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Approximating the fixed points of Suzuki’s

Generalized non-expansive map via an efficient

iterative scheme with an application

Pragati Gautam, Chanpreet Kaur

Abstract. This paper is aimed at proving the efficiency of a faster iterative scheme
called PC∗-iterative scheme to approximate the fixed points for the class of Suzuki’s
Generalized non-expansive mapping in a uniformly convex Banach space. We will
prove some weak and strong convergence results. It is justified numerically that
the PC∗-iterative scheme converges faster than many other remarkable iterative
schemes. We will also provide numerical illustrations with graphical representations
to prove the efficiency of PC∗ iterative scheme. As an application of the solution of
a fractional differential equation is obtained by using PC∗ iterative scheme.

Keywords. Suzuki’s generalized non-expansive mapping, Iterative scheme, Uniformly con-
vex Banach space, Fixed point

1 Introduction

Iterative schemes plays an important role in approximating the fixed point in the field of fixed
point theory. Various problems in applied sciences uses iterative schemes as an important tool and
helps to solve many non-linear problems in different fields like Differential equations, Engineering,
Integral equations, Game theory, Approximation theory etc. In 1922 [4], Stefen Banach used
Picard iterative scheme [25] to prove the existence of a unique fixed point for a contraction
map in the framework of a complete metric space. The generalizations of Banach contraction
mapping principle are attained by weakening the contractive conditions and to compensate that
the structure of the metric space is enriched by endowing it with some geometrical properties. In
1955 Kranoselekii [21] proved that for non-expansive mapping Picard iteration scheme may fail to
converge to a fixed point even if the map T has a unique fixed point. Browder [8], Gohde [14], Kirk
[20] studied non expansive maps independently. After this many other iterative schemes were
introduced such as Mann[24], Ishikawa [18] so on. An iterative scheme is considered better than
the other if it approaches to the fixed point in lesser number of iterations. Over the last decade,
the area of approximating fixed points via iterative scheme has become very popular amongst
the researchers. The notion of generalized non-expansive mapping was given by Hardy-Rogers
[15] in 1973.
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Definition 1. [15] Let X be a nonempty subset of a Banach space Y . A self map G :→ G is
said to be a generalized non-expansive map if for all x, y ∈ X,

∥Gx−Gy∥ ≤ a∥x− y∥+ b(∥x−Gx∥+ ∥y −Gy∥) + c(∥x−Gy∥+ ∥y −Gx∥), (1.1)

The class of generalized non-expansive mappings contain the class of non-expansive map-
pings. The class of generalized non-expansive mappings and non-expansive mappings has been
studied by many researchers. Some of the recent and interesting works can be referred to in [1]
,[3], [4],[5],[6], [10], [11], [12], [16],[19], [26], [28], [29], [32],[34], [35] and [36]. In 2008, Suzuki [34]
introduced the concept of Suzuki’s Generalized non expansive map defined as
A self map T : C → C where C is a non empty subset of a Banach Space is a Suzuki’s Generalized
non expansive map if for all x, y ∈ C

1

2
∥x− Tx∥ ≤ ∥x− y∥ ⇒ ∥Tx− Ty∥ ≤ ∥x− y∥ (1.2)

In 2008, [34] Suzuki proved that the class of Suzuki’s generalized non-expansive map contains
the class of non-expansive maps.

In this paper, we aim at proving that PC∗-iterative scheme for approximating the fixed
points of Suzuki’s generalized non-expansive map. The convergence and stability results are
proved and numerical examples along with graphical representation are provided. The numerical
experiments are performed using Python, a freely available computer programming language.

2 Preliminaries

This section contains some basic definitions and results which are required for our main results.
Throughout this paper, we will consider X be a nonempty subset of a Banach space Y .

Definition 2. Let X be a nonempty subset of a Banach space Y . A mapping F : X → X is
said to be a non-expansive map if for all x, y ∈ X,

∥Fx− Fy∥ ≤ ∥x− y∥. (2.1)

Definition 3. A map G : X → X is called quasi non-expansive if Fix(S) ̸= ϕ and ∥Gx− y∥ ≤
∥x− y∥ for all x ∈ X and y ∈ Fix(S).

