The adjoint map of Euclidean plane curves and curvature problems

Mircea Crasmareanu

Abstract

The adjoint map of a pair of naturally parametrized curves in the Euclidean plane is studied from the point of view of the curvature. A main interest is when the given curve and its adjoint curve share the same natural parameter and the same curvature. For the general linear second order differential equation we introduce a function expressing the deformation of curvatures induced by the adjoint map.

Keywords. Parametrized plane curve, Wronskian, adjoint curves, curvature.

1 Introduction

Fix the smooth regular curve $r: I \subseteq \mathbb{R} \rightarrow \mathbb{E}^{2}=\left(\mathbb{R}^{2},<\cdot, \cdot>_{\text {can }}\right)$ having the Wronskians $W(r)>0$ (hence r is not a line through the origin O of \mathbb{R}^{2}) and $W\left(r^{\prime}\right) \neq 0$. Expressing the given curve as $r(\cdot)=(x(\cdot), y(\cdot))$ its component functions x, y are solutions of the Wronskian linear differential equation:

$$
\left\{\begin{array}{l}
W(x, y, u=u(\cdot)):=\left|\begin{array}{ccc}
x & y & u \\
x^{\prime} & y^{\prime} & u^{\prime} \\
x^{\prime \prime} & y^{\prime \prime} & u^{\prime \prime}
\end{array}\right|=0 \rightarrow \mathcal{E}^{2}: u^{\prime \prime}(t)+p(t) u^{\prime}(t)+q(t) u(t)=0, \tag{1.1}\\
p:=-\frac{[W(r)]^{\prime}}{W(r)}, \quad q:=\frac{W\left(r^{\prime}\right)}{W(r)}, \quad \mathcal{E}^{2}: \frac{d}{d t}\left(\frac{u^{\prime}}{W(r)}\right)+\frac{W\left(r^{\prime}\right) u}{(W(r))^{2}}=0 .
\end{array}\right.
$$

It is well-known that the general solution of (1.1) is provided by two real constants C_{1}, C_{2} through the formula:

$$
\begin{equation*}
u(t)=C_{1} x(t)+C_{2} y(t), \quad C_{1}=\frac{W(u, y)}{W(r)}, \quad C_{2}=\frac{W(x, u)}{W(r)} . \tag{1.2}
\end{equation*}
$$

For further use, let $P=P(t)$ be the anti-derivative of the first coefficient function $p=p(t)$ and $k=k(t)$ the usual curvature of r; we suppose that r has no inflexion points, so $k>0$ or $k<0$ on I. A main hypothesis of this short note is that t is a natural parameter for r; then $I=(0, L(r))$
with $L(r)$ the length of r and the module $|W(r)|$ is the Euclidean distance form the origin O to the tangent line of the curve. The two functions above are:

$$
\begin{equation*}
P=-\ln W(r), \quad k=W\left(r^{\prime}\right)=q \exp (-P) \rightarrow q \neq 0 . \tag{1.3}
\end{equation*}
$$

The second order ordinary differential equation (SODE) \mathcal{E}^{2} expresses u as solution of the differential operator:

$$
\begin{equation*}
\mathcal{D}:=\frac{d^{2}}{d t^{2}}+p \frac{d}{d t}+q=\sum_{i=0}^{2} \mu_{i} \frac{d^{i}}{d t^{i}}: C^{\infty}(\mathbb{R}) \rightarrow C^{\infty}(\mathbb{R}) \tag{1.4}
\end{equation*}
$$

and we recall that any k-differential operator $\mathcal{D}:=\sum_{i=0}^{k} \mu_{i} \frac{d^{i}}{d t^{i}}$ has an adjoint operator ([3], [6, p. 218]):

$$
\begin{equation*}
\mathcal{D}_{a}:=\sum_{i=0}^{k}(-1)^{i} \frac{d^{i}}{d t^{i}}\left(\mu_{i} \cdot\right) . \tag{1.5}
\end{equation*}
$$

Fix now the adjoint curve $r_{a}(t)=\left(x_{a}(t), y_{a}(t)\right)$ which corresponds to the adjoint SODE \mathcal{E}_{a}^{2} provided by \mathcal{D}_{a}. Our aim is to study the corresponding curvature transformation $k \rightarrow k_{a}$ due to the fundamental theorem of plane curves ($[1, \mathrm{p} .52]$), which states the main role of this differential invariant in the geometry of r. Expressing the initial curve in generalized polar coordinates we characterize the curvature-preserving adjoint map and two examples are discussed. Since finding non-selfdual examples of adjoint curves with the same curvature is a difficult problem we introduce a curvature-deformation function of a general linear SODE; again two examples are considered.

