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HANKEL DETERMINANT FOR CERTAIN CLASS OF ANALYTIC

FUNCTION DEFINED BY GEBERALIZED DERIVATIVE OPERATOR

MA‘MOUN HARAYZEH AL-ABBADI AND MASLINA DARUS

Abstract. The authors in [1] have recently introduced a new generalised derivatives op-

erator µn,m
λ1,λ2

, which generalised many well-known operators studied earlier by many dif-

ferent authors. By making use of the generalised derivative operator µn,m
λ1,λ2

, the authors

derive the class of function denoted by H
n,m
λ1,λ2

, which contain normalised analytic uni-

valent functions f defined on the open unit disc U = {z ∈C : |z| < 1} and satisfy

Re
(

µ
n,m
λ1,λ2

f (z)
)′

> 0, (z ∈U ).

This paper focuses on attaining sharp upper bound for the functional
∣

∣a2a4 −a2
3

∣

∣ for

functions f (z)= z +
∞
∑

k=2
ak zk belonging to the class H

n,m
λ1,λ2

.

1. Introduction and Definitions

Throughout this paper, we use the following notation

s = [(1+λ2)(1+3λ2)]m

r = [(1+λ1)(1+3λ1)]m−1

l = (1+2λ2)2m

w = (1+2λ1)2m−2 .

Let A denote the class of functions f of the form

f (z) =
∞
∑

k=0

ak zk , ak is complex number (1.1)

which are normalised and analytic in the open unit disc U = {z ∈C : |z| < 1} on the complex

plane C. Consider S denote the subclass of A normalised analytic univalent functions f of

the form

f (z) = z +
∞
∑

k=2

ak zk , ak is complex number (1.2)
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Let S∗(α), K (α)(0 ≤ α < 1) denote the subclasses of S consisting of functions that are star-

like of order α and convex of order α in U , respectively. In particular, the classes S∗(0) =

S∗and K (0) =K are the familiar classes of starlike and convex functions in U , respectively.

Let be given two functions f (z) = z+
∞
∑

k=2
ak zk and g (z) = z+

∞
∑

k=2
bk zk analytic in the open

unit disc U = {z ∈C : |z| < 1}. Then the Hadamard product (or convolution) f ∗g of two func-

tions f , g is defined by

f (z)∗ g (z) = ( f ∗ g )(z) = z +
∞
∑

k=2

ak bk zk .

Next, we state basic ideas on (x)k , which denotes the Pochhammer symbol (or the shifted

factorial) defined by

(x)k =
Γ(x +k)

Γ(x)
=

{

1 for k = 0, x ∈C\{0},

x(x +1)(x +2)...(x +k −1) for k ∈N= {1,2,3, ...}and x ∈C.

We need the following definitions throughout our investigations.

Definition 1.1. (Noonan and Thomas [15]). For the function f given by (1.1) for q ≥ 1 and

k ≥ 0, the q t h Hankel determinant of f is defined by

Hq (k)=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ak ak+1 ... ak+q+1

ak+1 ak+2 ... ak+q+2

...
...

...
...

ak+q−1 ak+q · · · ak+2q−2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

This determinant has also been considered by several authors. For example Noor in [16]

determined the rate of growth Hq (k) as k → ∞ for functions f given by (1.2) with bounded

boundary. Ehrenborg in [6] studied the Hankel determinant of exponential polynomials. The

Hankel transform of an integer sequence and some of its properties were discussed by Lay-

man in [11].

A classical theorem of Fekete and Szegö functional [7] considered the Hankel determi-

nant of f ∈S for q = 2 and n = 1,

H2(1) =

∣

∣

∣

∣

∣

a1 a2

a2 a3

∣

∣

∣

∣

∣

.

They made an early study for the estimates of
∣

∣a3 −µa2
2

∣

∣ when a1 = 1 and µ real. The well-

known result due to this functional states that if f ∈S then

∣

∣a3 −µa2
2

∣

∣≤















3−4µ, if µ≤ 0,

1+2exp
(

−2µ
1−µ

)

, if 0 ≤µ≤ 1,

4µ−3, if µ≥ 1.
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Hummel [9, 8] proved the conjecture of Singh that
∣

∣a3 −a2
2

∣

∣ ≤
1
3 for the class C of convex

functions. Keogh and Merkes [10] obtained sharp estimates for
∣

∣a3 −µa2
2

∣

∣ when f is close-

to-convex, starlike and convex in U . Here, we consider the Hankel determinant of f ∈ S for

q = 2 and n = 2,

H2(2) =

∣

∣

∣

∣

∣

a2 a3

a3 a4

∣

∣

∣

∣

∣

.