Remark 1. A self map T : [0, 1] → [0, 1] defined as Tx = 1−x doesn’t converge to its fixed point
1
2 via Picard iteration process. The Picard iteration gives an oscillatory sequence x0, 1− x0, x0,
1− x0,.... for any initial guess x0. Clearly it doesn’t converge to 1

2 . Hence, the Picard iteration
process fails to converge to the fixed point for a non-expansive map.

Definition 4. [19] A normed linear space X is said to be strictly convex if, for x, y ∈ X with
∥x∥ = 1, ∥y∥ = 1 and ∥(1− λ)x+ λy∥ = 1 for λ ∈ (0, 1) if and only if x = y.

Definition 5. [19] A Banach space (X, ∥.∥) is said to be uniformly convex if, for any ϵ > 0 there
exists δ > 0 such that for x, y ∈ X with ∥x∥ = 1, ∥y∥ = 1 and ∥x− y∥ > ϵ we have

1

2
∥x+ y∥ < 1− δ.

Example 1. Every Hilbert space is a uniformly convex Banach space.
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Definition 6. [30] A self map S onX, whereX is nonempty closed and convex subset of a Banach
space is said to satisfy condition I, if there exists a nondecreasing function h : [0,∞) → [0,∞)
with h(0) = 0 and h(r) > 0 for all r > 0 such that d(x, Sx) ≥ h(d(x, F ix(S)) for all x ∈ X, where
d(x, F ix(S)) = infd(x, t) : t ∈ Fix(S).

In 1953, Mann [24] approximated the fixed points of non-expansive map. For an initial guess
xo ∈ X he gave the iterative scheme defined as follows.

xn+1 = (1− an)xn + anGxn,

where {an} ⊂ (0, 1). The scheme defined by Mann [21] fails to converge to a fixed point of
pseudo-contractive mappings. In 1974 [18] Ishikawa introduced a two-step iterative scheme to
approximate the fixed points of pseudo-contractive mappings as follows

xn+1 = (1− an)xn + anGyn

yn = (1− bn)xn + bnGxn, n ∈ N (2.2)

where {an}, {bn} ⊂ (0, 1).
X is a nonempty convex subset of a Banach space Y and T is a self map on X, where {an}, {bn},
{cn} are sequences in (0, 1).

We consider the iterative schemes are M iterative scheme due to Ullah et al.[32], K iteration
process due to N. Hussain et al. [17], M∗ as defined in [7] and D plus iteration process due to
Danish ali et al. [1].

zn = (1− an)xn + anTxn (1.1)

yn = Tzn

xn+1 = Tyn, n ∈ Z+.

zn = (1− an)xn + anTxn (1.2)

yn = T ((1− bn)Txn + bnTzn

xn+1 = Tyn, n ∈ Z+.

zn = (1− an)xn + anTxn (1.3)

yn = T ((1− bn)zn + bnTzn

xn+1 = Tyn, n ∈ Z+.

zn = T ((1− an)xn + anTxn) (1.4)

yn = T ((1− bn)zn + bnTzn)

xn+1 = T ((1− cn)Tzn + cnTzn), n ∈ Z+.

We raise a natural question that arises, is it possible to define an iterative scheme that has a faster
convergence rate than the schemes defined above when T is Suzuki’s Generalized non-expansive
map?
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As a response to this question, we introduce a new iterative scheme called PC∗-iterative
scheme as follows. Let X be a nonempty convex subset of a Banach space Y and T is a self map
on X. The sequence {xn} with an initial guess x0 is defined as

xn+1 = T kyn (1.5)

yn = T kzn

zn = T k((1− an)xn + anT
kxn), n ∈ Z+,

where {an} be a sequence in (0, 1) and k = 2, 3, 4, 5. The PC∗-iterative scheme is collection of
four iterative schemes which varies for k = 2, 3, 4, 5. We claim that the PC∗-iterative scheme
gives a much faster rate of convergence than the iterative schemes (1.1),(1.2),(1.3) and (1.4) for
Suzuki’s generalized non-expansive map. Also it is to be noted that the PC∗-iterative scheme
depends only on one control sequence {an} whereas the iterative schemes (1.2) and (1.3) are
depending on two or more control sequences {an} {bn} and {cn} in (0, 1).