2 The adjoint map and curvature problems

We fix now the expression of the initial curve:

$$
\begin{equation*}
r(t):=\rho(t) \exp (i \omega(t)), \rho>0, \quad r^{\prime}(t)=\rho^{\prime}(t) \exp (i \omega(t))+\rho(t) \omega^{\prime}(t) \exp \left(i \omega(t)+\frac{\pi}{2}\right) \tag{2.1}
\end{equation*}
$$

and hence since t is a natural parameter we have:

$$
\begin{equation*}
\left(\rho^{\prime}\right)^{2}+\left(\rho \omega^{\prime}\right)^{2}=1 \tag{2.2}
\end{equation*}
$$

The characterization of the curvature-preserving transformations $r \rightarrow r_{a}$ is provided by:
Theorem 2.1. Suppose that t is also a natural parameter for the adjoint curve r_{a}. Then the adjoint map $r \rightarrow r_{a}$ is curvature-preserving if and only if:

$$
\begin{equation*}
\frac{\left[\ln \left(\rho \sqrt{1-\left(\rho^{\prime}\right)^{2}}\right)\right]^{\prime \prime}}{\rho^{2}\left(1-\left(\rho^{\prime}\right)^{2}\right)-1}=\frac{\left[\ln \left(\rho \sqrt{1-\left(\rho^{\prime}\right)^{2}}\right)\right]^{\prime}}{\rho \rho^{\prime}} . \tag{2.3}
\end{equation*}
$$

Proof. Since t is a natural parameter for r we can express q as function of ρ. Indeed the system (1.1) means:

$$
\left\{\begin{array}{l}
x^{\prime \prime}+p x^{\prime}+q x=0 \tag{2.4}\\
y^{\prime \prime}+p y^{\prime}+q y=0 .
\end{array}\right.
$$

Multiplying the first equation with x^{\prime}, the second equation with y^{\prime} and adding the resulting relations we obtain:

$$
\begin{equation*}
q=-\frac{2 p}{\left(\rho^{2}\right)^{\prime}}=-\frac{p}{\rho \rho^{\prime}} . \tag{2.5}
\end{equation*}
$$

The adjoint SODE of \mathcal{E}^{2} is:

$$
\begin{equation*}
\mathcal{E}_{a}^{2}: u_{a}^{\prime \prime}(t)-p(t) u_{a}^{\prime}(t)+\left(q(t)-p^{\prime}(t)\right) u_{a}(t)=0 \tag{2.6}
\end{equation*}
$$

and the hypothesis gives the adjoint curvature:

$$
\begin{equation*}
k_{a}=\left(q-p^{\prime}\right) \exp (P) . \tag{2.7}
\end{equation*}
$$

The equality $k=k_{a}$ (which implies $q \neq p^{\prime}$) combined with (2.5) reads as:

$$
\begin{equation*}
q=\frac{P^{\prime \prime}}{1-\exp (-2 P)}=-\frac{P^{\prime}}{\rho \rho^{\prime}} \tag{2.8}
\end{equation*}
$$

From (2.1) we obtain the Wronskian of the initial curve:

$$
\begin{equation*}
W(r)=\rho^{2} \omega^{\prime} \tag{2.9}
\end{equation*}
$$

which, via (2.2), means:

$$
\begin{equation*}
W(r)=\rho \sqrt{1-\left(\rho^{\prime}\right)^{2}} \tag{2.10}
\end{equation*}
$$

and then:

$$
\begin{equation*}
P=-\ln \left(\rho \sqrt{1-\left(\rho^{\prime}\right)^{2}}\right) \tag{2.11}
\end{equation*}
$$

Replacing this last formula into (2.8) yields the claimed relation (2.3).
Example 2.2 The degenerate case of the characterization (2.3) is provided by the constancy of P, equivalently, from (1.2), the constancy of $W(r)$. From (2.9) we have:

$$
\begin{equation*}
\rho^{2} \omega^{\prime}=\text { constant } \tag{2.12}
\end{equation*}
$$

which is exactly the Kepler second law ([2, p. 235]). This means that r is a central conic and it is well-known that the operator (1.3) is self-adjoint (i.e. $p=0$) if and only if r is projectively equivalent to a conic ([6, p. 220]). In particular, if $\rho=$ constant $=R>0$ then the condition (2.2) gives $\omega(t)=\frac{t}{R}$ i.e. we have the well-known natural parametrization of the circle $\mathcal{C}(O, R)$.

