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On the well-posedness and stability analysis of

standing waves for a 1D-Benney-Roskes system

José R. Quintero

Abstract. In this paper, we revisit the well-posedness for the Benney-Roskes
system (also known as Zakharov-Rubenchik systems) for N = 1, 2, 3, and establish
the nonlinear orbital stability of ground state standing waves in the case N = 1,
by using the variational approach induced by the Hamiltonian structure and the
Liapunov method.
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1 Introduction

In this work we consider the following system of differential equations i∂tψ + ϵ∂2zψ = −σ1∆⊥ψ +
(
σ|ψ|2 +W (ρ+D∂zφ)

)
ψ,

∂tρ+ σ2∂zρ = −∆⊥φ− ∂2zφ−D∂z(|ψ|2),
∂tφ+ σ2∂zφ = − 1

M2 ρ− |ψ|2,
(1.1)

which describes the interaction of high-frequency and low-frequency waves in plasmas and mag-
netohydrodynamics, where we are using the notation x = (x, y, z) for N = 3, x = (x, z) for
N = 2, ∆⊥ = ∂2x + ∂2y for N = 3, and ∆⊥ = ∂2x for N = 2. The model was first derived for
D. Benney and G. Roskes in the context of gravity waves [1] and also for A. Rubenchik and V.
Zakharov in the context of the interaction of spectral narrow high frequency wave packet of small
amplitude with low-frequency acoustic type oscillations [19]. The system of differential equations
(1.1) is written in nondimensional form according to the parameters and rescaling used by T.
Passot, C. Sulem and P. Sulem [17], G. Ponce and J. Saut [18], J. Ghidaglia and J. Saut [6],
and J. Cordero [4], after considering a reference frame moving with the group velocity. In the
Benney-Roskes system, the function ψ = ψ(x, t) ∈ C denotes the complex amplitude of the high
frequency, ρ = ρ(x, t) ∈ R denotes the density fluctuation and φ = φ(x, t) ∈ R is the hydro-
dynamic potential. The parameter σ measures the self-interaction of the carrying wave, D is a

proportional constant to the Doppler shift α, ϵ denotes the constant dispersion, W = cβ2

v2
g
> 0,

and M =
|vg|
cs

> 0 is the Mach number due to the group velocity vg (only in the direction of the

z-axis) and cs is the sound velocity. Constants σ1, σ2 (σ2
2 = 1) are parameters depending on the
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group velocity. For more details on the physical background and a complete description of the
system, we refer to the following works [19, 10, 11].

Regarding the well posedness problem in the case N = 2, 3 and s > N
2 , G. Ponce and J-C.

Saut in [18] established a local well posedness results for the system (1.1) in the space Hs(RN )×
Hs− 1

2 (RN )×Hs+ 1
2 (RN ), after reducing the system to a nonlinear Schrödinger equation coupled

with two wave equations and using smoothing effects associated to the Schrödinger group. They
also obtained existence of a global weak solution for initial data in H1(RN )×L2(RN )×H1(RN ),
by using that the Hamiltonian and the charge are conserved quantities on solutions for the system
(1.1) and the positiveness of a special quadratic form. It is important to point out that G. Ponce
and J. C. Saut obtained only weak global solutions because their energy space included the
norm ||φ||H1(RN ), but the conserved quantities control only ||∇φ||L2(RN ). Local well-posedness
of the Benney-Roskes (Zakharov-Rubenchik) system was also obtained by C. Obrecht in [15], for
s > 2 in the elliptic case (ϵσ1 > 0), using an energy method as done by H. Schochet and M.
Weinstein in [20] on the nonlinear Schrödinger limit of the Zakharov system. In this previous
two works, the Benney-Roskes system is rewritten as a dispersive perturbation of a symmetric
nonlinear hyperbolic system. On the other hand, H. Luong, N. Mauser and J. C. Saut in [13]
used the Schochet-Weinstein method to prove a local existence for the Benney-Roskes (Zakharov-
Rubenchik) system, keeping a small parameter which is relevant for deep water waves. They also
studied the Cauchy problem in the background of a line solitary wave, in order to establish the
transverse stability/instability of the one-dimensional solitary wave (line solitary).

On the other hand, in the case N = 1, F. Linares and C. Matheus [12] and F. Oliveira
[16] established well-posedness for a modified system in the variable (ψ, ρ, u) where u = φx. In
Oliveira’s work, the global well posedness result for the modified system was obtained in the space
H2(R)×H1(R)×H1(R), which is only contained in the energy space H1(R)× L2(R)× L2(R),
and in F. Linares and C. Matheus work, the local well posedness result was obtained in the space
Hk(R)×Hr(R)×Hs(R), where

−1

2
< k − l ≤ 1, 0 ≤ l +

1

2
≤ 2k,

1

2
< k − s ≤ 1, 0 ≤ s+

1

2
≤ 2k.

