TAMKANG JOURNAL OF MATHEMATICS
Volume 43, Number 3, 455-462, Autumn 2012
doi:10.5556/].tkjm.43.2012.455-462

Available online at http://journals.math.tku.edu.tw/

SECOND HANKEL DETERMINANT FOR A CLASS OF ANALYTIC
FUNCTIONS DEFINED BY A LINEAR OPERATOR

AABED MOHAMMED AND MASLINA DARUS

Abstract. By making use of the linear operator 8%”, meN={1,2,3,..}and A, neNg =

NuU {0} given by the authors, a class of analytic functions S;};” (a,0)(lal<m/2,0s0<1)is

introduced. The object of the present paper is to obtain sharp upper bound for functional
2

|aray - a3].

1. Introduction

Let o denote the class of normalised analytic functions of the form
[e 0]
f@=2z+) a7, (1.1)
k=2
where z € U :={z:zeCand |z| < 1}. Let S denote the class of all functions in «/ which are
univalent.

Robertson [14] introduced the class of starlike functions of order o as follows:

Definition 1.1 ([14]). Leto €0,1], f € Sand
!
%{M} >0, zeU.
f(2)

Then, we say that f is a starlike function of order o on U and we denoted this class by S* (o).

Spacek [15] introduced the class of spirallike functions of type a as follows:

Theorem 1.1 ([15]). Let f € Sand—-7/2 < a < /2. Then f(z) is a spirallike function of type «
onU if

%{eiaw} >0, ze U.
f(2)

We denoted this class by Sq.
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From Definition 1.1 and Theorem 1.1, it is easy to see ([17])that starlike functions of order
o and spirallike functions of type @ have some relationships on geometry. Starlike functions

of order o map U into the right half complex plane whose real part is greater than o by the

mapping Z]{(S) , while spirallike functions of type @« map U in to the right half complex plane

by the mapping e’® Z]]:(()) Since lln(l) el sz(g) = e/®, we can deduce that if we restrict the image

of the mapping e'® Z]]: @ in the right complex plane whose real part is greater than a certain

constant, then the constant must be smaller than cos a.
Libera [16] introduced and studied the class S given as follows:
Definition 1.2 ([16]). Leto € [0,1[, -n/2 <a <m/2 and f € S. Then f € S¥ if and only if

o 2f (2
§R i
{e @

}>0cosa, zeU.

Obviously,
8% =8*(0) and S = S,.
For fj € o/ given by

fi@=z+) a2 (j=1,2),
k=2

the Hadamard product (or convolution) f; * f> of f; and f> is defined by

(i* )@ =z2+) ariarz2z* (zeU).
k=2

We recall that a family of the Hurwitz-Lerch Zeta functions <D(p 9 (2,5,a) ([12]) is defined by

@, , —
o= nZO Vaon (n+ @

(LeC; a,VEC\Za;p,0€R+,p<awhen s, z€C;
p=o0and seC when |z|<1; p=0and
R(s—p+v)>1 when |z|=1),

contains as its special cases, not only the Hurwitz-Lerch Zeta function

o0 n

(PU) 00) —
(D zZ,8,a zZ,8,a)= )
(z,5,a) = (2,5, a) ,;O(n+a)5

V4

but also the following generalized Hurwitz-Zeta function introduced and studied earlier by
Goyal and Laddha ([13]),

n

.1 v Wa 2
D, (2,5,0) = q)u(z,s,a)—n;o R (1.2)
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which, for convenience, are called the Goyal-Laddha-Hurwitz-Lerch Zeta function. Here (x)
is Pochhammer symbol (or the shifted factorial, since (1) = k!) and (x) given in terms of the

Gamma functions can be written as

I'ix+k) if k= 0and x € C\{0};
I'(x) x(x+1...(x+k-1), ifkeNandxeC.

Xk =

It follows that the authors [1] introduced the linear operator Gf,;" f(2) as the following.

