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Conformal bounds for the first eigenvalue of the

(p, q)-Laplacian system

Mohammad Javad Habibi Vosta Kolaei and Shahroud Azami

Abstract. Consider (M, g) as an m-dimensional compact connected Riemannian

manifold without boundary. In this paper, we investigate the first eigenvalue λ1,p,q
of the (p, q)-Laplacian system on M . Also, in the case of p, q > n we will show that

for arbitrary large λ1,p,q there exists a Riemannian metric of volume one conformal

to the standard metric of Sm.

Keywords. Eigenvalue, the (p, q)-Laplacian system, geometric estimate, Riemannian met-
rics.

1 Introduction

Finding bounds of the eigenvalue for the Laplacian on a given manifold is a key aspect in Rie-
mannian geometry. As an example, studying eigenvalues that appear as solutions of the Dirichlet
or Neumann boundary value problems for curvature functions, is interesting topic in geometric
analysis. In recent years, because of the theory of self-adjoint operators, the spectral properties
of linear Laplacian studied extensively. As an important example, mathematicians generally are
interested in the spectrum of the Laplacian on compact manifolds with or without boundary or
noncompact complete manifolds due to in these two cases the linear Laplacians can be uniquely
extended to self-adjoint operators (see [8, 9]).
Since the study of the properties of spectrum of Laplacian (specially in Dirichlet condition) in
infinitely stretched regions has applications in elasticity, electromagnetism and quantum physics,
it attracts attention of many mathematicians and physicists. Recently Mao has proved the exis-
tence of discrete spectrum of linear Laplacian on a class of 4-dimentional rotationally symmetric
quantum layers, which are noncompact noncomplete manifolds in [12].

ConsiderM as a compact, complete, simply connected Riemannian manifold. Let u :M −→
R be a smooth function on M or u ∈ W 1,p (M) where W 1,p (M) is the Sobolev space. The p-
Laplacian of u for 1 < p <∞ is defined as

∆pu = div(|∇u|p−2∇u) (1.1)

= |∇u|p−2∆u+ (p− 2)|∇u|p−4(Hess u)(∇u,∇u),
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where

(Hess u) (X,Y ) = ∇ (∇u) (X,Y ) = X. (Y.u)− (∇XY ) .u X, Y ∈ χ (M) .

Although the regularity theory of the p-Laplacian is very different from the usual Laplacian,
many of the estimates for the first eigenvalue of the Laplacian (for example for p = 2) can be
generalized to general p. As an important example in [13], you can find remarkable results in a
case of closed manifolds with bounded Ricci curvature from below by (m− 1)K where K > 0.
The special case K = 0 and general case K ∈ R are studied in [16] and [15], respectively.

Consider g as a Riemannian metric on M . The conformal class of g defined as

[g] = {fg|f ∈ C∞ (M) , f > 0},

also

G (n) = {γ ∈ Diff (Sn) |γ∗can ∈ [can]},

for arbitrary natural n, denote the group of conformal diffeomorphisms of (Sn, can). It was proved
before, for n big enough the set

In (M, [g]) = {ϕ :M → Sn|ϕ∗can ∈ [g]},

of conformal immersions from (M, g) to (Sn, can) is nonempty. The spectrum of eigenvalues of
geometric operators were studied before. As an example, for m-dimensional closed connected
Riemannian manifold M with metric g

Spec (g) = {0 = λ0 (g) < λ1 (g) ≤ λ2 (g) ≤ ... ≤ λk (g) ≤ ...},

where λk (g) denotes the k-th eigenvalue of Laplace operator. Furthermore,

λck (M, [g]) = sup
g̃∈[g]

λk (g̃) = sup{λk (g̃)V (g̃)
2
m },

where g̃ is the metric conformal to g and V (g̃) is the volume element associated to g̃.

The conformal bound for the first eigenvalue of p-Laplacian system (1.1) was studied before
in [14].

Theorem 1.1 (Matei [14]). Let M be an m-dimensional compact manifold and 1 < p ≤ m. If
g denotes the Riemannian metric on M and n ∈ N then

λ1,p (M) ≤ m
p
2 (n+ 1)

| p2−1|
V c
n (M, [g])

p
m ,

where

V c
n (M, [g]) = inf

ϕ∈In(M,[g])
sup

γ∈G(n)

vol
(
M, (γ ◦ ϕ)∗ can

)
.

2 The (p, q)-Laplacian system

The (p, q)-elliptic quasilinear system is defined as −∆pu = +λ|u|α|v|βv in M ,
−∆qv = +λ|u|α|v|βu in M ,
u = v = 0 (Dirichlet) or ∇δu = ∇δv = 0 (Neumann) on ∂M,

(2.1)
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where δ is the outward normal on ∂M , p > 1 , q > 1 and α, β are real numbers such that

α > 0, β > 0,
α+ 1

p
+
β + 1

q
= 1.

In this situation λ is called an eigenvalue of system (2.1) and (u, v) are eigenfunctions correspond-
ing to λ.

In the term of the first nontrivial eigenvalue of the (p, q)-elliptic quasilinear system (2.1),
the first Neumann eigenvalue is defined as

µ1,p,q = inf
{ 1

A

(
α+ 1

p

∫
M

|∇u|p + β + 1

q

∫
M

|∇v|q
)
; u, v ∈W 1,p (M) \ {0},B = E = 0

}
,

where

A =

∫
M

|u|α+1|v|β+1,

and also

B =

∫
M

(
u|u|p−2 + |u|α|v|βv

)
,

E =

∫
M

(
v|v|q−2 + |u|α|v|βu

)
.

N. Zographopoulos in [17] has discussed the existence and uniqueness of the solution of the
(p, q)-elliptic quasilinear system (2.1). This type of systems have been found in different cases
in physics. For example to the study of transport of electron temperature in a confined plasma
and also to the study of electromagnetic phenomena in nonhomogeneous super conductors, you
can see [3, 6]. Also for more details in electrochemistry and nuclear reaction, you can find useful
results in [4] or [5], respectively.

