = [ll¢]|™ for all k such that 1 < k < n and this
implies that [[[¢]|*" < [|[¢***||[[l#]|"~" and hence [[¢*[|] = |¢[|" for all n € N.

Now, r(t) = lim,__, [[|t" v = [l£lll. But its known that 7(¢) < w.(t) < [||t]|| and so we have
the desired equality. O
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Lemma 2.8. Ift € £(€) is normal and X ¢ o(t), then

1

e = A1)~ = o)

where d(X\, o (t)) is the distance from X to o(t).

Proof. we have

—1y _ 1 . = 1 = :
r((t—A1) )—SHP{W_A e U(t)} Cif{lp—Apea®)} A1)

So, if t is normal, then (* — A1)~! is normal for A\ ¢ o(¢) and hence

_
d(X,a(t))

=AM = (@ =07 =

O

Theorem 2.4. Ift € Z(€) is normal, then W(t) = Convo(t), where Convo(t) is the convex
hull of the spectrum of t.

Proof. We need only to show W, (t) C Conv o (t). To see this, it sufficient to show that any closed
half-plane which contains o(t) also contain W,(¢). By translation and rotation this reduces to
shown that Rec(t) < 0 implies ReW,(t) < 0.

Let x € € such that ¢ (|z]) = 1 and tx = (a + ib)x + y with a,b are real and x orthogonal
to y. Now from Lemma 2.8,we have ||(t — c)gc||| > dist(c o(t)) > c for all ¢ > 0. Indeed, if
¢ ¢ alt), ) tellle ol = e =072~ el = v el = and o 0~ 1ol 2
m = d(C O'(t)) > c. So that

¢ < It =e)zll® = i@ — )z +ibe + ylI” = (@ — )z + iba||* + ¥ (|yI?)

= (a—o)’+b"+ 9 (ly]?).

Consequently,

2ac < a® + b+ (jy*) .
Since this hold for all ¢ > 0. This implies that Rey (z,tx) = a < 0 as required. O

3 A numerical radius inequality
In order to prove our desired numerical radius inequality, we need the following lemmas. The
first lemma, which is a generalized Schwartz inequality, can be found in [11, Corollary 3.11]

Lemma 3.1. (Geralized-Cauchy Schwartz) For ¢ € w(A), ¥ ({-,-)) is a semi-inner product.
Suppose that t € L (€) and o € [0,1], then

[ (o)) < 6 (o t22) » (18720 7y) ), my e @

If a = %, then
[ ((a, ty))]* < o (2, lt2)) & (. [E°1y)) 2,y € €
Here |t| stands for the positive (semi-definite) operator (t*t)2.
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The second lemma contains a special case of a more general norm inequality that is equivalent
to some Lowner—-Heinz type inequalities. See [6].

Lemma 3.2. Ift,s € Z(€) are positive, then

The third lemma contains a recent norm inequality for sums of positive operators that is
sharper than the triangle inequality.
2
. (3.1)

Now we are in a position to present our refined numerical radius inequality.

t2s3{|| < [ies]) 2.

Lemma 3.3. Ift,s € Z(€) are positive, then

N|=

1
t2s

1 2
e +slll < 5 (IIItI + sl + \/(Illtll = Islh™ + 4‘

Theorem 3.1. Ift € £(€), then

we(t) < 3 (el + |12 (32)

Proof. By Lemma 3.1 and by the arithmetic-geometric mean inequality, we have for every x € &
and ¢ € w(A),

U (et < () o (o 20|
< 5 @ (e la)) + (G, 7))
= S W (1 + 1))
Thus
welt) = sup{lo (n,ta)] o € € € w@), v () = 1)
< s (G, (I + 1)) & € €, € (@), (fal) = 1)
= S+ 10 (33)
Applying Lemmas 3.2 and 3.3 to the positive operators |¢| and [¢*|, and using the facts that
eIl = e 1) = Well and Wi 21 = [}2]], we bave
el + 121 < Well + {1221 (3.4)
The desired inequality (3.2) now follows from (3.3) and (3.4). O

To see that (3.2) is a refinement of the second inequality in [11, Theorem 2.13], one has to
recall that [[|£2[|| < [|t]|? for every t € .Z(€).
It has been mentioned in [11, Theorem 2.17] that if ¢t € .Z(€) is such that t* = 0, then w,(t) =
2]I¢]l. This can be easily seen as an immediate consequence of the first inequality in [11, Theorem
2.13] and the inequality (3.2).
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Corollary 3.2. Ift € Z(€) is such that t* = 0, then w.(t) = 3.

