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The adjoint map of Euclidean plane curves and

curvature problems

Mircea Crasmareanu

Abstract. The adjoint map of a pair of naturally parametrized curves in the Eu-

clidean plane is studied from the point of view of the curvature. A main interest is

when the given curve and its adjoint curve share the same natural parameter and

the same curvature. For the general linear second order differential equation we in-

troduce a function expressing the deformation of curvatures induced by the adjoint

map.
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1 Introduction

Fix the smooth regular curve r : I ⊆ R → E2 = (R2, < ·, · >can) having the Wronskians W (r) > 0
(hence r is not a line through the origin O of R2) and W (r′) ̸= 0. Expressing the given curve as
r(·) = (x(·), y(·)) its component functions x, y are solutions of the Wronskian linear differential
equation:

W (x, y, u = u(·)) :=
x y u
x′ y′ u′

x′′ y′′ u′′
= 0 → E2 : u′′(t) + p(t)u′(t) + q(t)u(t) = 0,

p := − [W (r)]′

W (r) , q := W (r′)
W (r) , E2 : d

dt

(
u′

W (r)

)
+ W (r′)u

(W (r))2 = 0.

(1.1)

It is well-known that the general solution of (1.1) is provided by two real constants C1, C2 through
the formula:

u(t) = C1x(t) + C2y(t), C1 =
W (u, y)

W (r)
, C2 =

W (x, u)

W (r)
. (1.2)

For further use, let P = P (t) be the anti-derivative of the first coefficient function p = p(t) and
k = k(t) the usual curvature of r; we suppose that r has no inflexion points, so k > 0 or k < 0 on
I. A main hypothesis of this short note is that t is a natural parameter for r; then I = (0, L(r))
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with L(r) the length of r and the module |W (r)| is the Euclidean distance form the origin O to
the tangent line of the curve. The two functions above are:

P = − lnW (r), k = W (r′) = q exp(−P ) → q ̸= 0. (1.3)

The second order ordinary differential equation (SODE) E2 expresses u as solution of the
differential operator:

D :=
d2

dt2
+ p

d

dt
+ q =

2∑
i=0

µi
di

dti
: C∞(R) → C∞(R) (1.4)

and we recall that any k-differential operator D :=
∑k

i=0 µi
di

dti has an adjoint operator ([3], [6, p.
218]):

Da :=

k∑
i=0

(−1)i
di

dti
(µi·) . (1.5)

Fix now the adjoint curve ra(t) = (xa(t), ya(t)) which corresponds to the adjoint SODE E2
a

provided by Da. Our aim is to study the corresponding curvature transformation k → ka due to
the fundamental theorem of plane curves ([1, p. 52]), which states the main role of this differential
invariant in the geometry of r. Expressing the initial curve in generalized polar coordinates we
characterize the curvature-preserving adjoint map and two examples are discussed. Since finding
non-selfdual examples of adjoint curves with the same curvature is a difficult problem we introduce
a curvature-deformation function of a general linear SODE; again two examples are considered.

2 The adjoint map and curvature problems

We fix now the expression of the initial curve:

r(t) := ρ(t) exp(iω(t)), ρ > 0, r′(t) = ρ′(t) exp(iω(t)) + ρ(t)ω′(t) exp
(
iω(t) +

π

2

)
(2.1)

and hence since t is a natural parameter we have:

(ρ′)2 + (ρω′)2 = 1. (2.2)

The characterization of the curvature-preserving transformations r → ra is provided by:

Theorem 2.1. Suppose that t is also a natural parameter for the adjoint curve ra. Then the
adjoint map r → ra is curvature-preserving if and only if:

[ln(ρ
√
1− (ρ′)2)]′′

ρ2(1− (ρ′)2)− 1
=

[ln(ρ
√

1− (ρ′)2)]′

ρρ′
. (2.3)

Proof. Since t is a natural parameter for r we can express q as function of ρ. Indeed the system
(1.1) means: {

x′′ + px′ + qx = 0
y′′ + py′ + qy = 0.

(2.4)

Multiplying the first equation with x′, the second equation with y′ and adding the resulting
relations we obtain:

q = − 2p

(ρ2)′
= − p

ρρ′
. (2.5)
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The adjoint SODE of E2 is:

E2
a : u′′

a(t)− p(t)u′
a(t) + (q(t)− p′(t))ua(t) = 0 (2.6)

and the hypothesis gives the adjoint curvature:

ka = (q − p′) exp(P ). (2.7)

The equality k = ka (which implies q ̸= p′) combined with (2.5) reads as:

q =
P ′′

1− exp(−2P )
= − P ′

ρρ′
. (2.8)

From (2.1) we obtain the Wronskian of the initial curve:

W (r) = ρ2ω′ (2.9)

which, via (2.2), means:

W (r) = ρ
√
1− (ρ′)2 (2.10)

and then:
P = − ln(ρ

√
1− (ρ′)2). (2.11)

Replacing this last formula into (2.8) yields the claimed relation (2.3).