Let (M, g) be an m-dimensional compact Riemannian manifold. The first Dirichlet eigen-
value of the system (2.1) is defined as

λ1,p,q (M) = inf
u,v ̸=0

{ 1∫
M

|u|α+1|v|β+1dv

[α+ 1

p

∫
M

|∇u|pdv + β + 1

q

∫
M

|∇v|qdv
]}
,

where

(u, v) ∈W 1,p
0 (M)×W 1,q

0 (M) \ {0}.

As an example the second author has studied the first eigenvalue of the system (2.1) in [1]. In this
paper by inproving methods from Matei [14], we are going to study the first Dirichlet eigenvalue
of the system (2.1).

3 The first case, p, q ≤ m

In this section we will prove that
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Theorem 3.1. Consider M as an m-dimensional compact Riemannian manifold and also 1 <
p, q ≤ m. If λ1,p,q denotes the first eigenvalue of the (p, q)-Laplacian system (2.1) and p ≥ q,
then for arbitrary natural n we get

• If p, q ≥ 2, then

λ1,p,q (M) ≤ (n+ 1)
1
2p

2

m
p
2 (V c

n (M, [g]))
p
m .

• If 1 < q, p < 2, then

λ1,p,q (M) ≤ (n+ 1)
− 1

2 q(q+1)
m

q
2 (V c

n (M, [g]))
q
m .

• If 1 < q < 2 ≤ p then

λ1,p,q (M) ≤ (n+ 1)
1
2 (p

2−q)m
q
2 (V c

n (M, [g]))
q
m .

Before giving proof for this theorem, first of all, we consider two following lemmas.

Lemma 3.1 (Chebyshev’s inequality [2]). Consider {ai}ni=1 and {bi}ni=1 as two decreasing
real sequences, then

1

n

n∑
i=1

aibi ≥

(
1

n

n∑
i=1

ai

)(
1

n

n∑
i=1

bi

)
.

Lemma 3.2. Let ϕ : (M, g) → (Sn, can) be a smooth map which its level sets are zero measure,
then there exist γ, δ ∈ G (n) and p ≥ q such that

• If p, q ≥ 2, then

λ1,p,q (M) ≤ (n+ 1)
1
2p

2
(
α+ 1

p

∫
M

|dψ|pdv + β + 1

q

∫
M

|dη|qdv
)
.

• If 1 < p, q < 2, then

λ1,p,q (M) ≤ (n+ 1)
− 1

2 q(q+1)

(
α+ 1

p

∫
M

|dψ|pdv + β + 1

q

∫
M

|dη|qdv
)
.

• If 1 < q < 2 ≤ p, then

λ1,p,q (M) ≤ (n+ 1)
1
2 (p

2−q)
(
α+ 1

p

∫
M

|dψ|qdv + β + 1

q

∫
M

|dη|qdv
)
,

where η = δ ◦ ϕ and ψ = γ ◦ ϕ.

Proof. For α, β > 0 there exist γ, β ∈ G (n) and for ψi = (γ ◦ ϕ)i and ηi = (δ ◦ ϕ)i where
1 ≤ i ≤ n+ 1 we see

λ1,p,q (M) ≤ 1∫
M

|ψ̌i|α+1|η̌i|β+1dv

[α+ 1

p

∫
M

|dψ̌i|pdv +
β + 1

q

∫
M

|dη̌i|q
]
,
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where η̌i and ψ̌i are the decreasing rearrangement of ηi and ψi respectively, then

λ1,p,q (M)

∫
M

|ψ̌i|α+1|η̌i|β+1dv ≤ α+ 1

p

∫
M

|dψ̌i|p +
β + 1

q

∫
M

|dη̌i|qdv.

By taking summation from i = 1 to i = n+ 1 from both sides we conclude that

n+1∑
i=1

(
λ1,p,q (M)

∫
M

|ψ̌i|α+1|η̌i|β+1dv

)
≤

n+1∑
i=1

(
α+ 1

p

∫
M

|dψ̌i|p +
β + 1

q

∫
M

|dη̌i|q
)
,

or

λ1,p,q (M) ≤ 1∫
M

∑n+1
i=1 |ψ̌i|α+1|η̌i|β+1dv

[α+ 1

p

∫
M

n+1∑
i=1

|dψ̌i|pdv +
β + 1

q

∫
M

n+1∑
i=1

|dη̌i|q
]
.

First of all, let p, q ≥ 2, then

n+1∑
i=1

|dψ̌i|p =

n+1∑
i=1

(
|dψ̌i|2

) p
2 ≤

(
n+1∑
i=1

|dψ̌i|2
) p

2

= |dψ|p,

and also

n+1∑
i=1

|dη̌i|q =

n+1∑
i=1

(
|dη̌i|2

) q
2 ≤

(
n+1∑
i=1

|dη̌i|2
) q

2

= |dη|q.

Now by Chebyshev’s inequality we get

n+1∑
i=1

|ψ̌i|α+1|η̌i|β+1 ≥ 1

n+ 1

n+1∑
i=1

|ψ̌i|α+1|η̌i|β+1

≥

(
1

n+ 1

n+1∑
i=1

|ψ̌i|α+1

)(
1

n+ 1

n+1∑
i=1

|η̌i|β+1

)

≥

(
1

n+ 1

n+1∑
i=1

|ψ̌i|p(α+1)

)(
1

n+ 1

n+1∑
i=1

|η̌i|q(β+1)

)

=

(
n+1∑
i=1

1

n+ 1

(
|ψ̌i|2

) p
2 (α+1)

)(
n+1∑
i=1

1

n+ 1

(
|η̌i|2

) q
2 (β+1)

)
. (3.1)

By Jensen’s inequality in (3.1) we conclude that

n+1∑
i=1

|ψ̌i|α+1|η̌i|β+1 ≥

(
n+1∑
i=1

1

n+ 1
|ψ̌i|2

) p
2 (α+1)(n+1∑

i=1

1

n+ 1
|η̌i|2

) q
2 (β+1)

=

(
1

n+ 1

) p
2 (α+1)

(
n+1∑
i=1

|ψ̌i|2
) p

2 (α+1)(
1

n+ 1

) q
2 (β+1)

(
n+1∑
i=1

|η̌i|2
) q

2 (β+1)

= (n+ 1)
− 1

2 (p(α+1)+q(β+1))
.
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What we have done is dependent on two essential issues, first
∑n+1

i=1 |ψi|2 =
∑n+1

i=1 |ηi|2 = 1 and

also we know that the map x → x
R
2 for R

2 ≥ 1 is concave. Now under consideration p ≥ q we
have

λ1,p,q (M) ≤ (n+ 1)
1
2p

2
(
α+ 1

p

∫
M

|dψ|pdv + β + 1

q

∫
M

|dη|qdv
)
.