For a =1, in (1.2), we consider the function

o< (Wr-1 zF
G(z2) =zPy(z,5,1) =z + —.
(2) =2®y(z,5,1) =2 kzz(k—l)!ks
Thus
G(z)*G(z)(‘l)—#)M, A>-1
—z+ Z (/tzl)llallzk

k=2

Now for s = n,1 € Ng and u = m € N, we define the linear operator

OMf(2) = G2V * f(2). (fed)
(]
1) -
—z+ Mk”akzk. (1.3)
k=2 (m)k—l
In [10], Noonan and Thomas stated that the gth Hankel determinant of the function f of the
form (1.1) is defined for g € N by

Ak Ak+1 " Ak+q+1
Af+1 Ak+2 *° Af+q+2
Hy (k) = S

Ak+q-1 Ak+q " Ak+2q-2
We now introduce the following class of functions.

Definition 1.3. The function f € <f is said to be in the class Sf,;"(a,a), (lal<m/2,0=0<1)if

it satisfies the inequality

An
0 { Lia O [

. }>acosa (zeU). (1.4)

As is usually the case, we let P be the family of all functions p analytic in U for which
Ri{p(z)} >0and
p(z):1+clz+czzz+..., zeU. (1.5)
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It follows from (1.4) that

fe Sﬁ;"(a,a) o el

oN'flz) .
T =[(1-0)p(z)+o]cosa+isina, (1.6)

where « isreal, |a| <m/2 and p(z) € P.
We note that

S(l)'o((x,a) = {f:fedand%{emg} >acosa},

P, 0) = {f:fe,szf‘and%{ei“f'(z)} >0cosa},

$910,0) = 100,00 = $21(0,0) = % := {f : f e  and R {f'(2)} > 0}.

Remark 1.1 ([6]). The subclass 2 was studied systematically by MacGregor ([11]) who in-
deed referred to numerous earlier investigations involving functions whose derivative has a

positive real part.

It is well known ([9]) that for f € S and given by (1.1) the sharp inequality |a3 - a§| <1
holds. This corresponds to the Hankel determinant with g = 2 and k = 1. For a given family
& of functions in «, the sharp bound for the nonlinear functional |az as — a§| is popularly
known as the second Hankel determinant. This corresponds to the Hankel determinant with
g =2 and k = 2. The second Hankel determinant for some subclasses of analytic and nuiva-
lent functions has been studied by many authors (see [2]-[6], [18], [19]).

In the present paper, we seek upper bound for the functional |a2 as — a§| ( fe Sﬁ;" (a, 0)) .

Our investigation includes a recent result of Janteng et al. [2].

To prove our main result, we need the following lemmas.

Lemma 1.2 ([9]). Let the function p € P and be given by the series (1.5). Then, the sharp esti-

mate
ekl <2 (keN)

holds.
Lemma 1.3 ([7] and [8]). Let the function p € P be given by the series (1.5). Then
2c :cf+x(4—cf) (1.7)
forsome x, |x| <1 and
deg=ci+24— e x—ci(d—cHx*+2(4- 21— x1P)z (1.8)

forsome z, |z| < 1.
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2. Main results
We prove the following.

Theorem 2.1. Let the function f given by (1.1) be in the class S;l,;"((x, 0). Then

4m2(1 - 0)2(1 + m)2 cos?a

32 A+ 1)2(A+2)2

|azay - a3| <

(2.1)

The estimate (2.1) is sharp.

Proof. Let f € S:"(a,0). Then from (1.6)we have

) @/l,n
ela# =[(1-0)p(z)+olcosa+ising,

where p € P and is given by (1.5). Then

. % (k+A—1)!(m—1)! 1 ® .
e+ k"aiz =[1-0)1+ ) cpz“)+olcosa+isina.
{ ,;2 M(k+m—2)! k } k; ¢

Comparing the coefficients, we get

A+1 .
uZ”e’o‘az =(1-0)c cosa,
m

A+2)(A+1)
m(m+1)
A+3)(A+2)(A+1)

mim+1)(m+2)

3% = (1-0)cy cosa, > 2.2)

4"e'%q, = (1 -0)c3 cosa.