Proof. Combining the first inequality [11, Theorem 2.13] and the inequality (3.2), we have

1

Sl < we) < 3 (ell+ 1211 (3.5)

for every t € £(€). Thus, if t* = 0, then w.(t) = §|[t[| as required. O

The following result is another consequence of the inequality (3.2).

Corollary 3.3. Ift € Z(€) is such that w.(t) = [[t]|, then ||| = el
Proof. Tt follows from the inequality (3.2) that

2ue(t) < It + [
for every t € Z(€). Thus, if w.(t) = |||¢]|, then |||¢]]| < H|t2|||%, and hence [[¢[|* < [|[2[||. But the
reverse inequality is always true. Thus [|£2||| = lItlI® as required. O
4 Power Inequalities For The Numerical Radius

To prove our generalized numerical radius, we need several well-known lemmas.

Lemma 4.1. [9] Let a,b>0,0 < a <1 and p,q > 1 satisfy % + % =1. Then

(i) a®b~* < aa+ (1 —a)b < (aa” + (1 — a)br)%;
1

i @ b (@ b
(m)abép+q§<p+q>,

for all r > 1.

Lemma 4.2. Let t,s € Z(€), and let f and g be non-negative functions on [0,00) which are
continuous such that f(m)g(r) =7 for all T € [0,00) Then

[ (y, tx)| < IF LD g ([ Dyl
for all z,y € € and ¥ € w(A).

Lemma 4.3. [11, Holder-McCarthy inequality in Hilbert C*-Modules] Let t € £ (€), t > 0, then
for every ¢ € G(A)

(i) (¥ <$7t$>g)r < ||$||2(1_T) Y (x,t"x)y forr>1 and
(ii) (% (@, t2)y)" > [ * 77 ¢ (@, 7wy for 0 <7 <1

Theorem 4.1. Let t € Z(€) be self-adjoint. Then

w(t) <

C

(welt2) + 112117

| —
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Proof. We recall the following refinement of the Cauchy—Schwartz inequality obtained by Dragomir
n [1] with slight modification. It says that

(ul) v (o) = | ({u,v) =¥ ((u, 2)) ¥ (z,0)| + [ (u, 2)) ¥ ((2,0))]
=z ¥ ((u, )], (4.1)

for all u,v,z € € with ¢ (|z|) = 1. From inequality (4.1), we deduce that

[ ({1,2)) ¥ ((2,0))] < ; (4 (Jul) & (o) + [ (s, v))]) (4.2)
In the inequality (4.2), put z = = with ¥ (Jz|) = 2 and v = tz, we get
[0 (Gt )) ¥ (G ta))] < 3 (6 () (Jral) + o (17, )]
Hence
[0 (Gt < 5 (¥ (e + 9 (o, %)) ). (4.3)
Taking the supremum over all vectors z € € with ¢ (Jz|) = 1, we get the desired result. O

Theorem 4.2. Let t € Z(€) and let f and g be as in Lemma 4.2. Then we have

> (4.4)

2@ < g (W + |3 7706 + 2o

forallp2q>1wz'th%+%:1.

Proof. Let z € & such that ¢ (|z]) = 1. We have
o (@ 2)| < [1£02)|le0E)]| (by Lemma 4.2)

— (@ L2(2)2) 6 (o, g2 () 2)a)
< 0@ PR E + 2 (g (E))e)

9
2

(by Lemma 4.1(ii))

< %@z; (z, f2(1%))x) + %¢ (2, 97(1(t)?)x) (by Lemma 4.3)

= o (o (e + Lareern) «)).

It follows from the inequality (4.3)that

(
ot < 5 (weal? + 0 ( (o (S 02D+ Lot ?D ) o) ))-

Taking the supremum over all vectors = € € with ¢ (|z|) = 1, we get the desired result. O

The following lemma is useful in the sequel.