Definition 7. [13] Let X be a nonempty, closed and convex subset of a Banach space Y . A
mapping T : X → Y is said to be demiclosed with respect to v ∈ Y if for each weakly convergent
sequence {pn} at u ∈ X and Tpn converges strongly at v implies that Tu = v

Definition 8. [25] A Banach space Y is said to satisfy Opial’s property if

lim
n→∞

∥pn − u∥ < lim inf
n→∞

∥pn − v∥

holds, for all v ∈ Y with with v ̸= u, where {pn} is an arbitrary sequence converges weakly to u
in Y .

Definition 9. [13] Let X be a nonempty, closed and convex subset of a Banach space Y . Let
{pn} be a bounded sequence in Y and for u ∈ X,

r(u, {pn}) = lim sup
n→∞

∥pn − u∥.

The asymptotic radius of {pn} of {pn} relative to X is defined by

r(X, {pn}) = inf{r(u, {pn}) : u ∈ X}.

The asymptotic center of {pn} relative to X is defined by

A(X, {pn}) = {u ∈ X : r(u, {pn}) = r(X, {pn})}.

Remark 2. If Y is a uniformly convex Banach space, then r(X, {pn}) is singleton.

Proposition 2.1. [34] Let T be a self mapping on a nonempty subset X of a Banach space Y .
Then

1. If T is non-expansive then T is Suzuki’s generalized non expansive map.

2. Every Suzuki’s generalized non expansive map with a fixed point is quasi non-expansive.

3. If T is Suzuki’s generalized non expansive map then ∥x− y∥ ≤ 3∥Tx− y∥+ ∥x− y∥ for all
x, y ∈ X.

Lemma 2.1. [34] Let T be a Suzuki’s generalized non-expansive map on a weakly compact convex
subset X of a uniformly convex Banach space Y satisfying (1.2). Then T has a fixed point.
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Lemma 2.2. [34] Let T be a Suzuki’s generalized non-expansive self map on a subset X of a
Banach space Y with Opial’s property. If xn converges weakly to p and limn→∞ ∥Txn −xn∥ = 0,
then Tz = z i.e I − T is demiclosed at zero.

Lemma 2.3. [31] Let Y be a uniformly convex Banach space and 0 < a < dn ≤ d < 1for all
n ∈ N. Assume that {pn} and {qn} are two sequences in Y such that lim supn→∞ ∥pn∥ ≤ d,
lim supn→∞ ∥qn∥ ≤ d and lim supn→∞ ∥dnpn + (1 − dn)qn∥ = d holds, for some d ≥ 0. Then
limn→∞ ∥pn − qn∥ = 0.

3 Main Results

In this section, we will prove weak and strong convergence results.

Theorem 3.1. Let X be a nonempty closed and convex subset of a uniformly convex Banach
space Y . Let S : X → X be a Suzuki’s generalized non-expansive map satisfying (1.2) with
Fix(S) non empty. For an arbitrarily chosen x0 ∈ X, let {xn} be a sequence generated by the
iterative scheme PC∗ (1.5). Then limn→∞ ∥xn − t∥ exists for all t ∈ Fix(S).

Proof. Let t ∈ Fix(S) and {xn} ⊆ X. Since S is a Suzuki’s generalized non-expansive map, we
obtain that

1

2
∥t− St∥ = 0 ≤ ∥xn − t∥ ⇒ ∥Sxn − St∥ ≤ ∥xn − t∥,

for all xn ∈ X and for all p ∈ Fix(S). From the PC∗-iterative scheme (1.5)

∥zn − p∥ =∥Sk((1− an)xn + anS
kxn)− t∥

≤(1− an)∥xn − t∥+ an∥Skxn − t∥
≤(1− an)∥xn − p∥+ an∥xn − p∥
=∥xn − p∥. (3.1)

Consider

∥yn − t∥ =∥Skzn − t∥
≤∥zn − t∥
≤∥xn − t∥. (3.2)

From (3.1),(3.2) and PC∗-iterative scheme (1.5) we obtain

∥xn+1 − t∥ =∥Skyn − t∥
≤∥yn − t∥
≤∥zn − t∥
≤∥xn − t∥. (3.3)

Thus ∥xn+1 − t∥ ≤ ∥xn − t∥. Hence {∥xn − t∥} is a non-increasing sequence and it is bounded
below as well. By Monotone convergence theorem limn→∞ ∥xn − t∥ exists.