In the case that 1 < p, q < 2, since

|ψi| ≤ 1, |ηi| ≤ 1,

and also the maps x→ x
p+1
2 and x→ x

q+1
2 are concave, by the similar way

n+1∑
i=1

|ψ̌i|α+1|η̌i|β+1 ≥ 1

n+ 1

n+1∑
i=1

|ψ̌i|α+1|η̌i|β+1

≥

(
1

n+ 1

n+1∑
i=1

|ψ̌i|α+1

)(
1

n+ 1

n+1∑
i=1

|η̌i|β+1

)

≥

(
1

n+ 1

n+1∑
i=1

|ψ̌i|(p+1)(α+1)

)(
1

n+ 1

n+1∑
i=1

|η̌i|(q+1)(β+1)

)

=

(
n+1∑
i=1

1

n+ 1

(
|ψ̌i|2

) p+1
2 (α+1)

)(
n+1∑
i=1

1

n+ 1

(
|η̌i|2

) q+1
2 (β+1)

)
.

And also by Jensen’s inequality, it concludes that

n+1∑
i=1

|ψ̌i|α+1|η̌i|β+1 ≥

(
n+1∑
i=1

1

n+ 1
|ψ̌i|2

) p+1
2 (α+1)(n+1∑

i=1

1

n+ 1
|η̌i|2

) q+1
2 (β+1)

=

(
1

n+ 1

) p+1
2 (α+1)

(
n+1∑
i=1

|ψ̌i|2
) p+1

2 (α+1)

×
(

1

n+ 1

) q+1
2 (β+1)

(
n+1∑
i=1

|η̌i|2
) q+1

2 (β+1)

= (n+ 1)
− 1

2 ((p+1)(α+1)+(q+1)(β+1))
.

Since x→ x
p
2 and x→ x

q
2 are convex, we see

n+1∑
i=1

|dψ̌i|p =

n+1∑
i=1

(
|dψ̌i|2

) p
2 ≤ (n+ 1)

1− p
2

(
n+1∑
i=1

|dψ̌i|2
) p

2

= (n+ 1)
1− p

2 |dψ|p,

and

n+1∑
i=1

|dη̌i|q =

n+1∑
i=1

(
|dη̌i|2

) q
2 ≤ (n+ 1)

1− q
2

(
n+1∑
i=1

|dη̌i|2
) q

2

= (n+ 1)
1− q

2 |dη|q.

These together with p ≥ q conclude that

λ1,p,q (M) ≤ (n+ 1)
− 1

2 q(q+1)

(
α+ 1

p

∫
M

|dψ|pdv + β + 1

q

∫
M

|dη|qdv
)
.
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In the case that 1 < q < 2 ≤ p, since x→ x
p
2 is convex, in the similar way

n+1∑
i=1

|ψ̌i|α+1|η̌i|β+1 ≥ 1

n+ 1

n+1∑
i=1

|ψ̌i|α+1|η̌i|β+1

≥

(
1

n+ 1

n+1∑
i=1

|ψ̌i|α+1

)(
1

n+ 1

n+1∑
i=1

|η̌i|β+1

)

≥

(
1

n+ 1

n+1∑
i=1

|ψ̌i|p(α+1)

)(
1

n+ 1

n+1∑
i=1

|η̌i|p(β+1)

)

=

(
n+1∑
i=1

1

n+ 1

(
|ψ̌i|2

) p
2 (α+1)

)(
n+1∑
i=1

1

n+ 1

(
|η̌i|2

) p
2 (β+1)

)
,

and again by Jensen’s inequality

n+1∑
i=1

|ψ̌i|α+1|η̌i|β+1 ≥ (n+ 1)
− p

2 (α+β+2)
.

Furthermore, since x→ x
q
2 is convex, we get

n+1∑
i=1

|dψ̌i|p ≤
n+1∑
i=1

|dψ̌i|q =

n+1∑
i=1

(
|dψ̌i|2

) q
2 ≤

(
n+1∑
i=1

|dψ̌i|2
) q

2

= (n+ 1)
1− q

2 |dψ|q,

and

n+1∑
i=1

|dη̌i|q =

n+1∑
i=1

(
|dη̌i|2

) q
2 ≤

(
n+1∑
i=1

|dη̌i|2
) q

2

= (n+ 1)
1− q

2 |dη|q.

These together imply that

λ1,p,q (M) ≤ (n+ 1)
1
2 (p

2−q)
(
α+ 1

p

∫
M

|dψ|qdv + β + 1

q

∫
M

|dη|qdv
)
.

Proof of Theorem 3.1. For p, q ≥ 2, by Lemma 3.2 we saw that

λ1,p,q (M) ≤ (n+ 1)
1
2p

2
(
α+ 1

p

∫
M

|dψ|p + β + 1

q

∫
M

|dη|q
)
,

and also ∫
M

|dψ|pdv ≤
(∫

M

|dψ|mdv
) p

m

∫
M

|dη|qdv ≤
(∫

M

|dη|mdv
) q

m

,

on the other side, ψ = γ ◦ ϕ : (M, g) → (Sn, can) is a conformal immersion and since

(γ ◦ ϕ)∗ can =
|d (γ ◦ ϕ) |2

m
=

|dψ|2

m
,
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from [14] we conclude that∫
M

|dψ|pdv = m
p
2 vol

(
M, (γ ◦ ϕ)∗ can

)
≤ m

p
2 sup
γ∈G(n)

vol
(
M, (γ ◦ ϕ)∗ can

)
,

and in the similar way ∫
M

|dη|qdv = m
q
2 vol

(
M, (δ ◦ ϕ)∗ can

)
≤ m

q
2 sup
δ∈G(n)

vol
(
M, (δ ◦ ϕ)∗ can

)
.