In the present paper, we seek upper bound for the functional
∣

∣a2a4 −a2
3

∣

∣ for functions f be-

longing to the class H
n,m
λ1,λ2

. The subclass H
n,m
λ1,λ2

is defined as the following:

Definition 1.2. Let f be given by (1.2). Then f is said to be in the class H
n,m
λ1,λ2

if it satisfies the

inequality

Re
(

µn,m
λ1,λ2

f (z)
)′

> 0, (z ∈U ), (1.3)

where µn,m
λ1,λ2

f (z) denote the generalised derivative operator which was introduced by the

authors [1] earlier. The generalised derivative operator is given as the following:

Definition 1.3. For f ∈A the generalised derivative operator µn,m
λ1,λ2

is defined by µn,m
λ1,λ2

: A →

A

µn,m
λ1,λ2

f (z) = z +
∞
∑

k=2

(1+λ1(k −1))m−1

(1+λ2(k −1))m c(n,k)ak zk , (z ∈U ),

where n,m ∈N0 = {0,1,2... .} , λ2 ≥λ1 ≥ 0 and c(n,k)=
(

n+k−1
n

)

=
(n+1)k−1

(1)k−1
.

Special cases of this operator includes the Ruscheweyh derivative operator in the cases

µn,1
λ1,0

≡ µn,m
0,0 ≡ µn,0

0,λ2
≡ Rn [18], the Salagean derivative operator µ0,m+1

1,0 ≡ Sn [19], the gen-

eralised Ruscheweyh derivative operator µn,2
λ1,0

≡ Rn
λ

[4], the generalised Salagean derivative

operator introduced by Al-Oboudi µ0,m+1
λ1,0

≡ Sn
β

[2], and the generalised Al-Shaqsi and Darus

derivative operator µn,m+1
λ1,0

≡ Dn
λ,β

[3]. It is easily seen that µ0,1
λ1,0

f (z) = µ0,m
0,0 f (z) = µ0,0

0,λ2
f (z) =

f (z) and µ1,1
λ1,0

f (z) = µ1,m
0,0 f (z) = µ1,0

0,λ2
f (z) = z f ′(z) and also µa−1,0

λ1,0
f (z) = µa−1,m

0,0 f (z) where

a = 1,2,3, ... .

The subclass H
0,1
λ1,0

was studied systematically by MacGregor [14] who indeed referred to nu-

merous earlier investigations involving functions whose derivative has a positive real part.

We first state some preliminary lemmas which shall be used in our proof.

2. Preliminary Results

To establish our results, we recall the following:

Let P be the family of all functions p analytic in U for which Re(p(z))> 0 and be given by

the power series

p(z)= 1+c1z +c2z2
+ ... . (z ∈U ). (2.1)
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Lemma 2.1. (Pommerenke [17]). If p ∈ P. Then the sharp estimate

|ck | ≤ 2 for each k , (2.2)

and
∣

∣

∣

∣

∣

c2 −
c2

1

2

∣

∣

∣

∣

∣

≤ 2−
|c1|

2

2
.

Lemma 2.2. (Libera and Zlotkiewicz [12, 13]). Let the function p ∈ P be given by the powers

series (2.1). Then

2c2 = c2
1 +x(4−c2

1 ), (2.3)

for some x, |x| ≤ 1, and

4c3 = c3
1 +2(4−c2

1 )c1x −c1(4−c2
1 )x2

+2(4−c2
1 )(1−|x|2)z, (2.4)

for some value of z, |z| < 1.

3. Main Result

Our main result is the following:

Theorem 3.3. Let the function f , given by (1.2) be in the class H
n,m
λ1,λ2

. Then

∣

∣a2a4 −a2
3

∣

∣≤
16(1+2λ2)2m

9(n +1)2(n +2)2 (1+2λ1)2m−2
.