Theorem 3.2. Let S : X → X be a Suzuki’s generalised non-expansive map satisfying (1.2),
where X is a nonempty closed and convex subset of a uniformly convex Banach space Y . Let
{xn} for n ≥ 1, be a sequence generated by the PC∗-iterative scheme (1.5). Then Fix(S) is
nonempty iff {xn} is bounded and limn→∞ ∥xn − Sxn∥ = 0.



6 P. Gautam and C. Kaur

Proof. Suppose there exists t ∈ Fix(S). By theorem 3.1, limn→∞∥xn − t∥ exists and {xn} is
bounded. Assume that

limn→∞∥xn − t∥ = α (3.4)

Now from (3.1), (3.2), (3.4) we obtain

lim sup
n→∞

∥zn − t∥ ≤ lim sup
n→∞

∥xn − t∥ = α. (3.5)

lim sup
n→∞

∥yn − t∥ ≤ lim
n→∞

∥xn − t∥ = α. (3.6)

Since S is a Suzuki’s generalized non-expansive map, we have

1

2
∥t− St∥ = 0 ≤ ∥xn − t∥ ⇒ ∥Sxn − St∥ ≤ ∥xn − t∥,

for all xn ∈ X and for all t ∈ Fix(S).

lim sup
n→∞

∥Sxn − t∥ = lim sup
n→∞

∥xn − p∥ = α (3.7)

Now, by PC∗-iterative scheme (1.5)

∥xn+1 − t∥ = ∥Skyn − t∥
≤ ∥yn − p∥.

α = lim
n→∞

∥xn+1 − p∥ ≤ inf∥yn − p∥ (3.8)

From (3.6) we get

α ≤ lim inf
n→∞

∥yn − p∥ ≤ lim sup
n→∞

∥yn − p∥ ≤ α,

hence
lim
n→∞

∥yn − p∥ = α. (3.9)

Now, from (3.2)
∥yn − t = ∥Skzn − t∥ ≤ ∥zn − t∥.

Thus, we obtain
α = lim inf

n→∞
∥yn − t∥ ≤ lim inf

n→∞
∥zn − t∥. (3.10)

So (3.5) and (3.10) gives

α ≤ lim inf
n→∞

∥zn − t∥ ≤ lim sup
n→∞

∥zn − t∥ ≤ α,

=⇒ lim
n→∞

∥zn − t∥ = α. (3.11)

Hence

α = lim
n→∞

∥zn − t∥ =∥Sk((1− an)xn + anS
kxn)− t∥

≤∥(1− an)xn + anS
kxn)− t∥

≤(1− an)∥xn − p∥+ an∥Skxn − p∥
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≤(1− an)∥xn − p∥+ an∥xn − p∥
=∥xn − p∥ = α

Thus

lim
n→∞

((1− an)∥xn − t∥+ an∥Skxn − t∥) = α. (3.12)

Using lemma 2.3, (3.5),(3.7) and (3.12) we obtain,

lim
n→∞

∥xn − Sxn∥ = 0.

Conversely, let {xn} be bounded and limn→∞ ∥xn −Sxn∥ = 0. Let t ∈ A(X, {xn}), using Propo-
sition 2.1, we have

r(St, {xn}) = lim sup
n→∞

∥xn − St∥

≤ lim sup
n→∞

(∥xn − t∥+ 3∥Sxn − xn∥)

= lim sup
n→∞

∥xn − t∥

= r(t, {xn}) = r(X, {xn}).

Hence, t ∈ A(X, {xn}). Since Y is uniformly convex therefore A(X, {xn}) is singleton, implying
that St = t.

Theorem 3.3. Let S : X → X be Suzuki’s generalised non-expansive map satisfying (1.2), where
X is a nonempty closed and convex subset of a uniformly convex Banach space Y . Let {xn} for
n ≥ 1, be a sequence generated by the PC-iterative scheme PC∗-iterative scheme (1.5). Assume
that Y satisfies Opial’s condition then {xn} converges weakly to a point in Fix(S).