Example 2.2 The degenerate case of the characterization (2.3) is provided by the constancy
of P , equivalently, from (1.2), the constancy of W (r). From (2.9) we have:

ρ2ω′ = constant (2.12)

which is exactly the Kepler second law ([2, p. 235]). This means that r is a central conic and
it is well-known that the operator (1.3) is self-adjoint (i.e. p = 0) if and only if r is projectively
equivalent to a conic ([6, p. 220]). In particular, if ρ = constant = R > 0 then the condition
(2.2) gives ω(t) = t

R i.e. we have the well-known natural parametrization of the circle C(O,R).
2

Example 2.3 We can start now directly with a naturally parametrized curve. It is the
Cornu spiral ([1, p. 54]) r : (0,+∞) → E2:

r(t) =

(∫ t

0

cos(u+
u2

2
)du,

∫ t

0

sin(u+
u2

2
)du

)
, k(t) = t+ 1 > 1 (2.13)

for which we obtain the coefficient functions: P (t) = − ln
[
sin(t+ t2

2 )
∫ t

0
cos(u+ u2

2 )du− cos(t+ t2

2 )
∫ t

0
sin(u+ u2

2 )du
]
,

q(t) = (t+ 1)
[
sin(t+ t2

2 )
∫ t

0
cos(u+ u2

2 )du− cos(t+ t2

2 )
∫ t

0
sin(u+ u2

2 )du
]−1

.
(2.14)

Due to the very complicated computations we use the Wolfram Alpha to find the SODE satisfies
by the components of r. Unfortunately, this free software provides not a SODE but a third order
differential equation:

(1 + t)U ′′′ − U ′′ + (1 + t)3U ′ = 0. (2.15)

In fact, for a naturally parametrized plane curve it is well-known to satisfy the third order diffe-
rential equation:

E3 : kU ′′′ − k′U ′′ + k3U ′ = 0 (2.16)



4 Mircea Crasmareanu

so, the relation (2.15) is exactly a recognition of this fact. The adjoint equation to (2.16) is:

E3
a : U ′′′

a +
k′

k
U ′′
a +

[
2

(
k′

k

)′

+ k2

]
U ′
d +

[(
k′

k

)′′

+ 2kk′

]
Ua = 0. (2.17)

2

Example 2.4 Trying to connect the SODE (1.1) with the third order differential equation
(2.16) we derive E2 in order to obtain dE2 = E3; then the equality of the coefficients with (2.16)
means:  p = −k′

k ,
p′ + q = k2,
q′ = 0.

(2.18)

Therefore, both coefficients p, q are given as functions of k, which is supposed to be strictly
positive:

q = k2 +

(
k′

k

)′

= constant = C, P = ln
1

k
. (2.19)

The choice C = 1 is inspired by the hypothesis of natural parameter for t; then the above second
order non-linear differential equation in the unknown k has an implicit solution, provided by
Wolfram Alpha:

C + t =

∫ k(t)

1

du√
Cu2 − u4 + 2u2 lnu

, C ∈ R. (2.20)

We study now the same problem for the adjoint equations i.e. when dE2
a = E3

a . The derivative
of E2

a is:
u′′′
a − pu′′

a + (q − 2p′)u′
a + (q′ − p′′)ua = 0 (2.21)

and this equation coincides with (2.17) if and only if:

p = −k′

k
, q = k2. (2.22)

It follows then that (1.1) is similar to (2.16) but as second order differential equation and not as
a third order one. Comparing (2.22) with the initial expression (1.1) of the coefficient functions
p, q it results:

W (r) = Ck, W (r′) = Ck3, C ∈ R∗. (2.23)

The supplementary hypothesis of natural parametrization for r reduces the equations above to
k2 = 1

C and then r is a circle and (1.1) is a self-adjoint SODE. 2

Let us recall now some known facts concerning the transformation of parameter in a linear
SODE E : u′′ + p′ + qu = 0. Let t̃ = t̃(t) such a change of parameter; then the new linear SODE
is:

ut̃t̃ + p̃ut̃ + q̃u = 0, p = t̃′p̃− t̃′′

t̃′
, q = (t̃′)2q̃. (2.24)

It follows two relative invariants:

√
qdt =

√
q̃dt̃,

(
2p+

q′

q

)
dt =

(
2p̃+

q̃t̃
q̃

)
dt (2.25)

and therefore we have the absolute invariant:

I(E) :=
2p+ q′

q√
q

=
2pq + q′

q
3
2

. (2.26)
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Hence two linear SODEs, E and Ẽ , are equivalent through a transformation t̃ = t̃(t) if and only
if I(E) = I(Ẽ). For the two parts of the example 2.4 above we have:

I

(
E
(
p = −k′

k
, q = 1

))
= 2p = −2

k′

k
, I

(
E
(
p = −k′

k
, q = k2

))
= 0. (2.27)

It is worth to remark that in both cases studied in the example 2.4 the first coefficient
function is p = −k′

k . In this case we can perform a change of parameter which reduces the
SODE E2 to a simpler form. Namely, let τ = τ(t) be the structural angle function of r i.e.