The result obtained is sharp.

Proof. We refer to the method by Libera and Zlotkiewicz [12, 13]. For f ∈ H
n,m
λ1,λ2

, it follows

from (1.3) that ∃p ∈ P such that

(

µn,m
λ1,λ2

f (z)
)′

= p(z) = 1+c1z +c2z2
+ ... , (3.1)

for some (z ∈U ). From (3.1) computation and equating coefficients, we obtain

a2 =
(1+λ2)m c1

2(n +1)(1+λ1)m−1

a3 =
2(1+2λ2)m c2

3(n +1)(n +2)(1+2λ1)m−1

a4 =
3(1+3λ2)m c3

2(n +1)(n +2)(n +3)(1+3λ1)m−1











































. (3.2)
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From (3.2), it can be easily established that

∣

∣a2a4 −a2
3

∣

∣=
1

(n +1)2(n +2)

∣

∣

∣

∣

∣

3sc1c3

4r (n +3)
−

4l c2
2

9w (n +2)

∣

∣

∣

∣

∣

. (3.3)

Where s,r, l , w as mentioned before.

Since the function p(z) is the member of the class P simultaneously, we assume without

loss of generality that c1 > 0. For convenience of notation, we take c1 = c (c ∈ [0,2]).

Using (2.3) along with (2.4), we get

∣

∣a2a4 −a2
3

∣

∣ =
1

(n +1)2(n +2)

×

∣

∣

∣

∣

3sc4 +6s(4−c2)c2x −3sc2(4−c2)x2 +6sc(4−c2)(1−|x|2)z

16r (n +3)

−
l c4

9w (n +2)
−

l x2(4−c2)2

9w (n +2)
−

2l c2(4−c2)x

9w (n +2)

∣

∣

∣

∣

,

=
1

(n +1)2(n +2)

∣

∣

∣

∣

(

27sw (n +2)−16r l (n +3)

144r w (n +2)(n +3)

)

c4

+

(

27sw (n +2)−16r l (n +3)

72r w (n +2)(n +3)

)

c2(4−c2)x

−(4−c2)x2

(

[27sw (n +2)−16r l (n +3)]c2 +64r l (n +3)

144r w (n +2)(n +3)

)

+
3sc(4−c2)(1−|x|2)z

8r (n +3)

∣

∣

∣

∣

.

By triangle inequality we have

∣

∣a2a4 −a2
3

∣

∣ ≤
1

(n +1)2(n +2)

{

|27sw (n +2)−16r l (n +3)|c4

144r w (n +2)(n +3)
+

3sc(4−c2)

8r (n +3)

+
c2(4−c2)ρ |27sw (n +2)−16r l (n +3)|

72r w (n +2)(n +3)

+
(4−c2)ρ2 (c −2) (27sw (n +2)c −16r l (n +3)(c +2))

144r w (n +2)(n +3)

}

,

= F (ρ). (3.4)

With ρ = |x| ≤ 1. We assume that the upper bound for (3.4) attains at the interior point of

ρ ∈ [0,1] and c ∈ [0,2], then

F ′(ρ) =
1

(n +1)2(n +2)

{

c2(4−c2) |27sw (n +2)−16r l (n +3)|

72r w (n +2)(n +3)

+
(4−c2)ρ (c −2)(27sw (n +2)c −16r l (n +3)(c +2))

72r w (n +2)(n +3)

}

.
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And with elementary calculus, we can show that F ′(ρ) > 0 for ρ > 0, provided that c−2 < 0 and

(27sw (n +2)c −16r l (n +3)(c +2)) < 0.

Now, our goal is to prove the inequality

[27sw (n +2)c −16r l (n +3)(c +2)] < 0. (3.5)

Now, (3.5) can be simplified to

sw (27n +54)c < r l (16n +48)(c +2). (3.6)

So (3.6) is true provided that our two inequalities

(27n +54)c < (16n +48)(c +2), (3.7)

and

sw < r l , (3.8)

are satisfied.

First, we need to show the inequality (3.7) holds, so from (3.7) we have

11nc +6c < 32n +96,

and immediately implies that

n(32−11c)+6(16−c) > 0.

Thus inequality (3.7) is true.