Moreover, F. Linares and C. Matheus in [12] obtained a global well posedness result for the
modified system in the space Hk(R)×Hr(R)×H l(R), where 0 ≤ k = l + 1

2 , which includes the
energy space. It is important to mention that those two results are not applicable to our system
for N = 1 in the sense that the last component u should have the mean zero property to make
possible to recover the original φ as φ = ∂−1

x u, something that was no included in the functional
space for well posedness.

Regarding the stability of standing waves for the system (1.1) in the case N = 2, 3, J.
Cordero and J. Quintero in [5] established the instability of ground state standing waves of the
form (eiωtu(x, t), ρ(x), φ(x)) for the Benney-Roskes system. On the other hand, in the case of the
stability of standing waves for the modified system (1.1) (u = φx) for N = 1, F. Oliveira showed
the orbital stability of the standing wave solutions for the modified system using the method of
Liapunov, but in a smaller than the energy space. In this case, the stability result seems to be
incomplete, since the norm NE used to measure the deviation of a solution from the orbit of a
standing wave only controls the first of three components.

In this work, we establish the existence of global solutions for the system (1.1) using the
appropriate energy space dictated by the Hamiltonian energy. In contrast with the existence
results given by F. Oliveira for N = 1 (for the modified system) and G. Ponce and J-C. Saut for
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N = 2, 3, we did not modify the Benney-Roskes system by taking the t-derivative in the last two
nonlinear transport equations, reducing the system to a nonlinear Schrödinger equation coupled
with two wave equations. Instated of this approach, we derive the whole group for the system
and without modifying the variables, we proceed to analyze the well-posedness of the Cauchy
problem. In the case N = 1, we prove that the standing waves of the Benney-Roskes system are
orbitally stable, by using the Lyapunov method, as done by M. Weinstein in [23] in the case of the
nonlinear Schrödinger equation (NLS) and the generalization of the Kortewegde Vries equation
(GKdV).

As happens for the NLS, the Benney-Roskes system has phase and translation symmetries,
meaning that if Ψ = (ψ(t, ·), ρ(t, ·), φ(t, ·)) is solution, so is Ψγ,x0

(t, ·) = (eγψ(t, · + x0), ρ(t, · +
x0), φ(t, · + x0)), for any x0 and γ ∈ [0, 2π). Due to this fact, orbital stability means stability
modulo these symmetries. In order to be more precise, we define the orbit of a function χ as

Gχ = {χγ,x0
: (x0, γ) ∈ R× [0, 2π)} . (1.2)

In this context, a ground state is orbitally stable, if for an initial data being near the ground state
orbit, the solution remains near the ground state orbit at all later times. In order to measure the
deviation of the solution Φ(t, ·) from the orbit GΨ, we use the following metric:

dE(Φ(t, ·),GΨ) = infNE(Φγ,x0(t, ·),Ψ) (1.3)

where the infimum is taken over all x0 ∈ R and γ ∈ [0, 2π) and a metric NE defined in the space
X1, 12

.

This paper is organized as follows. In section 2, we revisit the well posedness associated with
the Benney-Roskes system (1.1) analyzing the complete group in the energy space H1(RN ) ×
L2(RN )×H1(RN ), where the (quotient) space Hs(RN ) is given by

Hs(RN ) =
{
f ∈ S ′(RN ) : ||f ||Hs(RN ) = ||∇xf ||Hs−1(RN ) < +∞

}
,

identifying the constant functions with the zero function. In section 3, we present some prelimi-
naries related with the existence of standing waves for the system (1.1) of the form

Ψω,c(x, t) =
(
eiωte

ic
2ϵ (x−ct)u(x− ct),−M2u2(x− ct), 0

)
,

where u is a real positive function. Following M. Weinstein approach in [23], we study the
deviation from a solution Φ(t, ·) and Ψω,c using an appropriate action functional Fω,c which is
conserved in time. Using that the minimum in (1.3) is attained, this defines x0(t) and γ0(t),
choice which is clever in the analysis. The stability is based on a suitable lower bound on the
second variation of the energy functional Fω,c.

2 Local and global well posedness

In this section, we describe completely the group (T (t))t∈R associated with the linear part of
the Benney-Roskes system (1.1). We recall the Benney-Roskes system (1.1) can be written for
Ψ = (ψ, ρ, φ)t as

∂tΨ = BΨ+ C(Ψ),
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where the operator B is given by

B =

iϵ∂2z + iσ1∆⊥ 0 0
0 −σ2∂z −∆⊥ − ∂2z
0 − 1

M2 −σ2∂z


with domain Dom(B) = H2(RN )×H1(RN )×H2(RN ) ⊂ H1(RN )×L2(RN )×H1(RN ), and the
nonlinear term C is given by

C(Ψ) =

−i(σ|ψ|2ψ +Wρψ +WD∂zφψ)
−D∂z(|ψ|2)

−|ψ|2

 . (2.1)

We start the discussion by describing the group associated with the linear system

∂tΨ = BΨ. (2.2)

We note that the system (2.2) can be uncoupled in a linear like Schrödinger equation and a 2× 2
linear system. By taking the Fourier transform in the last two equations, we get that

∂t

(
ρ̂
φ̂

)
=

(
−iσ2ξN |ξ|2
− 1

M2 −iσ2ξN

)(
ρ̂
φ̂

)
:= A(ξ)

(
ρ̂
φ̂

)
,

where we are using the following notation: ξ = (ξ1, ξN ) ∈ RN−1 ×R, and |ξ|2 = |ξ1|2 + |ξN |2 (for
N = 1, we use ξN = ξ). On the other hand, we know that if A is a 2× 2 matrix of the form

A =

(
a b
c a

)
then its eigenvalues are distinct for a ̸= 0 and that the exponential of A has the form

eA = ea

cosh(
√
bc) b sinh(

√
bc)√

bc

c sinh(
√
bc)√

bc
cosh(

√
bc)

 .