Now by taking ”inf” with respect to ϕ in the above inequality we get

λ1,p,q (M) ≤ (n+ 1)
1
2p

2
[α+ 1

p
m

p
2 (V c

n (M, [g]))
p
m +

β + 1

q
m

q
2 (V c

n (M, [g]))
q
m

]
.

Since p ≥ q, we have

λ1,p,q (M) ≤ (n+ 1)
1
2p

2

m
p
2 (V c

n (M, [g]))
p
m .

Also for 1 < p, q < 2, in the similar context we get

λ1,p,q (M) ≤ (n+ 1)
− 1

2 q(q+1)
m

q
2 (V c

n (M, [g]))
q
m ,

and also for 1 < q < 2 ≤ p we find that

λ1,p,q (M) ≤ (n+ 1)
1
2 (p

2−q)m
q
2 (V c

n (M, [g]))
q
m .

The similar problem was studied before in [11] for surfaces and also for upper dimension
manifold there are some results in [7] for p-Laplacian operator. Li and Yau [11], proved that
the upper bound for V c

n (M, [g]) just depend on the genus of M . They actually proved that for
orientable surface M (when m = 2) and for n ≥ 2 we have

V c
n (M, [g]) ≤ 4π

[τ (M) + 3

2

]
,

and also for non-orientable surface M and n ≥ 4 we get

V c
n (M, [g]) ≤ 12π

[τ (M) + 3

2

]
,

where τ (M) is genus of M and [.] denotes the bracket function.

Remark 1. Consider M as a compact manifold and m ≥ p ≥ q. Let λ1,p,q denotes the first
eigenvalue of the (p, q)-Laplacian (2.1), if M is orientable and n ≥ 2, then

• If p ≥ q ≥ 2, then

λ1,p,q (M) ≤ (n+ 1)
1
2p

2

(8π)
p
2

[τ (M) + 3

2

] p
2

.
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• If 1 < q ≤ p < 2, then

λ1,p,q (M) ≤ (n+ 1)
− 1

2 q(q+1)
(8π)

p
2

[τ (M) + 3

2

] p
2

.

• If 1 < q < 2 ≤ p, then

λ1,p,q (M) ≤ (n+ 1)
1
2 (p

2−q) (8π)
p
2

[τ (M) + 3

2

] p
2

.

Also if M is non-orientable and for n ≥ 4,

• if p ≥ q ≥ 2, then

λ1,p,q (M) ≤ (n+ 1)
1
2p

2

(24π)
p
2

[τ (M) + 3

2

] p
2

.

• If 1 < q ≤ p < 2, then

λ1,p,q (M) ≤ (n+ 1)
− 1

2 q(q+1)
(24π)

p
2

[τ (M) + 3

2

] p
2

.

• If 1 < q < 2 ≤ p, then

λ1,p,q (M) ≤ (n+ 1)
1
2 (p

2−q) (24π)
p
2

[τ (M) + 3

2

] p
2

.

4 The second case, p, q > m

Let r ∈ [0, π] be a geodesic distance and ϵ > 0, then the radial function fϵ : Sn → R is defined as

fϵ (r) = ϵ
4p

m(p−m) .χ[0,π2 −ϵ]∪[π2 +ϵ,π] (r) + χ(π
2 −ϵ,π2 +ϵ) (r) ,

where χ is denoted as characteristic function. Now let

Rϵ (u, v) :=
1∫

Sm−1 f
m
2

ϵ |u|α+1|v|β+1dvcan

[α+ 1

p

∫
Sm−1

f
m−p

2
ϵ |du|pdvcan

+
β + 1

q

∫
Sm−1

f
m−p

2
ϵ |dv|qdvcan

]
.

Then

λ1,p,q (ϵ) = inf
u,v ̸=0

{
Rϵ (u, v) | (u, v) ∈W 1,p

0 ×W 1,q
0 \ {0}

}
.

It seems clear that λ1,p,q (ϵ) is a parametrization for the first eigenvalue of the (p, q)-Laplacian
system (2.1).

Theorem 4.1. Consider M as an m-dimensional compact manifold. If λ1,p,q denotes the first
eigenvalue of the (p, q)-Laplacian system (2.1) and p ≥ q > m then

lim sup
ϵ→0

λ1,p,q (ϵ) .ϵ
p
m = ∞.
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This theorem actually gives us the comparison between λ1,p,q (ϵ) and λ1,p,q (Sm, can).

Proof of Theorem 4.1. Consider the radial functions ūϵ, v̄ϵ : Sm → R as

ūpϵ (r) =
1

V

∫
Sm−1

|uϵ (r, .) |pdvcan,

v̄qϵ (r) =
1

V

∫
Sm−1

|vϵ (r, .) |qdvcan,

where V stands for vol
(
Sm−1, can

)
. By taking derivative with respect to r we get

pūp−1
ϵ ū′ϵ =

p

V

∫
Sm−1

|uϵ|p−2uϵ
∂uϵ
∂r

dvcan,

and the similar context holds for v and q. By Hölder’s inequality we have

ūp−1
ϵ |ū′ϵ| ≤

1

V

∫
Sm−1

|uϵ|p−1|∂uϵ
∂r

|dvcan

≤ 1

V

(∫
Sm−1

|uϵ|pdvcan
) p−1

p
(∫

Sm−1

|∂uϵ
∂r

|pdvcan
) 1

p

,

which concludes that

|ū′ϵ|p ≤ 1

V

∫
Sm−1

|∂uϵ
∂r

|pdvcan ≤ 1

V

∫
Sm−1

|duϵ|pdvcan. (4.1)

Since α+1
2 + β+1

2 = 1, Hölder’s inequality implies that∫
Sm

|uϵ|α+1|vϵ|β+1dvcan ≤
(∫

Sm
|uϵ|pdvcan

)α+1
p
(∫

Sm
|vϵ|qdvcan

) β+1
q

,

and again by Hölder’s inequality we see

∫
Sm
f

m
2

ϵ |ūϵ|α+1|v̄ϵ|β+1dvcan = V.

∫ π

0

f
m
2

ϵ |ūϵ|α+1|v̄ϵ|β+1 sin rm−1dr

= V.

