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Certain coefficient problems of S and C.

Neha Verma and S. Sivaprasad Kumar

Abstract. In this current study, we consider the classes S} and C. to obtain sharp
bounds for the third Hankel determinant for functions within these classes. Addi-
tionally, we provide estimates for the sixth and seventh coefficients while establishing
the fourth-order Hankel determinant as well.
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1 Introduction

Consider the set of normalized analytic functions, denoted as A, which are defined on the open
unit disk D := {z € C: |z| < 1}. These functions are represented by the expansion:

f(z)=z+a2® +azz®+---. (1.1)

Within this class, we define a subclass S, which comprises univalent functions. Also, assume a
class of analytic functions defined on the unit disk D, which possess a positive real part. This
class is represented as P whose elements are of the form p(z) = 1 + 220:1 pnz". We use the
notation hi < ho to indicate that function hy is subordinate to hs, which implies the existence of
a Schwarz function w with the properties w(0) = 0 and |w(z)| < |z|, such that hi(z) = ha(w(2)).

The Bieberbach’s conjecture, as discussed in [6, Page no. 17] has made a substantial contri-
bution to the advancement of geometric function theory and the emergence of coefficient-related
challenges. In the wake of this, numerous additional subclasses of S, encompassing starlike func-
tions denoted as S* and convex functions denoted as C, have been introduced. Notably, in 1992,
Ma and Minda [18] introduced the following two classes:

I SO C
§°(p) = {f cas B Ly >} (1.2)
and 02)
C(ga)—{fGA:1+ ) <<p(z)}, (1.3)
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which unifies various subclasses of S* and C, respectively. Here ¢ is an analytic univalent function
satisfying the conditions ¢(2) > 0, (D) is symmetric about the real axis and starlike with respect
to ¢(0) =1 with ¢'(0) > 0. Some of these classes are outlined in Table 1 for ready reference.

The notion of Hankel determinants was introduced in [21]. Remarkably, this concept contin-
ues to captivate the attention of numerous researchers to this very day. Encompassing a broad
spectrum of applications and implications, the gth Hankel determinants Hy(n) of analytic func-
tions belonging to the class A, as represented in (1.1), have been defined under the premise that
a1 takes the value 1. For n,q € N, this definition unfolds as follows:

Qp Ap+1 . Gn4q—1
Ap+1 Ap+2 .. An+q
Hyy=| T (1.9
An+q—1 Gn+tq --- (n42¢—2

The specific expression for the third-order Hankel determinant, denoted as Hs(1), is obtained by
substituting ¢ = 3 and n = 1 into (1.4). This determinant can be precisely defined as:

Hs3(1) = 2aga3a4 — aj — as — a3as + azas. (1.5)

Over the time, several authors established sharp bound of second-order Hankel determinants,
see [1, 4, 10, 11]. However, the task of computing bounds for third-order Hankel determinants,
proves to be considerably more intricate, can be observed from [15, 28, 27]. In the context of the
class 8*, Kwon et al. [15] established the inequality |H3(1)| < 8/9, which has recently been best
improved to the bound of 4/9 in [2, 9] independently. Furthermore, Lecko et al. [16] successfully
derived the bound |H3(1)|] < 1/9, a result that stands as sharp for functions in §*(1/2). For a
more comprehensive exploration of Hankel determinants, interested readers can turn to works
such as [3, 9, 16, 26].

Below, we enlist specific subclasses of §* and C, resulting from diverse selections of ¢(z).
In a similar manner, Mendiratta et al. [19] introduced and analyzed the classes S} and C. by
selecting ¢(z) = €* in (1.2) and (1.3), respectively. These classes are defined as follows:

S::{fG.A: ZJJ:;S) %ez} and Ce:{fEAzl—l—Z]J://;S) <ez}.

Table 1: List of subclasses of S* and C

S*(¢) C(p) o(z) Author(s) Reference
S*[C,D] | C[C,D] | (1+Cz)/(1+ Dz) Janowski [7]
Sia Csa 2/(14+e7%) Goel and Kumar [5]
S, Co 1+ ze* Kumar and Kamaljeet [13]
Sy Cq Z2+ V14 22 Raina and Sokdt [22]
7 Cr V1+z Sokét and Stankiewicz [24]

Numerous studies have addressed radius problems [19] and investigated implications of first
and higher-order differential subordination [20, 25] for the subclasses associated with the expo-
nential function. Zaprawa [27] established bounds for the third Hankel determinants, yielding
values of 0.385 and 0.021 for the classes S¥ and C., respectively, although the results were not
sharp.
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In our present investigation, we contribute by establishing sharp bounds for |Hs(1)| for
functions in the classes SF and C.. Additionally, in the upcoming sections, we will provide
estimations for the bounds of the sixth and seventh coefficients for the functions belonging to the
classes, S} and C. and also evaluate the fourth Hankel determinant.

2 Hankel Determinants for S

2.1 Preliminaries

In this part of the section, we derive the expressions of a; (i = 2,3, ...,7) in terms of Carathéodory
coefficients. For this, let f € S, then there exists a Schwarz function w(z) such that

f(2)

Suppose that p(z) = 1+p1z+p222+--- € P and consider w(z) = (p(z) —1)/(p(z) + 1). Further,
by substituting the expansions of w(z), p(z) and f(z) in (2.1) and then comparing the coefficients,
3, ..

212) _ i), (2.1)

we obtain the expressions of a; (i = 2,3,...,7) in terms of p; (j = 1,2,...,5), given as follows:
1 = X apy 12 - 3 4 12p1po + 48 (2.2)
az = 2191, as = 16 P2 D1 ), G4 = 288 Y41 P1P2 P3| .
as = —— | p} — 12p2py + 24p1ps + 144py |, (2.3)
1152
1
a5 = greos ( — 17p} + 220pTp2 — 480p1p3 — 480pips — 480p2ps + T20p1pa + 5760195), (24)
and
ar = _t 881p% — 13260p7py + 48240p2p3 — 14400p3 + 29040p3p3
8294400

— 106560p; paps — 57600p2 — 56160p2ps — 86400p2ps

+ 69120p1p5>. (2.5)

The formula for p; (j = 2,3,4), which is included in Lemma 2.1 below, plays a vital role
in establishing the sharp bound for Hankel determinants and forms the foundation for our main
results.