Example 2.3 We can start now directly with a naturally parametrized curve. It is the Cornu spiral $\left([1\right.$, p. 54] $) r:(0,+\infty) \rightarrow \mathbb{E}^{2}$:

$$
\begin{equation*}
r(t)=\left(\int_{0}^{t} \cos \left(u+\frac{u^{2}}{2}\right) d u, \int_{0}^{t} \sin \left(u+\frac{u^{2}}{2}\right) d u\right), \quad k(t)=t+1>1 \tag{2.13}
\end{equation*}
$$

for which we obtain the coefficient functions:

$$
\left\{\begin{array}{l}
P(t)=-\ln \left[\sin \left(t+\frac{t^{2}}{2}\right) \int_{0}^{t} \cos \left(u+\frac{u^{2}}{2}\right) d u-\cos \left(t+\frac{t^{2}}{2}\right) \int_{0}^{t} \sin \left(u+\frac{u^{2}}{2}\right) d u\right] \tag{2.14}\\
q(t)=(t+1)\left[\sin \left(t+\frac{t^{2}}{2}\right) \int_{0}^{t} \cos \left(u+\frac{u^{2}}{2}\right) d u-\cos \left(t+\frac{t^{2}}{2}\right) \int_{0}^{t} \sin \left(u+\frac{u^{2}}{2}\right) d u\right]^{-1}
\end{array}\right.
$$

Due to the very complicated computations we use the Wolfram Alpha to find the SODE satisfies by the components of r. Unfortunately, this free software provides not a SODE but a third order differential equation:

$$
\begin{equation*}
(1+t) U^{\prime \prime \prime}-U^{\prime \prime}+(1+t)^{3} U^{\prime}=0 \tag{2.15}
\end{equation*}
$$

In fact, for a naturally parametrized plane curve it is well-known to satisfy the third order differential equation:

$$
\begin{equation*}
\mathcal{E}^{3}: k U^{\prime \prime \prime}-k^{\prime} U^{\prime \prime}+k^{3} U^{\prime}=0 \tag{2.16}
\end{equation*}
$$

so, the relation (2.15) is exactly a recognition of this fact. The adjoint equation to (2.16) is:

$$
\begin{equation*}
\mathcal{E}_{a}^{3}: U_{a}^{\prime \prime \prime}+\frac{k^{\prime}}{k} U_{a}^{\prime \prime}+\left[2\left(\frac{k^{\prime}}{k}\right)^{\prime}+k^{2}\right] U_{d}^{\prime}+\left[\left(\frac{k^{\prime}}{k}\right)^{\prime \prime}+2 k k^{\prime}\right] U_{a}=0 . \tag{2.17}
\end{equation*}
$$

Example 2.4 Trying to connect the SODE (1.1) with the third order differential equation (2.16) we derive \mathcal{E}^{2} in order to obtain $d \mathcal{E}^{2}=\mathcal{E}^{3}$; then the equality of the coefficients with (2.16) means:

$$
\left\{\begin{array}{l}
p=-\frac{k^{\prime}}{k}, \tag{2.18}\\
p^{\prime}+q=k^{2}, \\
q^{\prime}=0 .
\end{array}\right.
$$

Therefore, both coefficients p, q are given as functions of k, which is supposed to be strictly positive:

$$
\begin{equation*}
q=k^{2}+\left(\frac{k^{\prime}}{k}\right)^{\prime}=\text { constant }=C, \quad P=\ln \frac{1}{k} . \tag{2.19}
\end{equation*}
$$

The choice $C=1$ is inspired by the hypothesis of natural parameter for t; then the above second order non-linear differential equation in the unknown k has an implicit solution, provided by Wolfram Alpha:

$$
\begin{equation*}
\mathcal{C}+t=\int_{1}^{k(t)} \frac{d u}{\sqrt{\mathcal{C} u^{2}-u^{4}+2 u^{2} \ln u}}, \quad \mathcal{C} \in \mathbb{R} . \tag{2.20}
\end{equation*}
$$