Proof. Suppose, t ∈ Fix(S) then by theorem 3.1, limn→∞ ∥xn− t∥ exists. We will now show that
{xn} has a weak sub-sequential limit in Fix(S). Let {xnj} and {xnk

} be two sub sequences of
{xn} having weak limits t and t̄ respectively. By theorem 3.2, limn→∞ ∥xn − Sxn∥ = 0 and by
lemma 2.3, I − S is demiclosed at zero. Thus (I − S)t = 0. Hence St = t and similarly St̄ = t̄.
Now for the uniqueness part, if t ̸= t̄, then by using Opial’s condition, we have

lim
n→∞

∥xn − t∥ = lim
nj→∞

∥xnj − t∥

≤ lim
nj→∞

∥xnj
− t̄∥

= lim
n→∞

∥xn − t̄∥

= lim
nk→∞

∥xnk
− t̄∥

= lim
nk→∞

∥xnk
− t∥

= lim
n→∞

∥xn − t∥

It leads to a contradiction, so t = t̄ and {xn} converges weakly to a point in Fix(S).

Theorem 3.4. Let S : X → X be a Suzuki’s generalised non-expansive map satisfying (1.2),
where X is a nonempty closed and convex subset of a uniformly convex Banach space Y . Let
{xn} for n ≥ 1, be a sequence generated by the PC-iterative scheme PC∗-iterative scheme
(1.5). Then {xn} converges to a point Fix(S) if and only if lim infn→∞ d(xn, F ix(S))=0 or
lim supn→∞ d(xn, F ix(S))=0, where d(xn, F ix(S)) = inf{∥xn − t∥ : t ∈ Fix(S)}.
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Proof. Forward part is obvious. Conversely, assume that lim infn→∞ d(xn, F ix(S))=0. By the-
orem 3.2, limn→∞ ∥xn − t∥ exists for all t ∈ Fix(S). Hence limn→∞ d(xn, F ix(S))=0. We now
claim that {xn} is a Cauchy sequence in X. As limn→∞ d(xn, F ix(S))=0, for given ϵ > 0, there
exists n0 ∈ N such that for all n ≥ n0, we have

d(xn, F ix(S)) ≤ ϵ

2

inf{∥xn − t∥ : t ∈ Fix(S)} ≤ ϵ

2
.

In particular, inf{∥xn − t∥ : t ∈ Fix(S)} ≤ ϵ
2 hence, there exists t ∈ Fix(S) such that

∥xn0 − t∥ ≤ ϵ

2

. Now m,n ≥ xn0
and we obtain

∥xm+n − xn∥ ≤ ∥xm+n − t∥+ ∥xn − t∥
≤ ∥xm0 − t∥+ ∥xm0 − t∥
= 2∥xm0 − t∥

Thus, {xn} is a Cauchy sequence in X. Since X is closed and convex subset of a Banach
space Y , there exists t ∈ X such that limn→∞ xn = t. Finally limn→∞ d(xn, F ix(S))=0 implies
d(t, F ix(S))=0 hence t ∈ Fix(S).

Theorem 3.5. Let X be a nonempty, compact and convex subset of a uniformly convex subset of
a Banach space Y and S and {xn} be as defined in theorem 3.1, then the sequence {xn} converges
strongly to a fixed point of S.

Proof. By lemma 2.1, Fix(S) is nonempty. By theorem 3.1, we have limn→∞ ∥xn − Sxn∥ = 0.
Here X is compact, hence there exists a subsequence {xnj

} of {xn} such that {xnj
} → t strongly

for some t ∈ X. Also by proposition 2.1, we get for j ≥ 1,

∥xnj
− St∥ ≤ 3∥Sxnj

− xnj
∥+ ∥xnj

− t∥.

Letting j ∈ ∞, we get xnj
→ St. Hence St = t and by theorem 3.1, limn→∞ ∥xn − t∥ exists and

thus, t is the strong limit of {xn}.

Theorem 3.6. Let S : X → X be a Suzuki’s generalised non-expansive map satisfying condition
(I) definition 6, where X is a nonempty closed and convex subset of a uniformly convex Banach
space Y . Let {xn} for n ≥ 1, be a sequence generated by the PC∗-iterative scheme (1.5) converges
strongly to a fixed point of S.

Proof. By theorem 3.1, we get
lim

n→∞
∥xn − Sxn∥ = 0.

By condition (I), definition 6, we have the following

0 ≤ lim
n→∞

h(d(xn, F ix(S))) ≤ ∥xn − Sxn∥ = 0

≤ lim
n→∞

h(d(xn, F ix(S))) = 0.

As h : [0,∞) → [0,∞) is a nondecreasing function. Also h(0) = 0 and h(r) > 0 for all r > 0.
We obtain, limn→∞ d(xn, F ix(S)) = 0. Hence by theorem 3.4, {xn} converges strongly to a fixed
point of S.
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The following example shows that the generalised non-expansive map need not be Suzuki’s
generalised non-expansive map.