Lemma 2.1. [17, 14] Let p € P has the form 1+ %" p,z". Then
2ps = pi + (4 —pi), (2.6)
Aps =pt +2p1(4 —pi)y —p1(4 — PPV’ +2(4 — p)(1 — 7P, (2.7)
and
8ps =pi + (A —p) (i (7 =3y +3) +47) —4(4 = p))(1 — 71*)(p1(v — 1)n
+30* = (1= [n*)p), (2.8)

for some vy, n and p such that || <1, |n| <1 and |p| < 1.
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2.2 Sharp Third Hankel Determinant for S;

In this subsection, we present the sharp bound for |H3(1)| for functions belonging to the class
S
Theorem 2.1. Let f € S, then

|H3(1)| < (2.9)

1
5
This result is sharp.

Proof. Since the class P is invariant under rotation, the value of p; belongs to the interval [0,2].
Let p := p; and then substitute the values of a; (i = 2,3,4,5) in (1.5) from (2.2) and (2.3). We
get

H3(1) = ——— | —211p% + 420p*p, — 1872p°p2 — 5184p5 + 2544p3
3(1) 331776< p° + 420p°py — 1872p~“p; — 5184p; + 2544p°ps3

+ 10944ppops — 9216p§ — TT76p°ps + 10368p2p4> .

After simplifying the calculations through (2.6)-(2.8), we obtain

1
H;3(1) = 2
+(1) = 33776 (ﬂl (p:7) + Ba(p, V)0 + Ba(p, Y)n” + ¢(p, v, n)p>,
fOI' Y1, P S D, Where
Bi(p,7) : = —13p° — 367°p° (4 — p°)* = 3607°p* (4 — p*)* + T29"p* (4 — p*)?

+ 78yp* (4 — p®) + 120p*y* (4 — p?) — 324p*y*(4 — p?)
—1296v°p*(4 — p?),
Ba(p,y) : = 24(1 — |7*) (4 — p*)(17p” + 54yp® + 30py(4 — p*) — 12p7* (4 — p?)),
B3(p,y) - = 144(1 — [y[*) (4 — p*)(—16(4 — p°) — 2]7|*(4 — p*) + %),
¢(p,7,1m) + = 1296(1 — [7[*) (4 — p*)(1 = [n]*)(2(4 — p*)y — p°).

By choosing z = ||, y = |n| and utilizing the fact that |p| < 1, the above expression reduces to
the following:

Ha(0] < g (1800, + el + 1820 I + 6007071 ) < M(p0),

where

1
331776

M(p,z,y) = (Ml(p, z) + Ma(p,2)y + M3(p, x)y* + My(p, z)(1 y2)>, (2.10)

with

Mi(p,x) : = 13p° + 362°p*(4 — p°)? + 3602°p* (4 — p*)* + T22"p*(4 — p*)°
+ 78xp* (4 — p?) + 120p*2? (4 — p?) + 324p*23(4 — p?) + 129622p%(4 — p?),
My (p,x) : = 24(1 — 2%)(4 — p*)(17p° + 5dap® + 30pz(4 — p°) + 12p2®(4 — p?)),
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Ms(p, x) : = 144(1 — 2°)(4 — p*)(16(4 — p*) + 22°(4 — p*) + 9p°x),
My(p, x) - = 1296(1 — x2)(4 — p*)(2z(4 — p*) + p?).

To maximize M (p,z,y) where p € [0,2] and z,y € [0,1], we consider the closed cuboid
U :10,2] x[0,1] x [0,1] with six faces and twelve edges. The maximum will be attained at a point
that is either on the edges, on the faces, or in the interior of the cuboid. Let’s first consider all
the interior points of the cuboid U.

1. Let (p,z,y) be an interior point in U, at which M attains its maximum. Clearly (p,x,y) €
(0,2) x (0,1) x (0,1) and at (p,z,y), we have IM/Op = OM/dx = OM /Oy = 0. Upon
expanding, we get

oM (1-a?) 4 2 2 2

_— = 2 —17 - 24 12 — 12p~(—1 24

o 13694 96x(5 + 2z)y + 5p~ (—17 x+122%)y D= (—17 + 6x + 24z°)y
+ 24p3(—9 + 25y% + 22%y* — 92(—2 + 3y?))

— 48p(—9 + 41y* + 4a%y* — 9 (—4 + 5y2))> =0,

oM (4-p%)
dr 6912

( —12p(=5 — 4z + 152% + 82%)y + p*(12 — 292 — 362% + 242%)y
— 24(14xy® + 423y* + 9(—1 + y?) — 2722 (=1 + y?)) + 3p? (8z3y?
+ 22(54 — 81y%) + 9(—2 + 3y?) + 22(—9 + 23y2))) =0

and

OM _ (4—pA)(1-a?)

= 24px (5 + 2 3(17 + 24z — 122%) +96(8 — 9 2
oy 13394 (px(-i—a:)—i—p( + 24z x”) + 96( x+ )y

—12p%(25 — 27z + 2x2)y> =0.

Upon solving the above equations through the software Mathematica, we get the following
critical points (p,z,y), given by

(—2.09652, 64.2765,2.81098);  (0,0.57735,0); (2.09652,64.2765, —2.81098);
and

(—1.11368,9.14102,2.7143); (0, —0.57735,0); (1.11368,9.14102, —2.7143).

However, none of them belong to the interior of cuboid U. Therefore, we conclude that M
does not attain its maximum value inside U.