Lemma 4.4. [11] Let t € L(€) and ¢ € w(A) then for every x € €

Reyp ((, tw)) = ¢ ((z, Re(t)z)),
where Re(t) denotes the real part of the operator t € L (€).
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Theorem 4.3. Lett,s € Z(€). Then
we(s™t) ||||t*|2+ [s* ]| + ’wv(ts )-
Proof. First of all, we note that
wc(t) = sup ||| Re (1) Il- (4.5)
0€R

For every vector z € € and ¢ € w(A) with ¥ (|z|) = 1, we have
Rey (<x ews*tx» = Rey (sm,ewtm)

= lw (emt + 8) x‘HQ — im (ewt + s) x‘HQ (by Polarization identity)

< et )zl < Sl + s
= H|(€*“975*+8*)|||2 (since [yl = [lly*[l)
= gl e ey e )| (since ol = ool

= tht* + ss* +elts* + efwst*m

IN

1 * * 1 7 *

— |t + ss|| + = ||| Re(e™ts™) ||

4 2

Taking the supremum over all vectors z € € with ¢ (|z|) = 1, we obtain

we(s*8) < S| + 5] + %wc(ts*)

as required. O

The following theorem gives us a new bound for powers of the numerical radius.

Theorem 4.4. Suppose t,s,y € L (&) such that t,s are positive. Then

(03

1

1
we (tYys®) < | =P 4 24T
q

forallOSaSl,erandp,q>1with%—l—%:landpr,qrzl

Proof. For every vector z € € with ¢ (|z| = 1), ¢ € w(), we have

Y ((z, t%ys"z))[" ¥ (%2, ys“x))["

< Myl el sl

< Ml (G 2oa) ) o (@, 5202)®)

< Ayl (;1/1 ((z,t?x >)7p—|— ¢(<x s x>)q§> (by Lemma 4.1(ii))
<

[ (;w(@,t’” N®+ w(<x s7x)) ) (by Lemma 4.3)
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. (1 “ .
< Ayl (p¢(<x,t’”$>)+ ~¢ ((z,5"z >)> (by the concavity of f(r) = )
. 1. 1. @
= e (o (5o + 1) o))
p q
Taking the supremum over all vectors © € € with ¥ (Jz|) = 1, we obtain the desired result. [

Our next result is to find an upper bound for power of the numerical radius of t*ys'~* under
assumption 0 < o < 1.

Theorem 4.5. Suppose t,s,y € L(€) such that t,s are positive. Then
we (1% =) < lyll"llat” + (1 = @)s"||

forall0<a<1andr > 2.

Proof. For every vector x € € with ¢ (|Jz| = 1), ¥ € w(A), we have
[0 (o, toys' ™)) = Ju (¢, ys' )|

<yl el st el
< gl (o, 20w)) v (o, 82070) )
< Al (@t >)a¢(<x )™ (by Lemma 4.3)
< Iyl ((z, (et” + (1 = a)s") ) (by Lemma 4.1(i)).
Hence
v ((z t%ys' = 2)) | < lllyll"y (2, (at” + (1 — a)s") z)). (4.6)
Taking the supremum over all vectors © € € with ¥ (Jz|) = 1, we obtain the desired result. [

Remark 1. Note that our inequality in the previous theorem is a generalization of the second
inequality in Theorem 2.13 of [11] when we set s =¢ = 1.

Now assume that t, s,y € .Z(€). The Heinz mean for matrices are defined by

taysl—a<+t1—ay8
2

H,(t,s) =

in which a € [0,1] and ¢,s > 0, see [7].

The goal of the following result is to find a numerical radius inequality for Heinz means. For
this purpose, we use Theorem 4.5 and the convexity of function f(7) = 7" (r > 1).

Theorem 4.6. Suppose t,s,y € L (€) such that t,s are positive. Then

o, l—a l—a,, o
wg(t%ys%) < wg(t ys —* 4+t ys)
2
r tr 45"
<
< e (S5
< U o 1 el o 1
< (lat™ + (1 = a)s"[| + flas™ + (1 = a)t"|[)

forallr > 2 and o € [0,,1].
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To prove Theorem 4.6, we need the following lemma.