We study now the same problem for the adjoint equations i.e. when $d \mathcal{E}_{a}^{2}=\mathcal{E}_{a}^{3}$. The derivative of \mathcal{E}_{a}^{2} is:

$$
\begin{equation*}
u_{a}^{\prime \prime \prime}-p u_{a}^{\prime \prime}+\left(q-2 p^{\prime}\right) u_{a}^{\prime}+\left(q^{\prime}-p^{\prime \prime}\right) u_{a}=0 \tag{2.21}
\end{equation*}
$$

and this equation coincides with (2.17) if and only if:

$$
\begin{equation*}
p=-\frac{k^{\prime}}{k}, \quad q=k^{2} . \tag{2.22}
\end{equation*}
$$

It follows then that (1.1) is similar to (2.16) but as second order differential equation and not as a third order one. Comparing (2.22) with the initial expression (1.1) of the coefficient functions p, q it results:

$$
\begin{equation*}
W(r)=\mathcal{C} k, \quad W\left(r^{\prime}\right)=\mathcal{C} k^{3}, \quad \mathcal{C} \in \mathbb{R}^{*} . \tag{2.23}
\end{equation*}
$$

The supplementary hypothesis of natural parametrization for r reduces the equations above to $k^{2}=\frac{1}{\mathcal{C}}$ and then r is a circle and (1.1) is a self-adjoint SODE.

Let us recall now some known facts concerning the transformation of parameter in a linear $\operatorname{SODE} \mathcal{E}: u^{\prime \prime}+p^{\prime}+q u=0$. Let $\tilde{t}=\tilde{t}(t)$ such a change of parameter; then the new linear SODE is:

$$
\begin{equation*}
u_{\tilde{t} \tilde{t}}+\tilde{p} u_{\tilde{t}}+\tilde{q} u=0, \quad p=\tilde{t}^{\prime} \tilde{p}-\frac{\tilde{t}^{\prime \prime}}{\tilde{t}^{\prime}}, \quad q=\left(\tilde{t}^{\prime}\right)^{2} \tilde{q} . \tag{2.24}
\end{equation*}
$$

It follows two relative invariants:

$$
\begin{equation*}
\sqrt{q} d t=\sqrt{\tilde{q}} d \tilde{t}, \quad\left(2 p+\frac{q^{\prime}}{q}\right) d t=\left(2 \tilde{p}+\frac{\tilde{q}_{\tilde{t}}}{\tilde{q}}\right) d t \tag{2.25}
\end{equation*}
$$

and therefore we have the absolute invariant:

$$
\begin{equation*}
I(\mathcal{E}):=\frac{2 p+\frac{q^{\prime}}{q}}{\sqrt{q}}=\frac{2 p q+q^{\prime}}{q^{\frac{3}{2}}} . \tag{2.26}
\end{equation*}
$$

Hence two linear SODEs, \mathcal{E} and $\tilde{\mathcal{E}}$, are equivalent through a transformation $\tilde{t}=\tilde{t}(t)$ if and only if $I(\mathcal{E})=I(\tilde{\mathcal{E}})$. For the two parts of the example 2.4 above we have:

$$
\begin{equation*}
I\left(\mathcal{E}\left(p=-\frac{k^{\prime}}{k}, q=1\right)\right)=2 p=-2 \frac{k^{\prime}}{k}, \quad I\left(\mathcal{E}\left(p=-\frac{k^{\prime}}{k}, q=k^{2}\right)\right)=0 . \tag{2.27}
\end{equation*}
$$

It is worth to remark that in both cases studied in the example 2.4 the first coefficient function is $p=-\frac{k^{\prime}}{k}$. In this case we can perform a change of parameter which reduces the SODE \mathcal{E}^{2} to a simpler form. Namely, let $\tau=\tau(t)$ be the structural angle function of r i.e. $\tau(t)=\int_{t_{0}}^{t} k(u) d u$; then $r^{\prime}(t)=\exp (i \tau(t))$. For this new parameter we have:

$$
\begin{equation*}
r^{\prime}=k \frac{d r}{d \tau}, \quad r^{\prime \prime}=k^{2} \frac{d^{2} r}{d \tau^{2}}+k^{\prime} \frac{d r}{d \tau} \tag{2.28}
\end{equation*}
$$

and then the SODE $\mathcal{E}^{2}: r^{\prime \prime}-\frac{k^{\prime}}{k} r^{\prime}+q(t) r(t)=0$ reduces to:

$$
\begin{equation*}
k^{2}(t(\tau)) \frac{d^{2} r}{d \tau^{2}}(\tau)+q(t(\tau)) r(t(\tau))=0 \tag{2.29}
\end{equation*}
$$

We finish this section with an example showing again the complexity of finding \mathcal{E}^{2} even for a simple curve.