Next, we consider the facesp=0,p=2, =0,z =1,y =0 and y = 1 of U for the point
of maxima of M.

2. On the face p = 0: We have z,y € (0,1) and

g2 2222 L g0(] — o2
M0, 2,y) = EZT)BY+ _ 921 =9) g (). (2.11)
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Since

oy 36
Now, 9s1/0y = 0 implies x = +1 or & = 8 or y = 0. Clearly, all these points are not in
(0,1). Thus, M does not attain its maximum on the face p = 0.
On the face p = 2: We have

ds1  (1—a2?)(z— 1)(x—8)y.

13
M(27$7y) = @a

On the face z = 0: We have p € (0,2), y € (0,1) and

z,y € (0,1). (2.12)

13p°% + (4 — p?)(408p3y + 2304y%(4 — p?) + 1296p?(1 — y?)

M(p,0,y) 331776

=: 52(p,Y)-
(2.13)

To determine the points of maxima, we solve dsy/0p = 0 and Jso/dy = 0. After solving
0s2/0y = 0, we get

17p3 )
T 12(25p2 —64) P
In order to have y, € (0,1) for the given range of y, p >~ 1.68218 =: py is required. Based
on calculations, dso/9p = 0 gives

y (2.14)

1728p — 864p> + 13p° + 816p%y — 340p*y — 7872py? + 2400p>y* = 0. (2.15)
After substituting (2.14) into (2.15), we have
21233664p — 27205632p> + 11472192p° — 1613016p” + 2700p° = 0. (2.16)

A numerical calculation suggests that p =~ 1.35596 € (0,2) is the solution of (2.16) i.e.,
p < po, which contradicts the range of p obtained by solving (2.14). Therefore, we con-
clude that sy does not have any critical point in (0,2) x (0, 1).

On the face z = 1: We have p € (0,2) and

12672p% — 2952p* — 41pb
M(p,1,y) = 381776

=: s3(p). (2.17)

Upon solving ds3/0p = 0, we get the solution p &~ 1.43461 =: py. Since, pg € (0,2), it is a
critical point at which s3 attains its maximum value, given by = 0.0398426.
On the face y = 0: We have p € (0,2), z € (0,1) and

1

M(p,@,0) = 33776

(41472x(1 — 2?) + 576p*(9 — 362 + 22 + 462° + 22%)
— 24p*(54 — 1212 — 822 + 17423 + 242%)
+p®(13 — 78z — 84x2 + 362> + 723:4)) =: s4(p, x).
After undergoing further computations such as

05 _ 1
dr 331776

(41472(1 — 2%) — 8294422 + 576p*(—36 + 22 + 1382% + 823)
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+ 24p* (121 + 162 — 5222% — 962°) — p°(78 4 168z — 10822 — 288:03))

and

054 1 5 2 3 4 3 2
Pa_ 6p°(13 — 78z — 8422 + 362° + 722) — 96p3(54 — 121z — 8
ap 331776(“ v = 847 + 3627 4 T207) — 96p°( e

+ 17423 4 242*) 4 1152p(9 — 362 + 2% + 4623 + 23:4))7

we observe from Mathematica that all the real solutions (p, x) of this system of equations
are as follows:

(4.29674,2.34253); (—6.69897, —0.446594); (—6.80446,—0.196205);

and
(6.69897, —0.446594); (—4.29674,2.34253); (—2,—1.00369);
and
(2,—1.00369); (0,0.57735); (1.57971,—0.993637);
and

(6.80446, —0.196205); (0, —0.57735); (—1.57971, —0.993637); (—1.37155,0.946054).

Thus, none of the above critical point lies in (0,2) x (0,1). Therefore, M does not attain
its maximum on this face.

On the face y = 1: We have p € (0,2), z € (0,1) and

M(p,z,1) 2304pa(5 + 22 — 5x? — 22%) — 4608(—8 + T2 4 z*)

1
- 331776(
+ 576p*(—32 + 9z + 3827 4 2% + 62%) — 24p° (17 + 24z
— 2927 — 2423 + 122%) 4+ 96p® (17 — 62 — 412* + 62°
+ 242%) — 24p* (=96 + 41z + 13022 + 1223 + 362)

+p®(13 — 78z — 8427 + 362> + 72x4)) =: s5(p, ).

Upon numerical computations through Mathematica, we have a system of equations

) 1
% = 337776 (2304p((2 — 10z — 62%)x + (5 + 22 — 5 — 22%)) — 4608(14x + 42°)
+ 576p (9 + 76z + 32 + 24a3) — 24p°(24 — 58z — 7222 + 482%)
+ 96p3(—6 — 822 + 1822 + 962°) — 24p* (41 + 260z + 3627 + 1442%)
+ p%(—78 — 168z + 10822 + 2883:3))
and
ss __1 23042 (5 + 2z — 5a? — 22%) + 1152p(—32 + 9z + 3822 + 2% + 62%)
dp ~ 331776
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— 120p* (17 + 242 — 2922 — 2423 + 122%) + 288p? (17 — 62 — 412>
+ 62° + 242) — 96p®(—96 + 412 + 13027 + 122° + 362%)
+ 6p°(13 — 78z — 842 + 362> + 72x4))
having all the real solutions (p, z) given by:
(2.63476,8.33714); (—1.3852,—8.27637); (2,1.53448);
and
(2,—1.00729); (—2.11632,—0.880438); (—2,—0.606518);
and
(2,—-0.166303); (—3.02448,3.66443); (—1.84344,0.190567);
and
(—2,0.613808); (1.76914, —0.679457); (2,—0.997809);
and
(—1.08065,0.86173); (1.36894,—0.996513); (0,0).
Thus, none of the above critical points lies inside the face y = 1.
3. We next examine the maxima attained by M (p,x,y) on the edges of the cuboid U. From

(2.13), we have M (p,0,0) = (5184p% —1296p* +13p%) /331776 =: 1 (p). It is easy to observe
that r{(p) = 0 whenever p = 0 and p = 1.4367 € [0, 2] as its points of minima and maxima,
respectively. Hence,

M(p,0,0) < 0.0159535, p € [0,2].