In particular, we also have that

etA = eta

cosh(t
√
bc) b sinh(t

√
bc)√

bc

c sinh(t
√
bc)√

bc
cosh(t

√
bc)

 .

In our case, we have that

a = −iσ2ξN , b = |ξ|2, c = − 1

M2
,

√
bc = i

|ξ|
M
.

So, replacing these into the exponential matrix and using that

cosh(iα) = cos(α), sinh(iα) = i sin(α),

we get that

etA(ξ) = e−iσ2ξN t

cos
(

|ξ|
M t
)

M |ξ| sin
(

|ξ|
M t
)

− sin( |ξ|
M t)

M |ξ| cos
(

|ξ|
M t
)

 .
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Before we go further, we use the notation ∇x = (∂x, ∂y, ∂z)
t for N = 3, ∇x = (∂x, ∂z)

t for N = 2
and ∇x = ∂z for N = 1. Now, for r, s ∈ R, we set the space

Xr,s := Hr(RN )×Hs− 1
2 (RN )×Hs+ 1

2
(RN ).

We see that the group (T (t))t∈R defined in Xr,s associated with the linear system (2.2) has the
form

T (t) = F−1

(
e−i(ϵ|ξN |2+σ1|ξ1|2)t 0

0 etA(ξ)

)
F , (2.3)

where F and F−1 stand for the Fourier transform and its inverse, respectively.

Hereafter for a generic space H, we say that a triplet Ψ = (ψ, ρ, φ)t ∈ C0(Rt;H) is a mild
solution of the system (1.1) with initial data Ψ0 = (ψ0, ρ0, φ0)

t ∈ H, if Ψ satisfies the fixed point
integral equation A(Ψ) = Ψ, where the functional operator A is given by

A(Ψ)(t) = T (t)Ψ0 +

∫ t

0

T (t− y)C(Ψ)(y) dy. (2.4)

Now, for a given Ψ = (ψ, ρ, φ)t, we set

Q1(t)(Ψ̂)(ξ) = e−i(ϵ|ξN |2+σ1|ξ1|2)tψ̂(ξ), (2.5)

Q2(t)(Ψ̂)(ξ) = e−iσ2ξN t cos

(
|ξ|
M
t

)
ρ̂(ξ) +Me−iσ2ξN t|ξ| sin

(
|ξ|
M
t

)
φ̂(ξ), (2.6)

Q3(t)(Ψ̂)(ξ) = −e−iσ2ξN t
sin
(

|ξ|
M t
)

M |ξ|
ρ̂(ξ) + e−iσ2ξN t cos

(
|ξ|
M
t

)
φ̂(ξ). (2.7)

From this notation, we see that

T (t)(Ψ) =
(
F−1

(
Q1(t)(Ψ̂)

)
,F−1

(
Q2(t)(Ψ̂)

)
,F−1

(
Q3(t)(Ψ̂

))t
.

Now, if we set Φ(Ψ) = (Θ1,Θ2,Θ3)
t and set U1(t) and U2(t) in terms of the Fourier transform as

Û1(t)f(ξ) =
̂ei∆ϵ,σ1

tf(ξ) = e−i(ϵ|ξN |2+σ1|ξ1|2)tf̂(ξ), (∆ϵ,σ1
= ϵ∂2z + σ1∆⊥)

Û2(t)f(ξ) =
M sin

(
|ξ|
M t
)

|ξ|
f̂(ξ),

then we see directly that

Θ1(t) = U1(t)ψ0 − i

∫ t

0

U1(t− s)L(ψ, ρ, φ)(s) ds

Θ2(t) = U ′
2(t)ρ0(· − (0, σ2t))− U2(t)(∇⃗x · ∇xφ0)(· − (0, σ2t))

−
∫ t

0

(
DU ′

2(t− s)∂z(|ψ|2)− U2(t− s)(∇⃗x · ∇x|ψ|2)
)
(· − (0, σ2(t− s)), s) ds,

Θ3(t) = −U2(t)ρ0(· − (0, σ2t)) + U ′
2(t)φ0(· − (0, σ2t))

+

∫ t

0

(
DU2(t− s)∂z(|ψ|2)− U ′

2(t− s)(|ψ|2)
)
(· − (0, σ2(t− s)), s) ds,
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where are using that ̂f(· − (0, r))(ξ) = e−irξN f̂(ξ) and that L is given by

L(ψ, ρ, φ) = σ|ψ|2ψ +Wρψ +WD∂zφψ.