Example 2.5 The well-known catenary curve is ([4]):

$$
\begin{equation*}
r(t)=\left(\ln \left(t+\sqrt{1+t^{2}}\right), \sqrt{1+t^{2}}\right) \tag{2.30}
\end{equation*}
$$

and then:

$$
\left\{\begin{array}{l}
k(t)=\frac{1}{1+t^{2}} \in(0,1), \tau(t)=\arctan t \rightarrow r^{\prime}(\tau)=\exp (i \tau) \tag{2.31}\\
W(r)(t)=\frac{t \ln \left(t+\sqrt{1+t^{2}}\right)}{\sqrt{1+t^{2}}}-1 \\
W(r)(\tau)=\sin \tau \ln \frac{1+\sin \tau}{\cos \tau}-1=\sin \tau \ln \frac{\cos \frac{\tau}{\tau}+\sin \frac{\tau}{\tau}}{\cos \frac{\tau}{2}-\sin \frac{\tau}{2}}-1
\end{array}\right.
$$

It results:

$$
\left\{\begin{array}{l}
p(t)=-\frac{1}{t}\left[\frac{1}{1+t^{2}}+\frac{\sqrt{1+t^{2}}}{t \ln \left(t+\sqrt{1+t^{2}}\right)-\sqrt{1+t^{2}}}\right] \tag{2.32}\\
q(t)=\frac{1}{\sqrt{1+t^{2}}\left[t \ln \left(t+\sqrt{1+t^{2}}\right)-\sqrt{1+t^{2}}\right]} .
\end{array}\right.
$$

Obviously, considered separately the functions x, y satisfy more simple SODE. For y we have $y^{\prime}=\frac{t}{1+t^{2}} y$ which by derivation means:

$$
\begin{equation*}
y^{\prime \prime}-\frac{t}{1+t^{2}} y^{\prime}+\frac{t^{2}-1}{\left(1+t^{2}\right)^{2}} y=0 \tag{2.33}
\end{equation*}
$$

The adjoint SODE of this last SODE is $y_{a}^{\prime \prime}+\frac{t}{1+t^{2}} y_{a}^{\prime}=0$ with the solution $y_{a}(t)=x(t)=$ $\ln \left(t+\sqrt{1+t^{2}}\right)$.

3 The curvature-deformation function of a linear SODE

Motivated by the complexity to find curvature-preserving adjoint maps, in this section we introduce a measure of the difference of curvatures. It is worth to point out that this notion works directly for a SODE (1.1), irrespective if it represents or not a given plane curve.

Definition 3.1 The curvature-deformation function of the linear SODE \mathcal{E} expressed in (1.1) is the smooth function $C D(\mathcal{E}): I \rightarrow \mathbb{R}$:

$$
\begin{equation*}
C D(\mathcal{E}):=q \exp (-P)-\left(q-p^{\prime}\right) \exp (P), \quad P=\int p \tag{3.1}
\end{equation*}
$$

It follows directly:

$$
\begin{equation*}
C D(\mathcal{E})=P^{\prime \prime} \exp (P)-2 q \sinh (P) \tag{3.2}
\end{equation*}
$$

and then given a pair of smooth functions (p, \mathcal{F}) there exists a unique q such that $C D(\mathcal{E})=\mathcal{F}$, namely:

$$
\begin{equation*}
q=\frac{P^{\prime \prime} \exp (P)-\mathcal{F}}{2 \sinh (P)} . \tag{3.3}
\end{equation*}
$$

Example 3.2 Fix the constants α, β, γ and the Gauss hypergeometric equation with $I=(1,+\infty)$:

$$
\begin{equation*}
\mathcal{E}(\alpha, \beta, \gamma): t(t-1) u^{\prime \prime}+[(\alpha+\beta+1) t-\gamma] u^{\prime}+\alpha \beta u=0 . \tag{3.4}
\end{equation*}
$$