Now considering (2.13) at y = 1, we get M (p,0,1) = (36864 — 18432p? + 1632p> + 2304p* —
408p° +13p°) /331776 =: 72(p). It is easy to observe that r5(p) < 0 in [0,2] and hence p = 0
serves as the point of maxima. So,

M(p,0,1) < p€0,2].

NeRE

Through computations, (2.13) shows that M(0,0,y) attains its maxima at y = 1. This
implies that

1
M(O?Ovy) < 57 Y€ [Oa 1]

Since, (2.17) does not involve z, we have M(p,1,1) = M(p,1,0) = (12672p* — 2952p* —
41p%) /331776 =: r3(p). Now, r4(p) = 4224p—1968p>3 —41p> = 0 when p = 0 and p = 1.43461
in the interval [0, 2] as points of minima and maxima, respectively. Hence

M(p,1,1) = M(p,1,0) < 0.0398426, p € [0,2].

After considering p = 0 in (2.17), we get, M(0,1,y) = 0. From (2.12), we see that M is a
constant function. Therefore, on the edges, the maximum value of M (p,z,y) is

M(Qal,y) :M(Q,O,y) :M(vavo) :M(an,l) = T,y € [Ovl]

13
5184’
Using (2.11), we obtain M(0,z,1) = (8 — 722 —2*)/72 =: r4(x). A computation shows that
ra(x) is a decreasing function in [0, 1] and attains its maxima at « = 0. Hence
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Again utilizing (2.11), we get M(0,,0) = (1 — 22)/8 =: r5(x). Further, rL(x) = 0, then
x = 1/4/3 =: 8. Clearly, & is a point of maxima for 75(z). Thus

M(0,2,0) < 0.0481125, z € [0,1].

From the above all possible cases, we observe that optimal value of |[H3(1)] is 1/9. Therefore, the
inequality (2.9) holds. Now, consider the following function f; € S, defined by

z t3 4 7
—1 5
fl(z):zexp(/o ¢ ; dt>:2+2+326_|_...’

with f1(0) = 0 and f{(0) = 1, acts as an extremal function for the bound of |Hs(1)| for as =
az =as =0 and ag = 1/3. O

2.3 Fourth Hankel Determinant for S

In this subsection, we derive the bounds of sixth and seventh coefficients and consequently | Hy(1)]
for functions belonging to the class S. We need the following lemma for deriving our results.

Lemma 2.2. [12, 23] Letp=1+ % .. ppz" € P. Then
|pn| <2, n>1,
| < 2, 0<v <,
n — VUDn = .
Ptk = VPnPh 212v — 1|, otherwise,

and
2|y — 4, v <4/3;

[V
2wy /——, 4 .
o /3 <v

We derive the expression of the fourth Hankel determinant when ¢ = 4 and n = 1 are put
into (1.4) as follows :

Ip? — vps| <

H4(1) = a7H3(1) - a6T1 + a5T2 - 61,47—‘37 (218)
where
Ty := ag(as — a%) + as(agas — agaq) — ag(as — asay), (2.19)
T, := as(azas — a3) — as(as — azay) + ag(as — azas), (2.20)
and
Ts := ay(azas — a3) — as(asas — azay) + ag(as — azas). (2.21)

Now, using Lemma 2.2, we first determine the bounds of T, T5, and T5.
By substituting the values of a;’s (i = 2,3, ...,6) in (2.19) using (2.2)-(2.4), we obtain
55296007 = 581p! + 5040p7ps + 25920p3paps — T068pTps + 11040p5py
— 115200p3p4 + 7920p3p3 — 69120p3p3 + 74880p1p2ps — 25920p1 P
+ 57600p1 p2 + 138240pops — 103680p2ps
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or

5529600|T1 | < |p](581p3 4 5040ps3)| + [p3p2(25920p3 — 7068p3)| + |57600p, 3|
+ [p2(7920p3 — 69120p3)| + |p1p2(74880ps — 25920p3)|
+ |p4(11040p% — 115200p3)| + |p5(138240p; — 103680p7)|.

Using Lemma 2.2 and the triangle inequality, we arrive at

1848448 4 4976640, / 1327 + 18432004/ 5% + 442368,/ 52

Ty <
Tl < 5529600

~ 0.616137.

Now, we calculate the bound of T in the similar way by substituting the values of a;’s (i =
2,3,...,6) in (2.20) from (2.2)-(2.4), as follows:
221184007, = 235p% + 8712p3p3 + 37440p3 paps — 1156pSpy — 63360p1 paps
— 14640p?p2 + 161280p1psps — 8400p?ps + 368640p3ps
— 76800p7ps — 8640p3ps + 172800p3ps — 345600p3 — 40320p3p3
— 184320pap3 + 178560p3paps — 184320p; paps

or
22118400|T%| < |p3(235p3 + 8712p3)| + |p3p2(37440ps — 1156p3)| + |8640p2p3 |
+ [p1p5(63360p3 + 14640p7)| + [p1p4(161280ps — 8400p7)|

+ |p5(368640p3 — 76800p3)| + |p4(172800p3 — 345600p, )|
+ [p3(184320py + 40320p3)| + |p1p2(178560p1ps — 184320ps)|.

Lemma 2.2 and the triangle inequality lead us to

6 6 42
7 < 7821568 + 14376960, / 502 + 2949120,/ & + 737280, /42
2l = 22118400

~ 0.543487.