Now, a direct computation shows that

||U2(t)f ||2 ≤ |t|||f ||2,
||∇xU2(t)f ||2 ≤M ||f ||2,

||U ′
2(t)f ||2 ≤ ||f ||2,

where || · ||2 = || · ||L2 . The first result is related with the group estimate,

Lemma 2.1. Let r, s ∈ R and t ∈ R be given, then T (t) is a linear bounded operator from Xr,s

to Xr,s. Moreover, there is K > 0 (independent of t) such that we have

∥T (t)Ψ∥Xr,s
≤ K∥Ψ∥Xr,s

.

Proof. Let r ∈ R. Then we see that∥∥∥F−1(Q1(t)(Ψ̂))
∥∥∥2
Hr

=

∫
RN

(
1 + |ξ|2

)r |ψ̂(ξ)|2dξ ≤ K1∥Ψ∥2Xr,s
.

On the other hand, we also have that∥∥∥F−1(Q2(t)(Ψ̂))
∥∥∥2
Hs− 1

2
≤ K2(M)

∫
RN

(1 + |ξ|2)s− 1
2

(
|ρ̂(ξ)|2 + |ξ|2|φ̂(ξ)|2

)
dξ

≤ K2(M)

(
∥ρ∥2H

s− 1
2

+ ∥φ∥2H
s+1

2

)
≤ K2(M)∥Ψ∥2Xr,s

.

In a similar fashion, we have that∥∥∥∇xF−1(Q3(t)(Û))
∥∥∥
Hs− 1

2
≤ K3(M)∥Ψ∥Xr,s

.

In order to perform the computations for the group (T (t))t≥0, we introduce the following
notation (see Constantin [3], Ponce-Saut [18] and Ghidaglia-Saut [9]):

||f ||l∞µ L2
TL2

x
= sup

µ∈ZN

(∫
Qµ×[0,T ]

|f(x, t)|2 dx dt

) 1
2

, (2.8)

||f ||l1µL2
TL2

x
=
∑
µ∈ZN

(∫
Qµ×[0,T ]

|f(x, t)|2 dx dt

) 1
2

, (2.9)

||f ||l2µL2
TL2

x
=

∑
µ∈ZN

∫
Qµ×[0,T ]

|f(x, t)|2 dx dt

 1
2

, (2.10)

||f ||l2µL1
TL2

x
=

∑
µ∈ZN

∫ T

0

(∫
Qµ

|f(x, t)|2 dx

) 1
2

dt

2


1
2

, (2.11)
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||f ||l2µL∞
T L2

x
=

∑
µ∈ZN

sup
t∈[0,T ]

∫
Qµ

|f(x, t)|2 dx

 1
2

. (2.12)

where (Qµ)µ is a family of unit cubes parallel to the coordinates axis with disjoint interiors
covering RN .

From works by P. Constantin [3], P. Sölin [21], T. Kato [7], L. Vega [22], C. Kenig, G. Ponce
and L. Vega [8]-[9], we have the following estimates

||I
1
2
x U1(t)f ||l∞µ L2

TL2
x
≤ C||f ||2, (2.13)

sup
0≤t≤T

∥∥∥∥I 1
2
x

∫ t

0

U1(t− s)f(s) ds

∥∥∥∥
2

≤ C||f ||l1µL2
TL2

x
, (2.14)∥∥∥∥∇x

∫ t

0

U1(t− s)f(s) ds

∥∥∥∥
l∞µ L2

TL2
x

≤ C||f ||l1µL2
TL2

x
, (2.15)

sup
0≤t≤T

∥∥∥∥Js+ 1
2

∫ t

0

U1(t− s)f(s) ds

∥∥∥∥
2

≤ C|||Jsf ||l1µL2
TL2

x
, (2.16)

where Î
1
2
x f = |ξ| 12 f̂ , Ĵ = (1 + |ξ|2) 1

2 and C is a positive constant independent of T .

Hereafter, K is a generic constant independent of functions or the time variable, and so it
could be up dated at any step. From these estimates, we have that

Lemma 2.2. Let N = 2, 3 and r > N
2 . For Ψ = (ψ, ρ, φ)t ∈ C([0, T ];Xr) with |||Ψ|||T <∞, we

have that ∥∥∥∥∫ t

0

U1(t− s)L(Ψ)(s) ds

∥∥∥∥
Hr

≤ KT
(
|||Ψ(t)|||2T + |||Ψ(t)|||3T

)
, (2.17)∥∥∥∥Jr+ 1

2

∫ t

0

U1(t− s)L(Ψ)(s) ds

∥∥∥∥
l∞µ L2

TL2
x

≤ KT
(
|||Ψ(t)|||2T + |||Ψ(t)|||3T

)
, (2.18)

where Xr := Xr,r and

|||Ψ|||T := sup
0≤t≤T

∥Ψ(t)∥Xr
+ ||Jr+ 1

2ψ||l∞µ L2
TL2

x
.