Example 2. G : [0, 2] → [0, 2] be a self map defined by

S(t) =

{
0 t ̸= 2

0.2 t = 2

Case(i) u ∈ [0, 0.7), v ∈ [0, 2) and a = 1
16 , b = c = 1

8 we have, a+2b+2c < 1. Case(ii) u ∈ [0.7, 2],
v = 2 and u < v we have ∥Gu−Gv∥ = 0.2 and we have

a∥u− v∥+ b(∥u−Gu∥+ ∥v −Gv∥) + c(∥u−Gv∥+ ∥v −Gu∥)

=
1

16
(u− 2) +

1

8
(u+ 1.8) +

1

8
(u+ 1.8)

=
1

16
(u− 2) +

1

8
(u+ 1.8) +

1

8
(u+ 1.8)

≥ 1

16
(0.7− 2) +

1

8
(0.7 + 1.8) +

1

8
(0.7 + 1.8)

= 0.7

Here, 0.2 ≤ 0.7 and G is satisfying (1.1). But G is not Suzuki’s generalized non-expansive map.
For u = 0.1 and v = 2, (1.2) is not satisfied. Therefore a generalised non-expansive map need
not be Suzuki’s generalized non-expansive map.

In 2020, Ali et.al [2] proved that Suzuki’s generalized non-expansive map need not be gen-
eralized non-expansive map. Hence these two classes are independent of each other.

4 Numerical Experiments

A program written in Python, a freely available programming language, is used to perform nu-
merical experiments. The following example is from [1], we will verify graphically and numerically
that the PC∗-iterative has much faster convergence than (1.1),(1.2),(1.3) and (1.4), in case of a
contraction map.

Example 3. [1] Let X = R be the set of real numbers. Let S : X → X be defined as S(x) =√
x2 − 8x+ 40 for all x ∈ X. Choosing the control sequence as an = 3n

4n+5 and bn = 2n
3n+1 and

cn = 4n
5n+1 with an initial guess x0 = 40.5.

We obtain that the PC∗-iterative scheme has an efficient convergence rate than the iterative
scheme (1.1)),(1.2),(1.3) and (1.4). It is also observed that in the PC∗-iterative scheme, the
higher value of k is improving the convergence rate. The results are presented, graphically by
Figure 1 and numerically by Table 1.

Example 4. Let S : [0, 20] → [0, 20] be defined as S(x) =
√
x2 − 7x+ 49 for all x ∈ X. Choosing

the control sequence as an = n
4n+5 and bn = n

3n+1 and cn = n
5n+1 with an initial guess x0 = 5.5.

The results are presented, graphically by Figure 2 and numerically by Table 2.
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Figure 1: Comparison of iterative schemes (1.1),(1.2),(1.3),(1.4) with (??), the PC∗-
iterative scheme.

n M K M* D plus PC∗(k=2) PC∗(k=3) PC∗(k=4) PC∗(k=5)
1.1 1.2 1.3 1.4 1.5(k=2) 1.5(k=3) 1.5(k=4) 1.5(k=5)

0 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5
1 31.9918 29.2049 30.7999 24.9214 17.0768 7.9362 5.0587 5.0003
2 23.3143 18.1779 20.9261 10.465 5.0408 5 5 5
3 15.0142 8.7779 11.8362 5.0651 5 5 5 5
4 8.1649 5.1145 5.9392 5.0001 5 5 5 5
5 5.2228 5.0007 5.0221 5 5 5 5 5
6 5.0049 5 5.0004 5 5 5 5 5
7 5.0001 5 5 5 5 5 5 5
8 5 5 5 5 5 5 5 5
9 5 5 5 5 5 5 5 5
10 5 5 5 5 5 5 5 5

Table 1: Comparison of iterative schemes (1.1),(1.2),(1.3),(1.4) with (1.5), the PC∗-
iterative scheme.