Next, we determine the bound of T3, by replacing the values of a;’s (i = 2,3, ...,6) from (2.2)-(2.4)
in (2.21), as follows:
59719680075 = 6120p5 4 143424p°ps — 425p7 — 9000p°ps + 9000p T ps + 172800p] paps3
+ 302400p3p2 — 2764800p3 4 1036800p3pops + 6220800pap3ps
— 17280p1p3 + 9953280p3ps — 2073600p5ps + 967680p3 paps
— 64512pSps — 1036800p; pap2 — 32400p3p2 — T77600p3paps
+ 1244160p1 p3pa — 259200pips — 97200p3ps + 1555200p1 p3pa
— 4665600p;p3 — 414720p1 paps — 172800p3 ps — 829440pop3
— 829440p3p3 + 414720pTp3 — 622080p3 paps — 4976640p; paps

or

597196800|T3| < |p5(6120p3 + 143424p3)| + |pS(425p3 + 9000p3)| + |17280p]p3
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+ [pip2(9000p7 + 172800p3)| + |p3(302400p5 — 2764800ps3)|

+ |p2p4(1036800pF + 6220800p3)| + |ps5(9953280p3 — 2073600p7 )|
+ |pip2(967680ps — 64512p7)| + [1036800p1p2p3| + [97200p7pa|
+ |p3p3(32400p5 + 777600p3)| + [p1pa(1244160ps — 259200p3)|
+ |p1pa(1555200p3 — 4665600p4)| + |p?po(414720p3 — 622080p,)|
+ |p2(829440p, + 829440p?)| + |172800p3p3|

+ |p1p2(414720p2ps + 4976640ps) |-

By applying Lemma 2.2 and the triangle inequality,

286061056 + 58982400 / % + 99532800 % + 2211840210
597196800

T3] <
=~ 0.665582.

Remark 1. On the basis of the above calculations, the bounds of T}, T5 and T3 are 0.616137,
0.543487 and 0.665582, respectively.

To progress further, our next objective is to determine the bounds of the initial coefficients
a; where ¢ = 2,3,4,5. These bounds, as derived in [27], are summarized in the following remark.

Remark 2. For f € S, |as| < 1, |az| < 3/4, |ag] < 17/36 and |as| < 25/72. Here the first three
bounds are sharp.

Finding coefficient bounds for n > 5 becomes notably more challenging. In order to overcome
this difficulty, we employ Lemma 2.2 to deduce the bounds for the sixth and seventh coefficients
within the class of functions S, as demonstrated in the subsequent theorem.

Theorem 2.2. Let f € S§F. Then |ag| < 587/1800 =~ 0.326111 and |a7| < 1397/4320 ~ 0.32338.

Proof. By suitably rearranging the terms given in (2.4), we have
57600as = 220p3ps — 480p3ps — 480p1p3 + 720p1ps — 17p5 — 480paps + 5760ps.
Using triangle inequality, it can be viewed as

57600ag| < [p¥(220p1p2 — 480p3)| + [p1(720ps — 480p3)| + | — 17p3|
+ |5760p5 — 480p2p3|. (2.22)

Using Lemma 2.2, we arrive at the following inequality:

lag| < % ~ 0.326111.

Similarly, considering (2.5), we have

8294400a; = 881pS — 13260pip, + 48240p2p3 — 14400p35 + 29040p3 ps — 56160p?p4
+ 69120p, ps — 106560p1 paps — 57600p2 — 86400papy.

Through the triangle inequality, it can also be seen as

8294400|ar| < |p}(881p? — 13260p2)| + |p3(48240p7 — 14400p,)|
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+ [p1(69120ps — 106560p2ps)| + [p7(29040p1ps — 56160p4)|
+ [57600p3| + |86400papa|.

Lemma 2.2 implies that |a7| < 1397/4320 ~ 0.32338. O

Theorem 2.3. Let f € S, then
|Hy(1)| < 0.29059.

The proof of the above theorem follows by substituting the values obtained from Theorem
2.1, Remark 1, Remark 2 and Theorem 2.2 in (2.18), therefore, it is skipped here.

3 Hankel Determinants for C,

3.1 Preliminaries

In this segment, we express the expressions of initial coefficients a; (i = 2,3,...,7) involving
Carathéodory coeflicients. When f € C., we replace the L.H.S of (2.1) by 1+ zf"(2)/f'(z) and
arrive at the following equation
14+ Zf”(Z) — w(z)
f'(2)
Proceeding on the similar lines as done for the class SF, we obtain a; (1 = 2,3,...,7) in terms of
p; (j=1,2,...,5), we obtain

1 1 1
as = th as = = (P% + 4}72)7 ay = TiE3 ( — pi’ + 12p1p2 + 48p3), (31)
1/, ,

5= Toan —12 24p1ps + 144py ), 39
“ 5760 (pl pip2 + 24p1ps + p4> (3.2)

= — 17p% + 220p3ps — 480p1p3 — 480p3ps — 4 2

6 = 345600 ( py + 220pips — 480p1p; — 480pips — 480p2ps + 720p1pa
+ 5760p5> , (3.3)
and
1
%7 = 55060800 (881?? — 13260p}ps + 48240p7p3 — 14400p3 + 29040p%ps — 106560p1pops

— 57600p3 — 56160p?ps — 86400p2ps + 69120p1p5). (3.4)

3.2 Sharp Third Hankel Determinant for C.

In this subsection, we establish the sharp bound of |H3(1)| for functions that belong to the class
Ce.
Theorem 3.1. Let f € C,, then

Hy(1)] < (3.5)

This bound is sharp.
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Proof. We follow the same steps which were used to prove Theorem 2.1. The values of a;s
(i=2,3,4,5) from (3.1) and (3.2) are substituted into (1.5). Thus

1

Hs(1) = ———— | — 173p% + 552p*ps — 1872p%p2 — 3840p3 + 2208p°3
3(1) 663552()( p° + 552p°po P p3 p5 + p° 3
+ 8064ppaps — 11520p2 — 6912p*py + 13824p2p4>.