Proof. The first remark is that

||Jr+ 1
2ψ||l∞µ L2

TL2
x
∼

∑
|α|=r+ 1

2

||∂αxψ||l∞µ L2
TL2

x
,

for r+ 1
2 ∈ N. To simplify the computations, we only consider the case N = 3 and r = 2+ 1

2 . As
pointed out in Ponce-Saut’s paper, the general case follows by inequalities involving fractional
derivatives. Now, assuming the proper conditions on f and g, a direct computation shows that

||fg||l1µL2
TL2

x
≤ sup

0≤t≤T
||f(t)||

1
2

H1 sup
0≤t≤T

||g(t)||
1
2

H1 ||f ||
1
2

l2µL
2
TL2

x
||g||

1
2

l2µL
2
TL2

x

Now, for η ∈ C([0, T ];H l) we have that

||∂ljη||l2µL2
TL2

x
≤ KT

1
2 sup
0≤t≤T

||η(t)||Hl , (2.19)
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From previous estimates, for η ∈ C([0, T ];H l) and ρ ∈ C([0, T ];Hm) we have that

||∂mj ρ∂lkη||l1µL2
TL2

x
≤ KT sup

0≤t≤T
||ρ(t)||Hm sup

0≤t≤T
||η(t)||Hl .

On the other hand, we have that

||Jr− 1
2 (η)ψ||l1µL2

TL2
x
≤ KT sup

0≤t≤T
||η||

Hr− 1
2

sup
0≤t≤T

||ψ||2

||ηJr− 1
2 (ψ)||l1µL2

TL2
x
≤ KT sup

0≤t≤T
||η(t)||2 sup

0≤t≤T
||ψ(t)||

Hr− 1
2∑

0<|l|+|m|<r− 1
2

||∂lη∂mψ||l1µL2
TL2

x
≤ KT sup

0≤t≤T
||η(t)||Hl sup

0≤t≤T
||ψ(t)||Hm)

From these facts and (2.14), we see in the case r − 1
2 ∈ N (the other case can be treated using

interpolation) that∥∥∥∥∫ t

0

U1(t− s)η(s)ψ(s) ds

∥∥∥∥
Hr

=

∥∥∥∥Jr

∫ t

0

U1(t− s)η(s)ψ(s) ds

∥∥∥∥
2

≤ C||Jr− 1
2 (ηψ)||l1µL2

TL2
x

≤ ||Jr− 1
2 (η)ψ||l1µL2

TL2
x
+ ||ηJr− 1

2 (ψ)||l1µL2
TL2

x

+
∑

0<|l|+|m|<r− 1
2

||∂lη∂mψ||l1µL2
TL2

x

≤ KT sup
0≤t≤T

||η(t)||
Hr− 1

2
sup

0≤t≤T
||ψ(t)||Hr .

Using this estimate, we have that∥∥∥∥∫ t

0

U1(t− s)L(Ψ)(s) ds

∥∥∥∥
Hr

≤ KT

(
sup

0≤t≤T
∥ψ(t)∥3Hr + sup

0≤t≤T
||ρ(t)||

Hr− 1
2
×

sup
0≤t≤T

||ψ||Hr + sup
0≤t≤T

||∂zφ(t)||
Hr− 1

2
sup

0≤t≤T
||ψ(t)||Hr

)
≤ KT

(
|||Ψ(t)|||2T + |||Ψ(t)|||3T

)
.

On the other hand, using the estimate (2.15) and following similar estimates, we have that∥∥∥∥Jr+ 1
2

∫ t

0

U1(t− s)L(Ψ)(s) ds

∥∥∥∥
l∞µ L2

TL2
x

≤ ||Jr− 1
2L(Ψ)||l1µL2

TL2
x

≤ KT
(
|||Ψ(t)|||2T + |||Ψ(t)|||3T

)
. (2.20)

In order to finish the nonlinear estimates, we need to establish analogous estimates to those
obtained by G. Ponce and J. C. Saut in Lemma 2.3 of [18] for N = 3. We point out that Lemma
2.3 in [18] holds for N = 2, 3 with the power N

2 instead of 3. We obtain such estimates by
adapting Lemma 2.3 in [18] in order to include the effect of the transport group.

Theorem 2.1. Let N = 2, 3. Then we have the following estimates:

||U ′
2(t)f(·+ (0,−σ2t)||l2µL∞

T L2
x
≤ K(1 + T )N ||f ||2, (2.21)
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||U2(t)f(·+ (0,−σ2t)||l2µL∞
T L2

x
≤ KT (1 + T )N ||f ||2, (2.22)

||U2(t)∂jf(·+ (0,−σ2t)||l2µL∞
T L2

x
≤ K(1 + T )N ||f ||2, (2.23)∥∥∥∥∇x

∫ t

0

U2(t− s)f(·+ (0,−σ2(t− s)), s) ds

∥∥∥∥
l2µL

∞
T L2

x

≤ K(1 + T )N ||f ||l2µL1
TL2

x
, (2.24)∥∥∥∥∫ t

0

U ′
2(t− s)f(·+ (0,−σ2(t− s)), s) ds

∥∥∥∥
l2µL

∞
T L2

x

≤ K(1 + T )N ||f ||l2µL1
TL2

x
. (2.25)