For $\alpha+\beta=\gamma=1$ we obtain $P(t)=\ln \left(t^{2}-t\right)$ and finally:

$$
\begin{equation*}
C D(\mathcal{E})(t)=\alpha \beta\left[\frac{1}{\left(t^{2}-t\right)^{2}}-1\right]-2-\frac{1}{t^{2}-t} . \tag{3.5}
\end{equation*}
$$

The adjoint SODE to the particular hypergeometric $\operatorname{SODE}(\alpha+\beta=\gamma=1)$ is:

$$
\begin{equation*}
\mathcal{E}_{a}(\alpha+\beta=1=\gamma): t(t-1) u_{a}^{\prime \prime}-(2 t-1) u_{a}^{\prime}+\left(\alpha \beta+2+\frac{1}{t^{2}-t}\right) u_{a}=0 . \tag{3.6}
\end{equation*}
$$

The absolute invariant of our particular hypergeometric SODE is (supposing $\alpha \beta>0$):

$$
\begin{equation*}
I(\alpha+\beta=1=\gamma)=\frac{(2 t-1)\left(t^{2}-t\right)}{\sqrt{\alpha \beta}}>0 \tag{3.7}
\end{equation*}
$$

Example 3.3 Let $\mathcal{E}: u^{\prime \prime}=\Lambda\left(u^{\prime}, u, t\right)$ be a general SODE. In the paper [5] is considered a Wunschmann-type condition for it:

$$
\begin{equation*}
\Lambda_{u t}+\Lambda_{u u} u^{\prime}+\Lambda_{u u^{\prime}} \Lambda=2 \Lambda_{u} \Lambda_{u^{\prime}} \tag{3.8}
\end{equation*}
$$

This condition means that on the two-dimensional manifold of solutions of \mathcal{E} (conform (1.2)) there exists a diagonal Riemannian (or semi-Riemannian) metric satisfying the Hamilton-Jacobi equation. If \mathcal{E} is a linear one:

$$
\begin{equation*}
\Lambda\left(u^{\prime}, u, t\right):=-p(t) u^{\prime}-q(t) u \tag{3.9}
\end{equation*}
$$

then the relation (3.8) means:

$$
\begin{equation*}
-q^{\prime}=2 p q \rightarrow I(\mathcal{E})=0 \tag{3.10}
\end{equation*}
$$

and then supposing $q>0$ it results $P=\ln \frac{1}{\sqrt{q}}$. We compute the curvature-deformation function in terms of q :

$$
\begin{equation*}
C D(\mathcal{E})=q^{\frac{3}{2}}-q^{\frac{1}{2}}-\frac{1}{2 q}\left(\frac{q^{\prime}}{q}\right)^{\prime} . \tag{3.11}
\end{equation*}
$$

Then the case $q=1$ discussed in the previous section gives a vanishing $C D(\mathcal{E})$.

References

[1] H. Alencar, W. Santos and G. Neto Silva, Differential geometry of plane curves, American Mathematical Society, 2022. Zbl 1511.53001
[2] O. Calin, D.-C. Chang and P. Greiner, Geometric analysis on the Heisenberg group and its generalizations, American Mathematical Society, 2007. Zbl 1132.53001
[3] M. Crasmareanu, Adjoint variables: A common way to first integrals and inverse problems, Mem. Differ. Equ. Math. Phys., 26 (2002), 55-64. Zbl 1018.34008
[4] M. Crasmareanu, Higher order curvatures of plane and space parametrized curves, Algorithms, 15 (2022), no. 11, paper no. 436, https://doi.org/10.3390/a15110436.
[5] M. Crasmareanu and V. Enache, A note on dynamical systems satisfying the Wünschmanntype condition, Intern. J. of the Physical Sciences, 7 (2012), no. 42, 5654-5663.
[6] P. J. Olver, Equivalence, invariants, and symmetry, Cambridge University Press, 1995. Zbl 0837.58001

Mircea Crasmareanu Faculty of Mathematics, University "Al. I. Cuza", Iaşi, 700506, Romania

E-mail: mcrasm@uaic.ro
http://www.math.uaic.ro/~mcrasm
ORCID: 0000-0002-5230-2751