∫ π

0

[
f

m
2

ϵ

(
1

V

∫
Sm−1

|uϵ|pdvcan
)α+1

p

(
1

V

∫
Sm−1

|vϵ|qdvcan
) β+1

q

sin rm−1
]
dr

=

∫ π

0

[
f

m
2

ϵ

(∫
Sm−1

|uϵ|pdvcan
)α+1

p

(∫
Sm−1

|vϵ|qdvcan
) β+1

q

sin rm−1
]
dr

≥
∫ π

0

f
m
2

ϵ

(∫
Sm−1

|uϵ|α+1|vϵ|β+1dvcan

)
sin rm−1dr

≥
∫
Sm
f

m
2

ϵ |uϵ|α+1|vϵ|β+1dvcan.
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From (4.1), we get∫
Sm
f

m−p
2

ϵ |ū′ϵ|pdvcan = V.

∫ π

0

f
m−p

2
ϵ |ū′ϵ|p sin rm−1dr

≤
∫ π

0

[ ∫
Sm−1

|duϵ|pdvcan
]
f

m−p
2

ϵ sin rm−1dr

=

∫
Sm
f

m−p
2

ϵ |duϵ|pdvcan,

and in the similar way ∫
Sm
f

m−p
2

ϵ |v̄′ϵ|qdvcan ≤
∫
Sm

f
m−p

2
ϵ |dvϵ|qdvcan.

If Sm+ and Sm− denote the upper and lower hemispheres centered at x0 and −x0 respectively, then

λ1,p,q (ϵ) ≥
1∫

Sm f
m
2

ϵ |ūϵ|α+1|v̄ϵ|β+1dvcan

[α+ 1

p

∫
Sm
f

m−p
2

ϵ |ū′ϵ|pdvcan +
β + 1

q

∫
Sm
f

m−p
2

ϵ |v̄′ϵ|qdvcan
]

≥ min{λ+1,p,q, λ
−
1,p,q},

where λ+1,p,q and λ−1,p,q mean that taking above integrals on upper and lower hemispheres respec-
tively. Without loss of generality, let

λ1,p,q (ϵ) ≥ λ+1,p,q (ϵ) ,

which means

λ1,p,q (ϵ) ≥
1∫

Sm+
f

m
2

ϵ |ūϵ|α+1|v̄ϵ|β+1dvcan

[α+ 1

p

∫
Sm+
f

m−p
2

ϵ |ū′ϵ|pdvcan +
β + 1

q

∫
Sm+
f

m−p
2

ϵ |v̄′ϵ|qdvcan
]
.

Now consider two functions aϵ ∈W 1,p (M) and cϵ ∈W 1,q (M) as

aϵ =

{
ūϵ [0, π2 − ϵ],
ūϵ
(
π
2 − ϵ

) (
π
2 − ϵ, π2

]
,

and

cϵ =

{
v̄ϵ [0, π2 − ϵ],
v̄ϵ
(
π
2 − ϵ

) (
π
2 − ϵ, π2

]
,

also let bϵ = ūϵ−aϵ and dϵ = v̄ϵ−cϵ. Obviously, on
[
0, pi2 − ϵ

]
and

(
π
2 − ϵ, π2

]
we have bϵ = dϵ = 0

and aϵ = cϵ = 0 respectively. From above definitions we see

|ū′ϵ|p = |a′ϵ|p + |b′ϵ|p,
|v̄′ϵ|q = |c′ϵ|q + |d′ϵ|q,

|ūϵ|α+1 ≤ 2α
(
|aϵ|α+1 + |bϵ|α+1

)
,

|v̄ϵ|β+1 ≤ 2β
(
|cϵ|β+1 + |dϵ|β+1

)
.

And also from definition of fϵ (r) and substituting in formulae of λ1,p,q we get

λ1,p,q (ϵ) ≥
2−(α+β)

A

[
ϵ−

2p
m

(
α+ 1

p

∫
Sm+

|a′ϵ|pdvcan +
β + 1

q

∫
Sm+

|c′ϵ|qdvcan

)
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+
α+ 1

p

∫
Sm+

|b′ϵ|pdvcan +
β + 1

q

∫
Sm+

|d′ϵ|qdvcan
]
,

where

A =

∫
Sm+
f

m
2

ϵ |aϵ|α+1|cϵ|β+1dvcan +

∫
Sm+

|aϵ|α+1|dϵ|β+1dvcan +

∫
Sm+

|bϵ|α+1|cϵ|β+1dvcan

+

∫
Sm+

|bϵ|α+1|dϵ|beta+1dvcan.

Now let

A = 1,

so obviously,

λ1,p,q (ϵ) ≥ 2−(α+β)
[
ϵ−

2p
m

(
α+ 1

p

∫
Sm+

|a′ϵ|pdvcan +
β + 1

q

∫
Sm+

|c′ϵ|qdvcan

)
(4.2)

+

(
α+ 1

p

∫
S+m

|b′ϵ|pdvcan +
β + 1

q

∫
S+m

|d′ϵ|qdvcan
)]

.

We consider two different cases, on the one hand,

lim sup
ϵ→0

[α+ 1

p

∫
Sm+

|a′ϵ|pdvcan +
β + 1

q

∫
Sm+

|c′ϵ|qdvcan
]
> 0,

then

λ1,p,q (ϵ) .ϵ
p
m ≥ 2−(α+β)ϵ−

p
m

(
α+ 1

p

∫
Sm+

|a′ϵ|pdvcan +
β + 1

q

∫
Sm+

|c′ϵ|qdvcan

)
,

which concludes that

lim sup
ϵ→0

λ1,p,q (ϵ) .ϵ
p
m = ∞.