5 Application

Fractional calculus deals with the study of real number powers of a differentiation operator D.
A fractional differential equation contains the derivative of a non-integral order. With the help
of (1.5), the PC∗-iterative scheme, we will approximate the solution of a nonlinear fractional
differential equation of the following form:

Dγy(u) +Dδy(u) = g(u, y(u)) (0 ≤ u ≤ 1, 0 < δ < γ < 1), y(0) = y(1) = 0, (5.1)

where g : [0, 1]× R −→ R is a continuous function. Let C[0, 1] be a Banach space of continuous
functions from [0, 1]] to R endowed with supremum norm. The Green’s function associated is
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Figure 2: Graphical Comparison of iterative schemes (1.1),(1.2),(1.3),(1.4) with the PC∗-
iterative scheme.

n M K M* D plus PC∗(k=2) PC∗(k=3) PC∗(k=4) PC∗(k=5)
1.1 1.2 1.3 1.4 1.5(k=2) 1.5(k=3) 1.5(k=4) 1.5(k=5)

0 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5
1 6.7266095 6.8617283 6.7457442 6.9171419 6.9841255 6.9980382 6.9997559 6.9999695
2 6.9396047 6.983358 6.9482864 6.9944972 6.9997813 6.9999967 6.9999999 7
3 6.9863637 6.9979585 6.9892669 6.9996437 6.999997 7 7 7
4 6.9969222 6.9997495 6.9977725 6.9999774 7 7 7 7
5 6.9993078 6.9999693 6.999539 6.9999986 7 7 7 7
6 6.9998449 6.9999962 6.9999048 6.9999999 7 7 7 7
7 6.9999653 6.9999995 6.9999804 7 7 7 7 7
8 6.9999923 6.9999999 6.999996 7 7 7 7 7
9 6.9999983 7 6.9999992 7 7 7 7 7
10 6.9999996 7 6.9999998 7 7 7 7 7

Table 2: Comparison of iterative schemes (1.1),(1.2),(1.3),(1.4) with the PC∗-iterative
scheme.

defined as

G(u) = uα−1Eα−β,α(−uα−β),

where Eα−β,α(−uα−β) is the Mittag-Leffler function. We make the following assumption

(M1) : |g(u, a)− g(u, b)| ≤ c∥a− b∥

, for all u ∈ [0, 1] a, b ∈ R and c ≤ α.

Theorem 5.1. Let C[0, 1] be a Banach space of real continuous functions. Let C[0, 1] be endowed
with supremum norm. Suppose {xn} be the sequence defined by (1.5), the PC∗-iterative scheme.
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The operator Ω : C[0, 1] → C[0, 1] defined as follows

Ω(x(u)) =

∫ t

0

G(u− t)g(t, x(t) dt,

for all u ∈ [0, 1] and x ∈ C[0, 1]. Let us assume that condition M1 is satisfied. Then {xn}
converges to a solution of the problem (5.1) say x∗ ∈ C[0, 1].

Proof. x∗ ∈ C[0, 1] is a solution of (5.1) if and only if x∗ is a solution of the integral equation

x(u) =

∫ t

0

G(u− t)g(t, x(t)) dt.

Let x, y ∈ C[0, 1] and for all u ∈ [0, 1]. Using (M1), we obtain

∥Ω(x(u))− Ω(y(u))∥ =

∫ t

0

G(u− t)g(t, x(t)) dt−
∫ t

0

G(u− t)g(t, y(t)) dt

≤
∫ t

0

G(u− t)(g(t, x(t))− g(t, y(t))) dt

≤
∫ t

0

G(u− t)c∥x(t)− y(t)∥ dt

≤ (sup

∫ t

0

G(u− t))c∥x− y∥ dt

≤ c

α
∥x− y∥.

Here G(u) = uα−1Eα−β,α(−uα−β) ≤ uα−1 for all u ∈ [0, 1]. Hence, supu∈[0,1]

∫ t

0
G(u− t) dt ≤ 1

α .
Thus ∥Ω(x(u))−Ω(y(u))∥ ≤ ∥x−y∥ and Ω is a Suzuki’s generalized non-expansive map and main
results we obtain that (1.5), the PC∗-iterative scheme converges to the solution of (5.1).

6 Conclusion

The objective of this paper was to introduce an efficient iterative scheme called the PC∗-iterative
scheme for the class of Suzuki’s Generalized non-expansive map. We established convergence
results for the newly defined PC∗-iterative scheme. The PC∗-iterative scheme is used to solve a
fractional differential equation as an application. The numerical experiments validates the fact
that the PC∗-iterative scheme is efficient in convergence rate than many other leading iterative
schemes.
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