Using (2.6)-(2.8) for simplification, we arrive at

1
Ha(1) = om0 (02) + a1+ aalp )i + vl 7000 ).
where v,n,p € D,
ar(p,y) : = =5p° — 1807°p?(4 — p*)* + 1536° (4 — p*)® — 240¢°p?(4 — p?)*

+ 1449*p? (4 — p°)? + 129p* (4 — p?) — 120p**(4 — p?),
az(p,y) 1 = (1= [y*)(4 — p*)(240p® — 288py(4 — p*) — 5T6py*(4 — p?)),
as(p,7) : = (1= |y[*)(4 — p*)(—2880(4 — p°) — 576]|*(4 — p*)),
b(p,y,m) = = 34567(1 = [4*) (4 = p*)*(1 = [n]?).

Since |p| < 1, also for the simplicity of the calculations, assume x = |y| and y = ||,

(1) o1 (0,7 + oy )y + lavs(py Iy + zb(m,n)) < Np,z,y),

<1
6635520

where

N(p,z,y) = <N1 (p,z) + Na(p,z)y + N3(p, z)y* + Na(p, ) (1 — y2)>7 (3.6)

1
6635520
with

Ni(p,x) : = 5p° + 180x2p* (4 — p?)? + 15362 (4 — p?)? + 2402°p? (4 — p*)?
+ 1442%p? (4 — p»)? + 122p* (4 — p?) + 120p 22 (4 — p?),

Ny(p,x) : = (1 — 2%)(4 — p°)(240p° + 288px(4 — p*) + 576pa* (4 — p?)),

Na(p,z) : = (1 —2%)(4 — p*)(2880(4 — p?) + 5762 (4 — p?)),

Nu(p, ) : = 3456x(1 — 2%) (4 — p*)2.

T
€T

We must maximise N(p,z,y) in the closed cuboid V : [0,2] x [0,1] x [0,1]. By identifying the
maximum values on the twelve edges, the interior of V', and the interiors of the six faces, we can
prove this.

1. We start by taking into account, every interior point of V. Assume that (p,z,y) € (0,2) x
(0,1) x (0,1). We partially differentiate (3.6) with respect to p,  and y to locate the points
of maxima in the interior of V. We obtain

ON  (1-a?)

Op 138240 1+2 (= 122%)y — 12p*(—5 + 122 + 242°
dp 138240 <96x( +2z)y + 5p*(=5 + 62 + 120)y — 12p*(=5 + 122 + 242y
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—192p(59° + 2%y 4 62(1 — y?)) + 48p3 (5y% + x2y? + 62(1 — yz))>,

ON _ (4-p°)
dr 138240

(12p(1 +4a — 32% — 82°%)y + p* (=3 — 17z + 92% + 242%)y
— 48(4ay® + 223y + 3(—1 + ?) + 922 (1 — »?))

+uﬁ@mﬁ+zﬁf—sa—y%+9ﬁu—y%0

and

ON _ (12— p?)

a0 24 14+ 22) — 3(_ 12 2 . 9
Ay 138240 ( p(l + 2x) — p* (=5 + 62 + 1227) + 96(5 — 6z +27)y

— 24p*(5 — 6z + acQ)y>

By solving ON/0p = ON/Ox = ON/Qy = 0, we get the common solutions (p, z,y) using
the mathematical software, Mathematica as

(0,—0.57735,0); (—1.35285,6.98337,2.99877); (1.35285,6.98337, —2.99877);
and
(2.01517,5.04402, —1.09029); (—2.01517,5.04402,1.09029); (—2.08219,0.122286, —1.29086);
and
(0,0.57735,0); (—1.92198, —0.0913794, 0.863409); (1.92198, —0.0913794, —0.863409);

and
(—2,—1,-0.171635); (2.08219,0.122286, —1.29086).

However, none of them belong to the interior of cuboid V. Therefore, we conclude that N
does not attain its maximum value inside V. Next, we proceed to find the critical points
on each of the interior of faces of V.

2. Now, we study the interior of each of the six faces of the cuboid V.
On the face p = 0: We get z,y € (0,1) and

y2(15 — 1222 — 32*) + 182(1 — y?) — 223(5 — 9y?)
2160

N(0,z,y) = =:c1(z,y). (3.7)

e (1= 2+ 1))
dg Yyl —z)*(z+1)(b—x
- = € (0,1
6y 360 Y x7y ( i )’
Since, dc1 /0y becomes zero only when x = £1 or at = 5 or at y = 0. Clearly, all these
points are not in (0,1). Thus, ¢; does not have any critical point in (0, 1) x (0, 1).
On the face p = 2: We obtain

N(2,z,y):
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On the face z = 0: We have p € (0,2), y € (0,1) and

(p* + 96y — 24p%y)?

397101 =:c2(p,y)- (3.9)

N(p,0,y) =

We solve dca/0p = 0 and Oca /Ay = 0 to locate the points of maxima. On solving dca/dy =
0, we obtain
P

VT

= Yp.

Upon calculations, we observe that such y, does not belong to (0,1). Consequently, no
such critical point of ¢ exists in (0,2) x (0,1).
On the face z = 1: We get p € (0,2) and

24576 — 3264p? — 2448p* + 437p°
6635520 -

N(p,1,y) = :c3(p). (3.10)

After computing dcz/dp = 0, we notice that cs has no critical point in (0, 2).
On the face y = 0: We have p € (0,2), z € (0,1) and

1
N(p,z,0) = geeeers (6144:5(9 — 52%) +192p*x(—144 + 152 4 1002% + 122%)
— 48p*x(—73 + 20z + 8027 + 242°)

+ p%(5 — 122 + 6022 + 240> + 144334)) =:cy(p, ).