On the other hand,

lim
ϵ→0

[α+ 1

p

∫
Sm+

|a′ϵ|pdvcan +
β + 1

q

∫
Sm+

|c′ϵ|qdvcan
]
= 0,

then we choose the sequence ϵn → 0 in the case that aϵn + cϵn → a + c where a and c are real
constants. Now since

lim
n→∞

∫
Sm+
f

m
2

ϵn |aϵn |α+1|cϵn |β+1dvcan = lim
n→∞

∫
Sm+
f

m
2

ϵn

(
|aϵn |α+1|cϵn |β+1 − |a|α+1|c|β+1

)
dvcan

+
(
|a|α+1|c|β+1

)
lim
n→∞

∫
Sm+
f

m
2

ϵn dvcan = 0,

and for p, q > m, {fϵn} is uniformly bounded, thus

lim
n→∞

∫
Sm
+

f
m
2

ϵn dvcan = 0.
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By substituting above formulaes in (4.2) we get

λ1,p,q (ϵ) ≥
2−(α+β)

B

[α+ 1

p

∫
Sm+

|b′ϵ|pdvcan +
β + 1

q

∫
Sm+

|d′ϵ|qdvcan
]

=
2−(α+β)∫ π

2
π
2 −ϵn

D sin rm−1dr

∫ π
2

π
2 −ϵn

(
α+ 1

p
|b′ϵ|p +

β + 1

q
|d′ϵ|q

)
sin rm−1dr

≥ 2−(α+β)
(
sin
(π
2
− ϵn

))m−1
α+1
p

∫ π
2
π
2 −ϵn

|b′ϵ|pdr +
β+1
q

∫ π
2
π
2 −ϵn

|d′ϵ|qdr∫ π
2
π
2 −ϵn

Ddr
,

where

B =

∫
Sm+

|aϵ|α+1|dϵ|β+1dvcan +

∫
Sm+

|bϵ|α+1|cϵ|β+1dvcan

+

∫
Sm+

|bϵ|α+1|dϵ|β+1dvcan,

and

D = |aϵ|α+1|dϵ|β+1 + |bϵ|α+1|cϵ|β+1 + |bϵ|α+1|dϵ|β+1.

Consider āϵn ∈W 1,p
0 (−ϵ, ϵ) as

āϵn (x) = aϵn

(
x+

π

2
− ϵn

)
.

The similar way holds for b̄ϵn ∈W 1,p
0 (−ϵn, ϵn) and c̄ϵn , d̄ϵn ∈W 1,q

0 (−ϵ, ϵ), and also these functions
are even, so

α+1
p

∫ π
2
π
2 −ϵn

|b′ϵ|pdr +
β+1
q

∫ π
2
π
2 −ϵn

|d′ϵ|qdr∫ π
2
π
2 −ϵn

Ddr
=

α+1
p

∫ ϵn
0

|b′ϵ|pdr +
β+1
q

∫ ϵn
0

|d′ϵ|qdr∫ ϵn
0

Ddr

=

α+1
p

∫ ϵn
−ϵn

|b′ϵ|pdr +
β+1
q

∫ ϵn
−ϵn

|d′ϵ|qdr∫ ϵn
−ϵn

Ddr
≥ λ1,p,q (−ϵn, ϵn)
= ϵ−p

n λ1,p,q (−1, 1) ,

and

λ1,p,q (ϵ) ≥ 2−(α+β).ϵ−p
n

(
sin
(π
2
− ϵn

))m−1

λ1,p,q (−1, 1) ,

which concludes finally

lim sup
ϵ→0

λ1,p,q (ϵ) .ϵ
p
m = ∞.
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For ϵ > 0, let f̃ϵ ∈ C∞ (Sm) be a radial function suth that f̃ϵ ≤ fϵ. Also on
[
π
2 − ϵ

2 ,
π
2 + ϵ

2

]
we get

f̃ϵ (r) = fϵ (r) = 1,

and

f̃ϵ (π − r) = f̃ (r) .

Furthermore

vol
(
Sm, f̃ϵcan

)
=

∫
Sm
f̃

m
2

ϵ dvcan =

∫
Sm−1

∫ π
2

−π
2

f̃
m
2

ϵ sin rm−1drdvcan

> V.

∫ π
2 + ϵ

2

π
2 − ϵ

2

sin rm−1dr

> ϵV
[
sin
(π
2
− ϵ
) ]m−1

,

where V = vol (Sm, can). If ũϵ and ṽϵ denote the eigenfunctions for λ1,p,q

(
Sn, f̃ϵcan

)
, and

ũ+ϵ , ũ
−
ϵ , ṽ

+
ϵ , ṽ

−
ϵ denote the positive and the negative parts of ũϵ and ṽϵ respectively. For the

p-Laplacian (1.1) it was proved before in [14] that

λ1,p

(
Sm, f̃ϵcan

)
=

∫
Sm |dũ+ϵ |pf̃

m−p
2

ϵ dvcan∫
Sm |ũ+ϵ |pf̃

m
2

ϵ dvcan
=

∫
Sm |dũ−ϵ |pf̃

m−p
2

ϵ dvcan∫
Sm |ũ−ϵ |pf̃

m
2

ϵ dvcan
. (4.3)

Corollary 4.2. Let p ≥ q > m and λ1,p,q denotes the first eigenvalue for the (p, q)-Laplacian
system (2.1) then for λ1,p,q arbitrary large, there exists the Riemannian metric with volume one
on Sm conformal to the standard metric can.

Proof. By expanding (4.3) on the (p, q)-Laplacian system (2.1) we have

λ1,p,q

(
Sm, f̃ϵcan

)
=

1∫
Sm |ũ+ϵ |α+1|ṽ+ϵ |β+1f̃

m
2

ϵ dvcan

[α+ 1

p

∫
Sm

|dũ+ϵ |pf̃
m−p

2
ϵ dvcan

+
β + 1

q

∫
Sm

|dṽ+ϵ |q f̃
m−p

2
ϵ dvcan

]
=

1∫
Sm |ũ−ϵ |α+1|ṽ−ϵ |β+1f̃

m
2

ϵ dvcan

[α+ 1

p

∫
Sm

|dũ−ϵ |pf̃
m−p

2
ϵ dvcan

+
β + 1

q

∫
Sm

|dṽ−ϵ |q f̃
m−p

2
ϵ dvcan

]
.