Lemma 4.5. Let t,s € Z(€) be invertible self-adjoint operators and y € £(€). Then

-1 -1
we(y) < we (tys ;rt y8>. (4.7)

Proof. First of all, we shall show the case t = s and y is self-adjoint. Let A € o(y). Then
N€o(y) =otyt™) C W(tyt=1).

Since A € R we have

A = Re(\) € ReW (tyt—1) = W (Re(tyt—1)).

So we obtain . )
_ tys— 4+t "ys

wely) = () < we (Re(tyt™) = w, (2> .

Next we shall show this lemma for arbitrary y € £(€) and invertible self-adjoint operators ¢ and

s. Let gy = (y()* g) and t = (é 2) Then § and ¢ are self-adjoint. Hence we have

tgt—! + Elg{)

we(y) < we ( 5

Here w.(§) = w.(y) and

w e S AN lw 0 tys~t +tlys
c 9 - 9 c Sily*t+5y*t71 0

1
§wc (tys_l + t_lys) .

Therefore we obtain the desired inequality. O

Proof of Theorem 4.6. We may assume that ¢ and s are invertible. By Lemma 4.5, we have

pamtydoctdoa o phoagk, b at
wg(t%ys%> < wg( lrysisy A 1E lRysEs

2

; (taysla + tlaysa>
c 2 .

w

On the other hand, by inequality (4.6), for r > 2 we have
¥ (o, s ™))" < llyll™e ((, (ot” + (1 = a)s") ) -

Hence we have

‘w (<g; (t“ysl‘c' —gtl“"ysa> m>> r . <|¢ ({z, toys'—oz))| ;r I ((x,tlaysax>)|>r
< Wlary=a)l +lo (@i ysa)l

(by the convexity of f(r) =171")
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< |||y2|H [ (2, (at” + (1 = a)s")z)) + 9 ((z, (1 = )t” + as")))]

ol (= 55 0)).

Thus we obtain

o [ toystTo +tiToyse 1"+ s"
ap (B e ()
< @ (we (at” + (1 — @)s™) + we (1 — @)t" + as”))
|Hy||| T T ' s
= 5 (llat” + (1 = a)s" +I(1 — a)t" +as"[) .
O
Theorem 4.7. Let a,b,c,d € L(€) and p,v > 1. Then
W
x . 112 (141 1 Y .
67+ dell® < 227Gt | faf 4 o2 ||| + a2 | (4.8)

Proof. By the Cauchy-Schwartz inequality, we have

¥ ((y, (b"a + d"c) z)) [ [ ((y, b ax)) + & ((y,d"cx))[?
[l ({y, b*az))| + |¢ ({y, d*ca))|)” (4.9)

[ (. a"az))? (g, 5by))? + 0 (o, (o)) ]

IAN

IN

for all z,y € €.

Now, on utilizing the elementary inequality
(Kiko + kaka)® < (k7 +K3) (K3 +K3), K €R(i=1,2,3,4).

we then conclude that

[ (%)) o (ly, b))+ (o) (o )]
= (¥ (v, aaz)) + ¥ (@, "ex))) (¥ (5, bby) + ¥ (9, d"dy)) (4.10)
for all x,y € €.

Utilizing the arithmetic mean - geometric mean inequality and then the convexity of the
function f(7) = 79,6 > 1, we have successively,

(¢ ({z,a”ax)) + 9 ((z, c"cx))) (¥ ({4, b"by)) + ¢ ({y, d"dy))) (4.11)

<4 (w (e, (et + (0)) w>>)i (w (. (o) + @) y>>) :

for all z,y € € with ¥ (|z]) = ¥ (ly]) = 1 and for all x > 1 and v > 1. Consequently, by
(4.9)-(4.11) we have

[ (4, (b"a+ d*c) z))|?
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o1

1

< 227G (p (&, ((a*a)" + (") ) 7 (4 ({3, (B*0)” + (d"d)") )

for all z,y € € with ¢ (|z]) = ¢ (Jy|) = 1. Taking the supremum over z,y € € with ¢ (|z|)

¥ (ly]) = 1 we deduce the desired inequality (4.8).
Remark 2. (i) If 4 = v, then the inequality (4.8) is equivalent to

* % 1112 — * * * *
lI6*a + d*el|™ < 2%72[|(a*a)* + (") ||| (b"b)* + (d*d)*]|

(ii) If b = d = 1, then inequality (4.8) is equivalent to
lla+ el < 227 H|(a*a)* + (c*e)||

for all p > 1.