Calculations through Mathematica lead to

dey 1 9 ) , )

S = | — 6144 144(9 — 192p°z (15 + 2

dx 6635520( 6144027 + 6144(9 — 52%) + 192p”x(15 + 200z + 3627)
— 48p* (20 + 160z + 722°) + 192p* (—144 + 152 + 1002°
+ 120z + 7202” + 576x3))

and
Ot L (384pa(—144 1 152 1 1002° + 120%) — 192p"x( 73 + 200
dp 6635520

+ 8022 + 2423) + 6p°(5 — 122 4 6022 + 2402° + 1441:4))

having real solutions (p, ) as follows:
(2.04471,3.58205); (—2.03352,—2.98401); (1.47565,1.6649);

and
(0,0.774597);  (0,—0.774597); (2.03352,—2.98401);

and
(2,0.307071); (—2.04471,3.58205); (—2,0.307071);
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and
(2,—-0.407071); (—2,-0.407071); (—1.47565,1.6649).

Thus, no solution exist for the system of equations, dcy/0x = 0 and dcy/Op = 0 in

(0,2) x (0,1). On the face y = 1: We have p € (0,2), x € (0,1) and

<5p6 + (4 — p?)(12p*x + 120p*2? + 180p% (4 — p?)a?

1
Npzl)=—
(P, 1) = 5635520

+ 1536(4 — p*)a® + 240p* (4 — p?)a® + 144p? (4 — p*)a*
+576(4 — p*)(5 4+ ) (1 — %) +48(1 — 2%)(p*(5 — 6z
— 122%) + 24pz(1 + 23:)))) =: ¢5(p, x).

After numerical computations done through Mathematica, we note that the real solutions

(p, x) of the system of equations

des _ (4—p?)
dr 552960

(7683:(—2 + 22 — 2%) + 24p*x(21 — 62 + 162%) + 96p(1 + 4o — 32°

— 82%) — 8p%(3 + 172 — 927 — 242%) + p*(1 — 10z — 6027 — 483:3))

and
des 1 2 3 4 2 3 4
a—pzm 768x(1 4 22 — x* — 22°) — 40p™(5 — 62 — 172° + 62° + 1227)
+96p%(5 — 122 — 292° + 1223 + 242) — 64p(120 — 11122
+ 442% — 362%) + 32p®(60 + 2 — 682% — 82° — 362%)
+p° (5 — 122 4 60z* + 2402° + 1443:4))
are
(2,—17.9049); (23.831,0); (15.9898, —0.0325369);
and
(2, -8.75);  (8.16565, —2.24092);  (2.0765,1.0018);
and
(—1.84536, —0.877352); (—2,—0.775417); (2.09099, 0.254719);
and
(0,0); (2.09338,0); (—1.92434,0);
and

(—0.644804,1.10265);  (—2,0.725417).

Thus, we conclude that these two equations dcs/0x = 0 and dc; /Op = 0 also do not assume
any solution in (0,2) x (0, 1).

3. Next, we check the maximum values of N(p,z,y) obtained on the edges of the cuboid V.
From (3.9), we have N(p,0,0) = p®/1327104 =: t1(p). It is easy to observe that ¢} (p) = 0
for p = 0 in the interval [0,2]. The maximum value of ¢;(p) is 0. Now, (3.9) reduces to
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N(p,0,1) = (96 — 24p? + p3)? /1327104 =: t5(p) at y = 1. Since, th(p) < 0 in [0, 2], hence
p = 0 is the point of maxima. Thus

N(p,0,1) < p€[0,2].

1
144°
Through computations, (3.9) shows that N(0,0,y) attains its maxima at y = 1. Hence

N(0,0,y) y € [0,1].

1
< FYVE
— 144
Since, (3.10) is free from x, we have N(p,1,1) = N(p,1,0) = (24576 — 3264p> — 2448p* +
437p%) /6635520 =: t3(p). Now, we observe that t4(p) < 0 in [0,2], consequently, t3(p)
attains its maximum at p = 0. Hence

N(p,1,1) = N(p,1,0) < 0.0037037, p € [0,2].

On substituting p = 0 in (3.10), we get, N(0,1,y) = 1/270. The equation (3.8) does not
contain any variable such as p, x and y. Therefore, the maxima of N(p,z,y) on the edges
is given by

1
20736’
Using (3.7), we obtain N (0, x,1) = (15—122248x3—32%) /2160 =: t4(x). Upon calculations,
we see that ¢4 is a decreasing function in [0, 1] and its maximum value is achieved at = = 0.
Hence

1
< — .
N@O.2,1) < 72w e,

On again using (3.7), we get N(0,x,0) = 2(9—522)/1080 =: t5(x). On further calculations,
we get tf(x) = 0 when z = 1/3/5, the point of maxima. Thus

N(0,2,0) < 0.00430331, x € [0,1].

From the above all possible cases, we observe that optimal value of |H3(1)| is 1/144. Therefore,
the inequality (3.5) holds. Now, consider the following function f2 € C., defined by

: Vet —1 24 527
fz(z)—/o (exp(/o " dt))dy—z—f—12_|-252_|_...7

with f2(0) = f5(0) — 1 = 0, plays the role of an extremal function for the bounds of |H3(1)]
having values a3 = a5 = 0 and ag = 1/12. O

3.3 Fourth Hankel Determinant for C,

In this part of the section, we derive the bound of |Hy(1)| including finding the bounds of sixth
and seventh coefficients for functions in the class C.. By selecting ¢ =4 and n = 1 in (1.4), the
expression of Hy(1) can be obtained for functions in the class Ce, which is given as follows:

H4(1) = a7H3(1) —agUy + asUs — aqUs. (3.11)

Here
U, .= a6(a3 — CL%) + ag(a2a5 — a3a4) — a4(a5 — a2a4), (3.12)
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Us := az(azas — ai) —as(as — azaq) + ag(ag — azas), (3.13)
and

Us := aq(azas — ai) — as(agas — agaq) + ag(ag — azag). (3.14)

We start by determining the bounds for Uy, Us, and Us.
By substituting the values of a;’s (i = 2,3,...,6) in (3.12) from (3.1)-(3.3), we obtain
1327104000, = 487p7 — 6304p5py + 11440p3 p2 — 24960p, pi + 5280p]p3
+ 34560p1 p2 + 19200p?paps — 53760p2ps + 5T600p1 paps
— 138240p3p4 + 184320paps — 92160p>ps + 8640p3py,

can also be viewed as the following, due to the triangle inequality,

132710400|U; | < |p5(487p3 — 6304ps)| + |p1pa(11440pT — 24960ps)|
+ [p1p3(5280pF + 34560p3)| + |p2p3 (19200pT — 53760ps )|
+ |p4(57600p1p2 — 138240p3)| + |ps(184320p, — 92160p3)|
+ [8640p3 py|.