Let t ∈ R such that

ũϵ,t = tũ+ϵ + ũ−ϵ ,

then

λ1,p,q

(
Sm, f̃ϵcan

)
=

1∫
Sm |ũϵ|α+1|ṽϵ|β+1f̃

m
2

ϵ dvcan

[α+ 1

p

∫
Sm

|dũϵ|pf̃
m−p

2
ϵ dvcan
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+
β + 1

q

∫
Sm

|dṽϵ|q f̃
m−p

2
ϵ dvcan

]
≥ 1∫

Sm |ũϵ|α+1|ṽϵ|β+1f
m
2

ϵ dvcan

[α+ 1

p

∫
Sm

|dũϵ|pf
m−p

2
ϵ dvcan

+
β + 1

q

∫
Sm

|dṽϵ|qf
m−p

2
ϵ dvcan

]
≥ λ1,p,q (ϵ) .

Above inequalities with the Theorem 4.1 and p ≥ q together give us

lim sup
ϵ→0

λ1,p,q

(
Sm, f̃ϵcan

)
vol
(
Sm, f̃ϵcan

) p
m ≥ V

p
m . lim sup

ϵ→0
λ1,p,q (ϵ) .ϵ

p
m = ∞.

Now set

hϵ = vol
(
Sm, f̃ϵcan

)− 2
m

f̃ϵ,

then we get

vol (Sm, hϵcan) = 1,

and

lim sup
ϵ→0

λ1,p,q (Sm, hϵcan) = ∞.

Remark 2. Someone may consider the situation q < m < p, in this case we just take the radial
function fϵ : Sm → R as

fϵ (r) = ϵ
4q

m(m−q) .χ[0,π2 −ϵ]∪[π2 +ϵ,π] (r) + χ(π
2 −ϵ,π2 +ϵ) (r) ,

and then

Rϵ (u, v) :=
1∫

Sm−1 f
m
2

ϵ |u|α+1|v|β+1dvcan

[α+ 1

p

∫
Sm−1

f
q−m

2
ϵ |du|pdvcan

+
β + 1

q

∫
Sm−1

f
q−m

2
ϵ |dv|qdvcan

]
,

where

λ1,p,q (ϵ) = inf
u,v ̸=0

{
Rϵ (u, v) | (u, v) ∈W 1,p

0 ×W 1,q
0 \ {0}

}
.

Now by the definition of ūϵ and v̄ϵ in the Theorem 4.1 and by Hölder’s inequality we see∫
Sm
f

m
2

ϵ |ūϵ|α+1dvcan =

∫
Sm
f

m
2

ϵ |uϵ|α+1dvcan,

and ∫
Sm
f

q−m
2

ϵ |ū′|pdvcan ≤
∫
Sm
f

q−m
2

ϵ |du|pdvcan,
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also the same way holds for v and q. These together give us

λ1,p,q (ϵ) ≥
1∫

Sm f
m
2

ϵ |ūϵ|α+1|v̄ϵ|β+1dvcan

[α+ 1

p

∫
Sm
f

q−m
2

ϵ |ū′ϵ|pdvcan

+
β + 1

q

∫
Sm
f

q−m
2

ϵ |v̄′ϵ|qdvcan
]

≥ min{λ+1,p,q, λ
−
1,p,q}.

So by the same way as Theorem 4.1 we get

lim sup
ϵ→0

λ1,p,q (ϵ) .ϵ
q
m = ∞.

It means that the same context as Corollary 4.2 holds in the case q < m < p.

5 The (p, q)-Laplacian equation, a new characterization

One may consider the (p, q)-Laplacian equation as

∆pu+∆qu = div
((
|∇u|p−2 + |∇u|q−2

)
∇u
)
,

for 1 < q < p <∞ and also

u ∈W 1,p
0 (M) ∩W 1,q

0 (M) .

Also it can be written as

−∆pu−∆qu = λ|u|p−2u, (5.1)

where for arbitrary v ∈W 1,p
0 ∩W 1,q

0 , it is equivalent to∫
M

|∇u|p−2∇u∇vdµ+

∫
M

|∇u|q−2∇u∇vdv

= λ

∫
M

|u|p−2uvdv,

and λ is called its eigenvalue associated to the eigenvector u. Similar to the previous one, in this
case the first Dirichlet eigenvalue of the (p, q)-Laplacian equation (5.1) is defined as

λD1,p,q (M) = inf
u ̸=0

{ 1∫
M

|u|pdv

(∫
M

|∇u|pdv +
∫
M

|∇u|qdv
)
|u ∈W 1,p

0 (M) ∩W 1,q
0 (M) \ {0}

}
.

Theorem 5.1. Consider M as an m-dimensional compact manifold and 1 < q < p ≤ m. If
λD1,p,q denotes the first eigenvalue of the (p, q)-Laplacian equation (5.1), then

λD1,p,q (M) ≤ (n+ 1)
| p2−1|

[
m

p
2 (V n

c (M, [g]))
p
m +m

q
m (V n

c (M, [g]))
q
m

]
.

Before giving the proof for this theorem we consider the following lemma.
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Lemma 5.1. Consider ϕ as same as Lemma 3.2. If λD1,p,q denotes the first eigenvalue of the
(p, q)-Laplacian equation (5.1), then

λD1,p,q (M) ≤ (n+ 1)
|1− p

2 |
[ ∫

M

|dψ|pdv +
∫
M

|dψ|qdv
]
,

where ψ = γ ◦ ϕ and γ ∈ G (n).

Proof. From the definition of λD1,p,q (M) we see

λD1,p,q (M) ≤
∫
M

|dψi|pdv +
∫
M

|dψi|qdv∫
M

|ψi|pdv
,

thus

λD1,p,q (M) ≤
n+1∑
i=1

∫
M

|dψi|pdv +
∫
M

|dψi|qdv∫
M

|ψi|pdv
.

First, let p ≥ q ≥ 2, then

n+1∑
i=1

|dψi|p =

n+1∑
i=1

(
|dψi|2

) p
2 ≤

(
n+1∑
i=1

|dψi|2
) p

2

= |dψ|p.

Also in the similar way for q we have

n+1∑
i=1

|dψi|q ≤ |dψ|q.

Since
∑n+1

i=1 |ψ1|2 = 1 and the map x→ x
p
2 is concave we get

n+1∑
i=1

|ψi|p ≥ (n+ 1)
1− p

2

(
n+1∑
i=1

|ψi|2
) p

2

= (n+ 1)
1− p

2 ,

and

λD1,p,q (M) ≤ (n+ 1)
p
2−1

[ ∫
M

|dψ|pdv +
∫
M

|dψ|qdv
]
.