τ(t) =
∫ t

t0
k(u)du; then r′(t) = exp(iτ(t)). For this new parameter we have:

r′ = k
dr

dτ
, r′′ = k2

d2r

dτ2
+ k′

dr

dτ
(2.28)

and then the SODE E2 : r′′ − k′

k r
′ + q(t)r(t) = 0 reduces to:

k2(t(τ))
d2r

dτ2
(τ) + q(t(τ))r(t(τ)) = 0. (2.29)

We finish this section with an example showing again the complexity of finding E2 even for
a simple curve.

Example 2.5 The well-known catenary curve is ([4]):

r(t) = (ln(t+
√
1 + t2),

√
1 + t2) (2.30)

and then: 
k(t) = 1

1+t2 ∈ (0, 1), τ(t) = arctan t → r′(τ) = exp(iτ),

W (r)(t) = t ln(t+
√
1+t2)√

1+t2
− 1,

W (r)(τ) = sin τ ln 1+sin τ
cos τ − 1 = sin τ ln

cos τ
2+sin τ

2

cos τ
2−sin τ

2
− 1.

(2.31)

It results: {
p(t) = − 1

t

[
1

1+t2 +
√
1+t2

t ln(t+
√
1+t2)−

√
1+t2

]
,

q(t) = 1√
1+t2[t ln(t+

√
1+t2)−

√
1+t2]

.
(2.32)

Obviously, considered separately the functions x, y satisfy more simple SODE. For y we have
y′ = t

1+t2 y which by derivation means:

y′′ − t

1 + t2
y′ +

t2 − 1

(1 + t2)2
y = 0. (2.33)

The adjoint SODE of this last SODE is y′′a + t
1+t2 y

′
a = 0 with the solution ya(t) = x(t) =

ln(t+
√
1 + t2). 2

3 The curvature-deformation function of a linear SODE

Motivated by the complexity to find curvature-preserving adjoint maps, in this section we intro-
duce a measure of the difference of curvatures. It is worth to point out that this notion works
directly for a SODE (1.1), irrespective if it represents or not a given plane curve.
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Definition 3.1 The curvature-deformation function of the linear SODE E expressed in (1.1)
is the smooth function CD(E) : I → R:

CD(E) := q exp(−P )− (q − p′) exp(P ), P =

∫
p. (3.1)

It follows directly:
CD(E) = P ′′ exp(P )− 2q sinh(P ) (3.2)

and then given a pair of smooth functions (p,F) there exists a unique q such that CD(E) = F ,
namely:

q =
P ′′ exp(P )−F

2 sinh(P )
. (3.3)

Example 3.2 Fix the constants α, β, γ and the Gauss hypergeometric equation with
I = (1,+∞):

E(α, β, γ) : t(t− 1)u′′ + [(α+ β + 1)t− γ]u′ + αβu = 0. (3.4)

For α+ β = γ = 1 we obtain P (t) = ln(t2 − t) and finally:

CD(E)(t) = αβ

[
1

(t2 − t)2
− 1

]
− 2− 1

t2 − t
. (3.5)

The adjoint SODE to the particular hypergeometric SODE (α+ β = γ = 1) is:

Ea(α+ β = 1 = γ) : t(t− 1)u′′
a − (2t− 1)u′

a +

(
αβ + 2 +

1

t2 − t

)
ua = 0. (3.6)

The absolute invariant of our particular hypergeometric SODE is (supposing αβ > 0):

I(α+ β = 1 = γ) =
(2t− 1)(t2 − t)√

αβ
> 0. (3.7)

2

Example 3.3 Let E : u′′ = Λ(u′, u, t) be a general SODE. In the paper [5] is considered a
Wunschmann-type condition for it:

Λut + Λuuu
′ + Λuu′Λ = 2ΛuΛu′ . (3.8)

This condition means that on the two-dimensional manifold of solutions of E (conform (1.2))
there exists a diagonal Riemannian (or semi-Riemannian) metric satisfying the Hamilton-Jacobi
equation. If E is a linear one:

Λ(u′, u, t) := −p(t)u′ − q(t)u (3.9)

then the relation (3.8) means:
−q′ = 2pq → I(E) = 0 (3.10)

and then supposing q > 0 it results P = ln 1√
q . We compute the curvature-deformation function

in terms of q:

CD(E) = q
3
2 − q

1
2 − 1

2q

(
q′

q

)′

. (3.11)

Then the case q = 1 discussed in the previous section gives a vanishing CD(E). 2
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