Therefore, (2.2) yields

m?(1-0)%(1 +m)cos®a
A+1D2(1+2)

(m+2)cics cs(m+1)
2811 +3)  32n(A+2)|

|aza,— a3| =

Since the functions p(z) and p(e®z), (9 € R) are members of the class P simultaneously, we
assume without loss of generality that c¢; > 0. For convenience of notation, we take ¢; = ¢, c€
[0,2]. Using (1.7) along with (1.8), we get

2 2 2
9 _ m7(1-0)"(1+m)cos a{ (m+2) 4 200 2y 2., 2.2
|a2a4 a3| = A4+ 12(A2) M (1+3) [c"+2cc(d—-c)x—c"(4—-c)x
21 2oy mAD) oy 204 2 2_22}
+2c(4 -1 - x)z] A2 [¢*+2c°(@-c)x+x"(4—c)7]

~ m*(1-0)*(1+m)cos®a
B 4A+1)2(A+2)

(m+2) (m+1)

{23n(ﬂt+3) 3211 +2)

{ (m+2)  (m+1) }64
231 +3)  32n(A+2)

}202(4 - cz)x
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cld-cAH-1x?)z|.

_{ c2(m+2) s (m+1)(4—02)}x2(4_62) 2(m+2)
281(1+3)  321(A+2) 231(1+3)

An application of triangle inequality and replacement of | x| by y give

m2(1—0)2(1+m)cosz(x
4+ 1)2(A+2)
(m+2) (m+1)
{23nm+3) - 32n(1 +2)
{02(m+2) (m+1)(4—02)}2 ,.  2(m+2)
+ @G-+
231(1 +3) 32n(1 +2) 231(1 +3)
(m+2) (m+1) | ,
{23nm+3)_32nm+2)}c

|aras—di| <

{ (m+2)  (m+1) }64
23n(A+3) 327(A+2)

} Zczy(4 -c?)

c4-c?Ha- yz)]

B m2(1—0)2(1+m)cosz(x

B 4A+1)2(A+2)

+{ (m+2) B (m+1)
23n(A+3) 32 (A+2)

} Zczy(4 -c?)

c(c—=2)(m+2) (m+1)(4—cz) 5 2 2(m+2) 2 ]
{ 2n(A+3) | 3(A+2) } R T R
=G(c,y), 0=sc=<2and0=sy=<l. 2.3)

We next maximize the function G(c, y) on the closed square [0,2] x [0, 1]. Since

0G _ m*(1-0)*(1+m)cos’a (m+2) (m+1)
ay  AA+12(A+2) {23"(“3) 321 +2)
clc=2)(m+2) (m+1)(4-c?)

{ 2M(A+3) | 3A+2)

}202(4—02)

’

}2y(4—62)

c-2<0,3*"(m+2)(A+2) > 23" (m+1)(1+3), we have dG/dy > 0for0 < c < 2,0 < y < 1. Thus
G(c, y) cannot have a maximum in the interior of the closed square [0,2] x [0, 1]. Moreover, for
fixed c € [0,2], maxo<y<1G(c, y) = G(c, 1) = F(c). Since

m2(1 - 0)2(1 +m) cos?a
4A+1)2(A+2)

{ (m+2)  (m+1)
23n(1+3)  32n(1+2)
cA(m+2) (m+1)@d-c?) )
{23nm+3)+ 321(1+2) }(4_6)]

F(c) =

{ (m+2)  (m+1) }4
2B1(1+3) 32r(A+2) )€

} 2¢%(4-c?)

Then
F'(c)

2m?(1-0)*’(0+m)cos’a [cB=c?)(m+2) cld—c?)(m+1)
- A+ 1D2(A+2) { Br(A+3)  32(A+2) }
so that F’(c) < 0 for 0 < ¢ < 2 and has real critical point at ¢ = 0. Also F(c) > F(2). Therefore,
maxo<.<2F(c) occurs at ¢ = 0. Therefore, the upper bound of (2.3) corresponds to y =1, ¢ =0.

Hence
Am?(1-0)2(1 +m)?cos? a

327(A+1)2(1+2)2

|azay—a3| <
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which is the assertion (2.1).Equality holds for the function

[e 0]

~ (M1 _m[ (1+(1—20)z2 . )
f(Z)_(kgl—(ﬂ+l)k_1k"Z )*e V4 —1—z2 cosa+1i1sina

This completes the proof of the Theorem 2.1. O

Remark 2.1. Fora=0,0 =0,A=m=1,n=0andfora=0,0=0,1=1,m=2,n=1we geta

resent result due to Janteng et al. [2] as in the following corollary.

Corollary 2.1. If f € % then

O | &

|aray— a3| <

The result is sharp.
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