Proof. We first establish the estimate (2.21). We note that∫
Qµ

|U ′
2(t)f(x+ (0,−σ2t))|2 dx ≤

∫
Qµ+(0,σ2t)

|U ′
2(t)f(y)|2 dy

≤
∑
ν

∫
Qν

|U ′
2(t)f(y)|2 dy,

where for each µ > 0, the sum has N(T ) summands and
⋃

ν Qν ⊂ (1 + |σ2|T )Qµ with βQµ

denoting a cube with the same center of Qµ and size β > 0. Then, adding up on µ, we conclude
that

∥U ′
2(t)f(·+ (0,−σ2t))∥l2µL∞

T L2
x
≤ C(1 + T )

N
2 ∥U ′

2(t)f∥l2µL∞
T L2

x

≤ C(1 + T )N∥f∥L2(RN ).

where we are using estimate (2-15) in [18] to get the last conclusion. In a similar fashion, we get
estimates (2.22) and (2.23). On the other hand, to get the estimate (2.24), we set the function

v(x, t) =

∫ t

0

U2(t− s)f(x+ (0,−σ2(t− s), s) ds.

We see directly that v satisfies the equation

vtt + 2σ2vtz −
(

1

M
∆− ∂2zz

)
v = f(x, t)

with conditions v(x, 0) = vt(x, 0) = vz(x, 0) = 0 (recall that σ2
2 = 1). From this fact, we see that

w(x, y, z, t) = v(x, y, z + σ2t, t) satisfies the wave equation

wtt −
1

M
∆w = f̃(x, t),

with conditions w(x, 0) = wt(x, 0) = 0 and f̃(x, t) = f(x, y, z+σ2t, t). Using the energy estimates
for w (see estimate (2-24) in [18]), we have that

sup
t∈[0,T ]

||∂jw(·, t)||L2(Qµ) + sup
t∈[0,T ]

||∂tw(·, t)||L2(Qµ) ≤ K

∫ T

0

||f̃(·, t)||L2((1+MT )Qµ) dt. (2.26)

Form this, we conclude that

sup
t∈[0,T ]

||∂jv(·, t)||L2(Qµ) ≤ sup
t∈[0,T ]

||∂jw(·, t)||L2(Qµ)

≤ K

∫ T

0

||f̃(·, t)||L2((1+MT )Qµ) dt
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≤ K

∫ T

0

||f(·, t)||L2((1+MT )(1+|σ2|T )Qµ) dt

Adding on µ, we get the desired estimate∥∥∥∥∇x

∫ t

0

U2(t− s)f(·+ (0,−σ2t), s) ds
∥∥∥∥
l2µL

∞
T L2

x

≤ K(1 + T )N ||f ||l2µL1
TL2

x
,

since for any cube Qµ we are adding (1 +MT )N (1 + |σ2|T )N cubes in RN . To get the estimate
(2.25), we follow a similar argument as above. In fact, we set

v1(x, t) =

∫ t

0

U ′
2(t− s)f(x+ (0,−σ2(t− s), s) ds.

From the definition of v and w above, we see that

∂tw(x, t) = ∂tv(x, y, z + σ2t, t) + σ2∂zv(x, y, z + σ2t, t) = v1(x, y, z + σ2t, t).

Using the estimate (2.26), we conclude that

sup
t∈[0,T ]

||v1(·, t)||L2(Qµ) = sup
t∈[0,T ]

||∂tw(·, t)||L2(Qµ)

≤ K

∫ T

0

||f̃(·, t)||L2((1+MT )Qµ) dt

≤ K

∫ T

0

||f(·, t)||L2((1+MT )(1+|σ2|T )Qµ) dt.

Adding on µ, we get the desired estimate∥∥∥∥∫ t

0

U ′
2(t− s)f(·+ (0,−σ2t), s) ds

∥∥∥∥
l2µL

∞
T L2

x

≤ K(1 + T )N ||f ||l2µL1
TL2

x
,

On the other hand, a direct computation shows that

||g||l2µL1
TL2

x
≤ T

1
2 ||g||l2µL2

TL2
x

sup
t∈[0,T ]

||g(t)||
Hr− 1

2
≤

(∑
µ

sup
t∈[0,T ]

||Jr− 1
2 g(t)||2L2(Qµ)

) 1
2

= ||Jr− 1
2 g||l2µL∞

T L2
x
,

If we set the functions

g1(t, s) = ∂z(|ψ|2)(· − (0, σ2t)), s), g2(t, s) = (∇⃗ · ∇x(|ψ|2)(· − (0, σ2t), s),

then from previous facts, if |||Ψ|||T <∞ we obtain the following estimates,∥∥∥∥Jr− 1
2

∫ t

0

U ′
2(t− s)g1(t− s, s) ds

∥∥∥∥
l2µL

∞
T L2

x

≤ K(1 + T )N ||Jr− 1
2 g3||l2µL1

TL2
x

≤ KT
1
2 (1 + T )N ||Jr+ 1

2 (|ψ|2)||l2µL2
TL2

x
, (2.27)
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2

∫ t

0

U2(t− s)g2(t− s, s) ds

∥∥∥∥
l2µL

∞
T L2

x

≤ K(1 + T )N ||Jr− 3
2 g4||l2µL1

TL2
x

≤ KT
1
2 (1 + T )N ||Jr+ 1

2 (|ψ|2)||l2µL2
TL2

x
. (2.28)

where g3 = ∂z(|ψ|2) and g4 = ∇⃗x · ∇x(|ψ|2).