Next, we want to show the inequality sw < r l holds. This inequality reduces to

[

(1+λ2)(1+3λ2)(1+2λ1)2

(1+λ1)(1+3λ1)(1+2λ2)2

]m
(1+λ1)(1+3λ1)

(1+2λ1)2
< 1. (3.9)

From (3.9), we must show that the inequalities

(1+λ1)(1+3λ1)

(1+2λ1)2
< 1, (3.10)

and
(1+λ2)(1+3λ2)(1+2λ1)2

(1+λ1)(1+3λ1)(1+2λ2)2
< 1, (3.11)

are true.

Now, from (3.10) it is easy to see that

1+4λ1 +3λ2
1 < 1+4λ1 +4λ2

1
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and obviously

λ2
1 > 0.

Hence the proof is done for particular inequality (3.10).

Next we need to prove the inequality (3.11) is true. So, by doing tedious calculations for

(3.11), we shall get

(

1+4λ2 +3λ2
2

)(

1+4λ1 +4λ2
1

)

<
(

1+4λ1 +3λ2
1

)(

1+4λ2 +4λ2
2

)

,

and a straightforward calculation and some simplifications, we can conclude that

λ2
1 −λ2

2 +4λ2
1λ2 −4λ2

2λ1 < 0,

and therefore

(λ1 −λ2)(λ1 +λ2 +4λ1λ2) < 0.

Hence the proof for inequality (3.11) is complete.

Now after satisfying the inequalities (3.5) and c − 2 < 0 we observed that F ′(ρ) > 0 for

ρ ∈ [0,1], implying that F is an increasing function and thus the upper bound for (3.4) cor-

responds to ρ = 1 and so maxF (ρ) = F (1). This contradicts our assumption of having the

maximum value in the interior of ρ ∈ [0,1].

Now let,

G(c) = F (1) =
1

(n +1)2(n +2)

{

|27sw (n +2)−16r l (n +3)|c4

144r w (n +2)(n +3)
+

3sc(4−c2)

8r (n +3)

+
c2(4−c2) |27sw (n +2)−16r l (n +3)|

72r w (n +2)(n +3)

+
(4−c2)(c −2)(27sw (n +2)c −16r l (n +3)(c +2))

144r w (n +2)(n +3)

}

.

Assume that G(c) has a maximum value in an interior of c ∈ [0,2], by elementary calculation

we find

G ′(c) =
c

36r w (n +1)2(n +2)2(n +3)

[

(4−c2) |27sw (n +2)−16r l (n +3)|

+ 27sw (n +2)(2−c2)+16r l (n +3)(c2
−4)

]

. (3.12)

Then G ′(0) = 0 implies the real critical point c• = 0 or

c∗ =

√

64r l (n +3)−54sw (n +2)−4 |27sw (n +2)−16r l (n +3)|

16r l (n +3)−27sw (n +2)−|27sw (n +2)−16r l (n +3)|
.
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Through some calculations we observe that c∗ > 2, however c∗ is out of the interval [0,2]. A

calculation showed that the maximum value occurs at c = 0 or c = c∗ which contradicts our

assumption of having the maximum value at the interior point of c ∈ [0,2]. Thus any maxi-

mum point of G must be on the boundary of c ∈ [0,2].

At c = 0, we have

G(c) =G(0) =
16l

9w (n +2)
,

and at c = 2, we obtain

G(c) =G(2) =
|27sw (n +2)−16r l (n +3)|

9r w (n +2)(n +3)
.

It is obvious that G(0) >G(2) for the two choices of |27sw (n +2)−16r l (n +3)|. Hence G attains

maximum value at c = 0. Therefore the upper bound for (3.4) corresponds to ρ = 1 and c = 0

in which case
∣

∣a2a4 −a2
3

∣

∣≤
16(1+2λ2)2m

9(n +1)2(n +2)2 (1+2λ1)2m−2
.

Equality holds for the functions in H
n,m
λ1,λ2

given by

f ′(z) =
1+ z2

1− z2
.

This concludes the proof of our theorem.

Note that this problem has yet to be solved for certain classes introduced in various stud-

ies (see for examples [5], [21], [22] and [23]). Note that Hankel problems have also been solved

successfully for fractional operator which can be seen in [20].
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