Using Lemma 2.2, we arrive at

4121

Uyl <
Ul < 345600

~ 0.0119242.

We replace the values of a;’s (i = 2,3,...,6) from (3.1)-(3.4) in (3.13) and proceed on the
same lines to obtain the bound of Us
15925248000, = 463p5 — 2732pSps — 23472p1p3 — 14400pip3 + 14592p3ps
— 108288p3p3 + 92928p3pops — 138240p; paps + 1105920psps
— 25344pps + 276480p3ps — 995328p3 + 373248p3 paps
— 276480p1 paps + 221184p1 p3ps — 161280p3 ps — 322560pap3,

by implementing the triangle inequality,

1592524800|Us| < |p8(463pT — 2732ps)| + |pipa(—23472p7 — 14400p,)|
+ [p2p3(14592p3 — 108288p3)| + |161280p3 ps|
+ [pTpa(373248py — 25344p?)| + |p4(276480p3 — 995328p,)|
+ |322560p2p3| + |p1p2ps(92928p7 — 138240p;)|
+1221184p1p3pa| + |ps(1105920p3 — 276480p1p2)|-

By applying Lemma 2.2, we have

24947200 + 866304, / 222

Us| < =~ 0.0168348.
U2l < 1592524800
Again, substitute the values of a;’s (i = 2,3,...,6) from (3.1)-(3.4) in (3.14) and proceed to

calculate the bound of Us in the same manner.

38220595200U3 = 11424p% — 128256pSps + 10812p] ps — 503p] + 69120p] p3
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+ 552960p3p3 — 42192p3p3 — 181440p3p3 4 206208 paps

— 11664pSps + 1889280p3paps — 1658880p1 paps — 2211840pip3
— 2211840pap3 + 283392p5p3 — 967680p1paps + 3317760p1 p3ps
— 483840p’ps + 1271808p3 pops — 1175047 ps + 1658880p1 p2pa
— 5971968p1p2 + 6635520pap3ps — 331776p2p3ps + 26542080psps
— 6635520p1paps + 244224pTps — T94880p3 paps — 2764800p3

— 829440p3pops — 3870720p3ps,

can be visualized as the following with the help of the triangle inequality,

38220595200|Us| < |pb(11424p? — 128256p2)| + |p? (10812py — 503p?)|
+ |p3p3(69120pT + 552960p2)| + |pip3(42192pF + 181440p,)|
+ |pip3(206208ps — 11664p?)| + |p1p2ps(1889280p7 — 1658880p,)|
+ |p3(2211840p3 + 2211840p2)| + |p1p3(283392p3 — 967680p2)|
+ |p1p4(3317760ps — 483840p3)| + |p3pa(1271808py — 117504p7)|
+ |p1p4(1658880p3 — 5971968p4)| + |p3p4(6635520p, — 331776p7)|
+ |p5(26542080p3 — 663552012 )| + |244224p3ps — 794880p3paps
— 2764800p3 — 829440p; paps — 3870720p7ps|.

By applying Lemma 2.2, we get

560108544 + 106168320,/ %
38220595200

Remark 3. The bounds of Uy, Us; and Us, based on the above calculations, are 0.0119242,
0.0168348, and 0.015406, respectively.

Us| < ~ 0.015406.

The bounds of a;’s (i = 2,3,4,5) for functions in the class C, are obtained in [27], presented
below in the following remark:

Remark 4. For f € C., |az] < 1/2, |as| < 1/4, |as| < 17/144 and |as| < 5/72. The first three
bounds are sharp.

Next, we calculate the bounds of the sixth and seventh coefficient of functions belonging to
the class C. to establish our main result along the lines of Theorem 2.2.

Theorem 3.2. Let f € C.. Then |ag| < 587/10800 = 0.0543519 and |az| < 0.0343723.
Proof. A suitable rearrangement of the terms given in (3.3) provides us

345600a¢ = 5760ps — 480paps + 720p1ps — 480p1p§ — 17p‘;’ + 220]3:{’172 - 480pfp3.
Further, through the triangle inequality, it can be viewed as

345600]ag| < [5760ps — 480p2ps| + |p1(720ps — 480p3)| + |17p}|
+ [p?(220p1p2 — 480p3)|.
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Using Lemma 2.2, we arrive at

o987

Similarly, considering (3.4), we have

58060800a; = 881pS — 13260p]ps 4 48240p2p3 — 106560p1paps + 29040p3ps
— 57600p3 + 69120p1ps — 56160pTps — 86400paps — 14400p3.

It can also be seen as with the aid of the triangle inequality,

58060800|az| < [p}(881p? — 13260p2)| + |p1p2(48240p;pa — 106560p3)|
+ [p3(29040pF — 57600p3)| + |p1(69120ps — 56160p1p4)|
+ |p2(86400p, + 14400p3)|. (3.15)

Lemma 2.2 takes us at

2014080 + 921600/ 15

laz| < £3060800 ~ 0.0403246.

O

We obtain the following result by omitting the proof as it directly follows from Theorem 3.1,
Remark 3, Remark 4, Theorem 3.2 and (3.11).

Theorem 3.3. Let f € C,, then
|H(1)| <0.00101775.
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