Now, we are in position to establish the local existence and uniqueness result for the Cauchy
problem associated to the system (1.1) in the space Xr.

Theorem 2.2. Let r ≥ 0 for N = 1 and r > N
2 for N = 2, 3. For a given Ψ0 = (ψ0, ρ0, φ0)

t ∈ Xr,
there exist T (∥Ψ0∥Xr

) > 0 and a unique solution Ψ(t) of the integral equation (2.4) such that
Ψ ∈ C([0, T ];Xr) with ∥∥∥Jr+ 1

2ψ
∥∥∥
l∞µ L2

TL2
x

<∞.

Moreover, the mapping Ψ0 7→ Ψ from Xr in the class C([0, T ];Xr) is locally Lipschitz.

Proof. We first consider N = 1. In this case, the existence result follows by the work of F. Linares
and C. Matheus in [12]. The only remark is that the variable ux = φ and the coefficients ω, ν,
β, γ and θ in F. Linares and C. Matheus work are related with the coefficients ϵ, σ, W , D, M
and σ2 in the present work in the following way:

ω = ϵ, −ν
θ
= σ2, γ = D, −γν

2
=W,

β

θ
=

1

M2
, − γ

2θ
= 1,

under the restrictions: ω > 0, β < 0, ν < 0, θ < 0, γ > 0. If we choose Φ0 = (ψ0, ρ0, φ0)
t ∈ Xr for

r ≥ 0 and define B0 = ψ0, and u0 = ∂xφ0. From Theorem 1.2 in F. Linares and C. Matheus work
in [12], there is a unique local (which is in fact global) solution (B, ρ, u) ∈ Hr ×Hr− 1

2 ×Hr− 1
2 .

Moreover, since u0 has the mean zero property, so does u, because we have that∫
R
u(t) dx =

∫
R
u0 dx = 0.

In this case, we are allowed to define φ(t) = ∂−1
x u(t) in such a way that u(t) = φx(t). So, we

have that (ψ, ρ, φ)t ∈ Xr with ψ = B.

Now in the case N = 2, 3, for a > 0 and T > 0, we define,

Xa
T :=

{
Ψ : RN × [0, T ] → C× R× R | Ψ ∈ C([0, T ];Xr), |||Ψ|||T ≤ a

}
.

For a given Ψ0 ∈ Xr, we consider the operator

A(Ψ)(t) := T (t)Ψ0 +

∫ t

0

T (t− s)C(Ψ)(s) ds.

defined in Xa
T . We will see that A defines a contraction in the closed ball Xa

T for appropriate
values of a, T > 0, therefore A has a fixed point Ψ ∈ Xa

T , which is the solution of the integral
equation (2.4).

First, we set the notation wj(t) := (A(Ψ)(t))j for 1 ≤ j ≤ 3. We note that

w1(t) = U1(t)ψ0 − i

∫ t

0

U1(t− l)L(Ψ)(l) dl.
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From the estimate (2.17), we have that

||w1(t)||Hr ≤ K||ψ0||Hr +KT (|||Ψ|||2T + |||Ψ|||3T ).

Moreover, from the estimates (2.13), (2.18) and (2.20), we have that

||Jr+ 1
2w1(t)||l∞µ L2

TL2
x
≤ K||ψ0||Hr + ||Jr+ 1

2

∫ t

0

U1(t− l)L(Ψ)(l) dl||l∞µ L2
TL2

x
(2.29)

≤ K||ψ0||Hr +KT
1
2

(
|||Ψ(t)|||2T + |||Ψ(t)|||3T

)
. (2.30)

To illustrate the estimates for ||w2(t)||
Hr− 1

2
and ||w3(t)||H

r+1
2

, we consider the case N = 3 to

simplify the computations and we only consider the case r + 1
2 ∈ N (we use an interpolation

argument in the other case). In this case, for 0 < α+ β < r − 1
2 we need to compute terms like

∥∂βj ψ(t)∂
α
j ψ̄(t)∥2L2(Qµ)

≤ ∥∂βj ψ(t)∥
2
L4(Qµ)

∥∂αj ψ̄∥2L4(Qµ)

≤ K∥Jr− 1
2ψ(t)∥4L2(Qµ)

≤ K∥Jr− 1
2ψ(t)∥2L2(Qµ)

sup
0≤t≤T

||ψ(t)||2
Hr− 1

2
,

where we are using the Hölder inequality, the Rellich-Kondrachov Compactness theorem with
p = 2 and N = 3, and the estimates (2.19). Moreover, we also have that

∥∂r+
1
2

j ψ(t)ψ̄(t)∥2L2(Qµ)
+ ∥ψ(t)∂r+

1
2

j ψ̄(t)∥2L2(Qµ)
≤ ||Jr+ 1

2 (ψ)(t)||2L2(Qµ)
sup

0≤t≤T
||ψ(t)||2

Hr− 1
2
.