(iii) If b = a* and d = ¢*, then inequality (4.8) is equivalent to

o+ [I* < 2~ GF2liaa) + (= 10*0)* + (@a)* |

for all u,v > 1.

If we put d = a and ¢ = b in the equality (4.8), we get the following result.

Corollary 4.8. Ifa,b € Z(€). Then

1
v
’

1
5 a+ a*bll* < 22~ G2l + b/ laf?” + 1o

for u,v > 1. In particular
[I6"a + a"b* < 22~ F{[[|af* + o[*]|
forall p>1.
Another particular case that might be of interest is the following one.
Corollary 4.9. For a,d € Z(€), we have

1
w

lla+dlf? < 22~ G2 af + 1| 1> + 1]

for all p,v > 1. In particular
1
llall < el + 1"

for all p>1.

N

O

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

Proof. The proof of the inequality (4.17) is obvious by the inequality (4.8) on choosingb =1,c¢=1

and writing the inequality for d* instead of d.

O



52 Mohammad H.M. Rashid

Remark 3. If t € Z(€) and t = a + ic, i.e., a and ¢ are its Cartesian decomposition, then we
get from (4.13) that
Il < 22 fla® + 2

)

for all p > 1. Also, since a = Re(t) = % and ¢ = Im(t) = %, then from (4.13) we get the
following inequalities as well

1
R < 5 [+ el

and )
IEm @™ < 5 e+ e
for any p > 1.

Theorem 4.10. Let t = a + b be the Cartesian decomposition of t € £ (€). Then for u,v € R,

sup [[ua+ vbl| = we(t). (4.19)
n24v2=1

In particular,

1 * 1 *

it + 27l < wet) and St = ¢ < we(?). (4.20)
Proof. First of all, we note that

w(t) = sup H}Re(ewt)m. (4.21)
0eR

In fact, supgep Re (e ((z,tx))) = | ((z,tz))| yields that
sup |HRe(ei0t)|H = sup w, (Re(ewt)) = w,(t).
OeR OcR

On the other hand, let t = a + ib be the Cartesian decomposition of ¢. Then

eiet + e—iQt*
2

= cosf <t—;t ) —sinf (t;,t ) = (cosf)a— (sinf)b (4.22)

7

. 1
Re (et) = =3 [(cosf + isinf)t + (cos® — isinf)t*]

Therefore, by putting p = cos and v = —sin 6§ in (4.22), we obtain (4.19). Especially, by setting
(u,v) = (1,0) and (u,v) = (0,1), we reach (4.20). O

Remark 4. By using (4.20), we get some known inequalities:

(@) (1l = Nla + @l < llall + ol < 2we(?).
(ii) If ¢ is self adjoint, then ¢ = a. Hence we have ||t]| = ||a|] < w(t) < ||t]| and so w.(¢t) = |||t]||-

(iii) By an easy calculation, we have ££5 = o + b%. Hence,

1 1 1
et el = S la® + 22 < 5 (lall® + el ) < w2o). (4.23)
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(iv) Let u,v € R satisfy pu? + 12 = 1. Then for any vector x € € with ¢ (|z|) = 1, ¢ € w () ,

we have
1
_ a b| |ux a bll|l _|lle b]la 0]]|?
e =5 5] <[5 SJf1=0115 o[ o
1 1 1
2 2 * *
= +0%)||2 = — It + 7|2
lla® +%[1[* = 5l [
Hence we have 1
w(t) = sup ||pa+vb|* < ezt + 2]l (4.24)

p24v2=1

(v) Combining the inequalities (4.23) and (4.24), we obtain Theorem 3.2 of [11].
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