Now let 1 < q ≤ p < 2, since |ψi| < 1 and also |ψi|2 ≤ |ψi|p and

1 = vol (M, g) =

∫
M

n+1∑
i=1

|ψi|2dv ≤
∫
M

n+1∑
i=1

|ψi|pdv,

we conclude that

n+1∑
i=1

|dψi|p =
n+1∑
i=1

(
|dψi|2

) p
2 ≤ (n+ 1)

1− p
2

(
n+1∑
i=1

|dψi|2
) p

2

= (n+ 1)
1− p

2 |dψ|p,

similarly,

n+1∑
i=1

|dψi|q =

n+1∑
i=1

(
|dψi|2

) q
2 ≤ (n+ 1)

1− p
2

(
n+1∑
i=1

|dψi|2
) q

2

= (n+ 1)
1− p

2 |dψ|q,
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which finally give us

λD1,p,q (M) ≤ (n+ 1)
|1− p

2 |
[ ∫

M

|dψ|pdv +
∫
M

|dψ|qdv
]
.

Proof of Theorem 5.1. Consider ϕ : (M, g) → (Sm, can) as a conformal immersion. From
Lemma 5.1 there exists γ ∈ G (n) such that

λD1,p,q (M) ≤ (n+ 1)
| p2−1|

[ ∫
M

|dψ|pdv +
∫
M

|dψ|qdv
]
.

By Hölder’s inequality we have ∫
M

|dψ|pdv ≤
(∫

M

|dψ|mdv
) p

m

,

also the similar context holds for q. Since γ ◦ ϕ : (M, g) → (Sm, can) is a conformal immersion
and

(γ ◦ ϕ)∗ can =
|d (γ ◦ ϕ) |2

m
g,

we have ∫
M

|d (γ ◦ ϕ) |pdv = m
p
2 vol

(
M, (γ ◦ ϕ)∗ can

)
≤ m

p
2 sup
γ∈G(n)

vol
(
M, (γ ◦ ϕ)∗ can

)
,

also the similar context holds for q. Therefore, these together and by taking inf respect to ϕ we
find that

λD1,p,q (M) ≤ (n+ 1)
| p2−1|

[
m

p
2 (V n

c (M, [g]))
p
m +m

q
m (V n

c (M, [g]))
q
m

]
.

Remark 3. It seems clear that under consideration p ≥ q, the (p, q)-Laplacian equation (5.1)
turns into the known p-Laplacian system (1.1) which was studied extensively in [14]. So by
the similar way of Matei [14] and Theorem 4.1, for an m-dimensional compact manifold M and
p ≥ q > m we get

lim sup
ϵ→0

λD1,p,q (ϵ) .ϵ
p
m = ∞.

References

[1] S. Azami, The first eigenvalue of some (p, q)-Laplacian and geometric estimate, Commun.
Korean Math. Soc., 33 (2018), 317-323.

[2] A. Besenyei, Picard’s weighty proof of Chebyshev’s sum inequality, MAA Mathematics
Magazine., 88 (2015).



Conformal bounds and the first eigenvalues 389

[3] K. Brown and Y. Zhang, On the system of reaction-diffusion equations describing a popu-
lation with two age groups, J. Math. Anal. Appl., 88 (2003), 444-452.

[4] Y. Choi, Z. Huan and R. Lui, Global existence of solutions of a strongly coupled quasilinear
parabolic system with application to electrochemistry, J. Diff. Equ., 194 (2003), 406-432.

[5] A. Constantin, J. Escher and Z. Yin, Global solutions for quasilinear parabolic systems, J.
Diff. Equ., 197 (2004), 73-84.

[6] E. Dancer and Y. Du, Effects of certain degeneracies in the predator-prey model, SIAM J.
Math. Anal., 34 (2002), 292-314.

[7] A. El Soufi and S. Ilias, Immersion minimales, premiér valeur propre du Laplacien et volume
conforme, Math. Ann., 275 (1986), 257-267.

[8] M. Gaffney, A special Stokes’s theorem for complete Riemannian manifolds, Ann. Math.,
60 (1954), 140-145.

[9] M. Gaffney, The heat equation method of Milgram and Rosenbeloom for open Riemannian
manifolds, Ann. Math., 60 (1954), 458-466.

[10] M. Habibi Vosta Kolaei and S. Azami, Geometric estimates of the first eigenvalue of (p, q)-
elliptic quasilinear system under integral curvature condition, J. Part. Diff. Eq., 34 (2021),
348-368.

[11] P. Li and Y. Yau, A new conformal invariant and it’s application to the Wilmore conjecture
and the first eigenvalue of compact surfaces, Invent. Math., 69 (1982), 269-291.

[12] J. Mao, A class of rotationally symmetric quantum layers of dimention 4, J. Math. Anal.
Appl., 397 (2013), 791-799.

[13] A. Matei, First eigenvalue for the p-Laplace operator, Nonlinear Anal., 39 (2000), 1051-1068.

[14] A. Matei, Conformal bounds for the first eigenvalue of the p-Laplacian, Nonlinear Anal.,
80 (2013), 88-95.

[15] A. Naber, D. Valtorta, Sharp estimates on the first eigenvalue of the p-Laplacian with
negative Ricci lower bound, Math. Z., 277 (2014), 867-891.

[16] D. Valtora, Sharp estimate on the first eigenvalue of the p-Laplacian, Nonlinear Anal., 75
(2012), 4974-4994.

[17] N. Zographopoulos, On the principal eigenvalue of degenerate quasilinear elliptic systems,
Math. Nachr., 281 (2008), 1351-1365.

Mohammad Javad Habibi Vosta Kolaei Sharif University of Technology, Tehran, Iran

E-mail: mjhabibi.math@gmail.com

Shahroud Azami Department of Pure Mathematics, Faculty of Science, Imam Khomeini
International University, Qazvin, Iran.

E-mail: azami@sci.ikiu.ac.ir

mailto:mjhabibi.math@gmail.com
mailto:azami@sci.ikiu.ac.ir

	Introduction
	The (p,q)-Laplacian system
	The first case, p,q m
	The second case, p,q >m
	The (p,q)-Laplacian equation, a new characterization

