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The adjoint map of Euclidean plane curves and

curvature problems

Mircea Crasmareanu

Abstract. The adjoint map of a pair of naturally parametrized curves in the Eu-
clidean plane is studied from the point of view of the curvature. A main interest is
when the given curve and its adjoint curve share the same natural parameter and
the same curvature. For the general linear second order differential equation we in-
troduce a function expressing the deformation of curvatures induced by the adjoint
map.
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1 Introduction

Fix the smooth regular curve r : I C R — E? = (R?, < -, >4,,) having the Wronskians W (r) > 0
(hence 7 is not a line through the origin O of R?) and W (r’) # 0. Expressing the given curve as
r(-) = (z(-),y(-)) its component functions z,y are solutions of the Wronskian linear differential
equation:

T Yy u
W(z,y,u=u(-)):=| 2/ o o |=0-=E2:4"(1)+plt)u'(t) + q(t)u(t) =0,
2" y// o’ (1_1)
o _wmyy — W) . d / W(ru _
pe=-logl. o= e d (wm) + ai =0

It is well-known that the general solution of (1.1) is provided by two real constants C7, C through

the formula:
W(u,y) W(z,u)

Wi(r) W (r)
For further use, let P = P(t) be the anti-derivative of the first coefficient function p = p(t) and

k = k(t) the usual curvature of r; we suppose that r has no inflexion points, so & > 0 or k < 0 on
I. A main hypothesis of this short note is that ¢ is a natural parameter for r; then I = (0, L(r))

u(t) = Crz(t) + Coy(t), C1= Cy = (1.2)
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with L(r) the length of » and the module |W (r)]| is the Euclidean distance form the origin O to
the tangent line of the curve. The two functions above are:

P=—lmW(r), k=W(@")=qgexp(—P)— q#0. (1.3)

The second order ordinary differential equation (SODE) £2 expresses u as solution of the
differential operator:

2 d 7

d
= o o 14
Di= 5 +py +a= Z’”dtl C*([R) — C*(R) (1.4)

and we recall that any k-differential operator D := Z?:o uij—; has an adjoint operator ([3], [6, p.
218)):

72

k
= (-1 V' o (i) (1.5)

i=0

Fix now the adjoint curve 14(t) = (24(t),ya(t)) which corresponds to the adjoint SODE &2
provided by D,. Our aim is to study the corresponding curvature transformation k — k, due to
the fundamental theorem of plane curves ([1, p. 52]), which states the main role of this differential
invariant in the geometry of r. Expressing the initial curve in generalized polar coordinates we
characterize the curvature-preserving adjoint map and two examples are discussed. Since finding
non-selfdual examples of adjoint curves with the same curvature is a difficult problem we introduce
a curvature-deformation function of a general linear SODE; again two examples are considered.

2 The adjoint map and curvature problems

We fix now the expression of the initial curve:

r(t) == plt) expliw(t).p > 0, 1'(1) = o/ (1) expliw(t) + p(D)e () exp (iw(t) + 5 ) (2.1)
and hence since t is a natural parameter we have:
() + (pw')? =1. (2.2)
The characterization of the curvature-preserving transformations r — r, is provided by:

Theorem 2.1. Suppose that t is also a natural parameter for the adjoint curve ro,. Then the
adjoint map v — 14 is curvature-preserving if and only if:
[In(py/1 = (p)))" _ [I(py/1 = (p)?)]
p?(1—=(p)?) -1 pp’

(2.3)

Proof. Since t is a natural parameter for r we can express ¢ as function of p. Indeed the system
(1.1) means:
{ " +pr’' +qr=0

2.4
y'+py' +qy=0. @4

Multiplying the first equation with z’, the second equation with 3’ and adding the resulting
plying

relations we obtain: 5
P p
T T T 25
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The adjoint SODE of £2 is:

E3  uq (t) — p()ug (t) + (a(t) — p'(t))ua(t) = 0 (2.6)
and the hypothesis gives the adjoint curvature:
ko = (¢ —p') exp(P). (2.7)

The equality k& = k, (which implies ¢ # p’) combined with (2.5) reads as:

P// P/
1 —exp(—2P) Pp
From (2.1) we obtain the Wronskian of the initial curve:
W(r) = p*w’ (2.9)
which, via (2.2), means:
W) = py/T= ()2 (2.10)
and then:
P=—In(py/1—(p)?). (2.11)
Replacing this last formula into (2.8) yields the claimed relation (2.3). O

Example 2.2 The degenerate case of the characterization (2.3) is provided by the constancy
of P, equivalently, from (1.2), the constancy of W(r). From (2.9) we have:

p*w’ = constant (2.12)

which is exactly the Kepler second law ([2, p. 235]). This means that r is a central conic and
it is well-known that the operator (1.3) is self-adjoint (i.e. p = 0) if and only if r is projectively
equivalent to a conic ([6, p. 220]). In particular, if p = constant = R > 0 then the condition
(2.2) gives w(t) = % i.e. we have the well-known natural parametrization of the circle C(O, R).

O

Example 2.3 We can start now directly with a naturally parametrized curve. It is the
Cornu spiral ([1, p. 54]) r : (0, +o0) — E2:

¢ u? t w2
r(t) = </ cos(u + )du / sin(u + )du) Eit)y=t+1>1 (2.13)
0 0
for which we obtain the coefficient functions:

P(t)=—In [sm t+% fo cos(u + 4 )du — cos(t fo sin(u + %4 )du} ,
o (2.14)
q(t)=(t+1) [sin(t + 7 fo cos(u + %)du —cos(t+ 5 fo sin(u + % )du} .

Due to the very complicated computations we use the Wolfram Alpha to find the SODE satisfies
by the components of r. Unfortunately, this free software provides not a SODE but a third order
differential equation:

1+tU" -U"+ (1 +t)U =0. (2.15)

In fact, for a naturally parametrized plane curve it is well-known to satisfy the third order diffe-
rential equation:
E KU — KU+ KU =0 (2.16)
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so, the relation (2.15) is exactly a recognition of this fact. The adjoint equation to (2.16) is:
AN B\
2 k? — 2kk'
(&) wju| (&) +
0

Example 2.4 Trying to connect the SODE (1.1) with the third order differential equation
(2.16) we derive £2 in order to obtain d€? = £3; then the equality of the coefficients with (2.16)
means:

Q:U!+ﬁiw+

- U, + U, =0. (2.17)

p=-
P +aq=Fk, (2.18)
q =

Therefore, both coefficients p, ¢ are given as functions of k, which is supposed to be strictly

positive:
/

K\ 1
q=k+ <k> =constant =C, P =1In T (2.19)
The choice C' =1 is inspired by the hypothesis of natural parameter for ¢; then the above second
order non-linear differential equation in the unknown k has an implicit solution, provided by
Wolfram Alpha:
du

k()
C+t= / . CcR. 2.20
1 VCu?2 —ut +2u2lnu ( )

We study now the same problem for the adjoint equations i.e. when d€2 = £2. The derivative
of £2 is:

uq' = pg + (g =2 )ug + (¢ = p")ua =0 (2:21)
and this equation coincides with (2.17) if and only if:
k,/
p=-7 a=k. (2.22)

It follows then that (1.1) is similar to (2.16) but as second order differential equation and not as
a third order one. Comparing (2.22) with the initial expression (1.1) of the coefficient functions
p, q it results:

W(r)=Ck, W(')=Ck® CecR*. (2.23)
The supplementary hypothesis of natural parametrization for r reduces the equations above to
k? = £ and then 7 is a circle and (1.1) is a self-adjoint SODE. O

Let us recall now some known facts concerning the transformation of parameter in a linear
SODE & : u” +p’ + qu = 0. Let t = t(¢) such a change of parameter; then the new linear SODE
is:

1"

It follows two relative invariants:
/ q~
Vadt = \/qdt, <2p + q) dt = (2;3 + qf) dt (2.25)
q q
and therefore we have the absolute invariant:

WY 2pa+d
Vi ¢

1(8) : (2.26)
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Hence two linear SODEs, £ and &, are equivalent through a transformation ¢ = ¢(¢) if and only
if I1(€) = I(£). For the two parts of the example 2.4 above we have:

I(¢& :—k—/,qzl :2p272kf/, I(€ p:—k—/,q:kQ =0. (2.27)
k k k

It is worth to remark that in both cases studied in the example 2.4 the first coefficient
k/

function is p = —%-. In this case we can perform a change of parameter which reduces the
SODE £? to a simpler form. Namely, let 7 = 7(t) be the structural angle function of r i.e.
j; w)du; then r/(t) = exp(i7(t)). For this new parameter we have:
dr d*r dr
"=k— =k — k’ 2.28
" dr’ dr? + ( )

and then the SODE £2 : r" — %r’ +q(t)r(t) = 0 reduces to:

d?r

k2 (#(7)) 75 (1) + a(4(7))r (¢()) = 0. (2.29)

We finish this section with an example showing again the complexity of finding £2 even for
a simple curve.

Example 2.5 The well-known catenary curve is ([4]):

= (In(t + V1 +12), /1 +12) (2.30)

and then:
k(t) = 1+t2 € (0,1),7(t) = arctant — /(1) = exp(iT),
W(r)(t) = HRERAEE | (2.31)
W(r)(r) =sintln B80T 1 — ginrln 22807
2 2
It results:
p(t) = -1 {L + VIEeE? }
P e Ve ] (2.32)
4() = S ErmayiTE) ViTE

Obviously, considered separately the functions z, y satisfy more simple SODE. For y we have

y = #y which by derivation means:

1

Y

Loy ot (2.33)
12! Tarep! T '

The adjoint SODE of this last SODE is y)/ + 15z y, = 0 with the solution ya(t) = z(t) =
In(t + VI + 2). O

3 The curvature-deformation function of a linear SODE

Motivated by the complexity to find curvature-preserving adjoint maps, in this section we intro-
duce a measure of the difference of curvatures. It is worth to point out that this notion works
directly for a SODE (1.1), irrespective if it represents or not a given plane curve.
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Definition 3.1 The curvature-deformation function of the linear SODE & expressed in (1.1)
is the smooth function CD() : I — R:

CD(E) = qexp(~P) — (¢ — ) exp(P), P = / P (3.1)

It follows directly:
CD(E) = P" exp(P) — 2¢sinh(P) (3.2)

and then given a pair of smooth functions (p, F) there exists a unique ¢ such that CD() = F,

namely:
P"exp(P) — F
= 3.3
e 2sinh(P) (3:3)
Example 3.2 Fix the constants «, 3,y and the Gauss hypergeometric equation with
I=(1,400):
E(a, B,7) ittt —Du”" + [(a+ B+ 1)t — ]u' + aBu = 0. (3.4)

For a + B8 = = 1 we obtain P(t) = In(t? — ) and finally:

CD(E)(t) = af {@2;)2 - 1] —a- % (3.5)

The adjoint SODE to the particular hypergeometric SODE (a+ 8 =~ =1) is:
1
Eola+B=1=7):t{t—1Dul — (2t — )u, + (aﬁ—I— 24 152t> g = 0. (3.6)

The absolute invariant of our particular hypergeometric SODE is (supposing a8 > 0):

I(a+5:1:7):(2t_1)\/a(7§_t>>0. (3.7)

O

Example 3.3 Let € : v’ = A(v/,u,t) be a general SODE. In the paper [5] is considered a
Wunschmann-type condition for it:

Aut + At + Ay A = 204 Ay (3.8)

This condition means that on the two-dimensional manifold of solutions of € (conform (1.2))
there exists a diagonal Riemannian (or semi-Riemannian) metric satisfying the Hamilton-Jacobi
equation. If £ is a linear one:

A u,t) = —p(t) — g(t)u (3.9)
then the relation (3.8) means:

—q' =2pqg—1()=0 (3.10)
and then supposing ¢ > 0 it results P = In ﬁ. We compute the curvature-deformation function
in terms of ¢:

s o1 1 (Y

Then the case ¢ = 1 discussed in the previous section gives a vanishing CD(E). O
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