In other words, we have that

||∂r+
1
2

j (|ψ|2)||l2µL2
TL2

x
≤ K sup

0≤t≤T
||ψ(t)||

Hr− 1
2
||Jr+ 1

2 (|ψ|2)||l2µL2
TL2

x
≤ K|||Ψ|||2T ,

which implies that
||Jr+ 1

2 (|ψ|2)||l2µL2
TL2

x
≤ K|||Ψ|||2T .

From the semigroup and the estimates (2.27) and (2.28), we have that

||w2(t)||
Hr− 1

2
≤ K

(
||ρ0||

Hr− 1
2
+ ||φ0||H

r+1
2

+ T
1
2 (1 + T )N |||Ψ|||2T

)
.

In a similar fashion, we see that

||w3(t)||
Hr− 1

2
≤ K

(
||ρ0||

Hr− 1
2
+ ||φ0||H

r+1
2

+ T
1
2 (1 + T )N |||Ψ|||2T

)
.

Putting together previous estimates, we conclude for Ψ ∈ Xa
T that

|||A(Ψ)|||T ≤ K||Ψ0||Xr +KT |||Ψ|||3T +K(T
1
2 (1 + T )N + T )|||Ψ|||2T .

If we choose 2K||Ψ0||Xr
= a and take T > 0 small enough such that

2K(Ta2 + (T
1
2 (1 + T )N + T )a) < 1,

we have that A(Xa
T ) ⊂ Xa

T . Now, from the same arguments as above, we have for Ψ, Ψ̃ ∈ Xa
T

that
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|||A(Ψ)−A(Ψ̃)|||T

≤ K(T + T (1 + T )N + T )
(
|||Ψ|||2T + |||Ψ|||T + |||Ψ̃|||2T + |||Ψ̃|||T

)
|||Ψ− Ψ̃|||T ,

meaning that if we choose T > 0 small enough such that

2K(T + T
1
2 (1 + T )N + T )(a2 + a3) < 1,

then A is a contraction on Xa
T , as desired.

2.1 Conserved quantities and global solutions

In this section, we discuss properties of the Benney-Roskes system that will be used in the stability
analysis. The first remark is that there exists a Hamiltonian structure which provides relevant
information to determine the stability of standing waves. In this case, the Hamiltonian structure
is given by

∂t

ψρ
φ

 = JH′

ψρ
φ

 , J =

−i 0 0
0 0 2

W
0 − 2

W 0

 , (2.31)

where the Hamiltonian H is defined as

H

ψρ
φ

 =
1

2

∫
RN

(
σ1|∇⊥ψ|2 + ϵ|∂zψ|2 +

σ

2
|ψ|4 +Wρ|ψ|2

+Wσ2ρ∂zφ+
W

2
|∇φ|2 + W

2M2
|ρ|2 +DW |ψ|2∂zφ

)
dx. (2.32)

We note that the Hamiltonian is conserved in time on solutions Ψ since,

d

dt
H(Ψ) = ⟨H′(Ψ),Ψ′⟩ = ⟨H′(Ψ),JH′(Ψ)⟩ = 0,

using that J is a skew-adjoint operator.

We use the conserved integrals I1, I2 and I3, to construct a Lyapunov function.

Proposition 2.1. The Benny-Roskes system (1.1) has the following conserved quantities with
respect to time,

I1(t) =

∫
RN

(
σ1|∇⊥ψ|2 + ϵ|∂zψ|2 +

σ

2
|ψ|4 +Wρ|ψ|2 +Wσ2ρ∂zφ

+
W

2
|∇φ|2 + W

2M2
|ρ|2 +DW |ψ|2∂zφ

)
dx,

I2(t) =

∫
RN

|ψ|2 dx,

I3(t) =

∫
RN

(
Wρ∂zφ+

i

2
(ψ∂zψ̄ − ∂zψψ̄)

)
dx,

I4(t) =

∫
RN

(
σ1|∇⊥ψ|2 + ϵ|∂zψ|2 +

σ

2
|ψ|4 +W (ρ+D∂zφ)|ψ|2 +

W

2
|∇φ|2

+
W

2M2
|ρ|2 − iσ2

2
(ψ∂zψ̄ − ∂zψψ̄)

)
dx.
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Proof. The first quantity corresponds to the Hamiltonian H. For the second one, we note directly
that

d

dt

∫
RN

|ψ|2 x =

∫
RN

(ψtψ̄ + ψψ̄t) dx = 0.

On the other hand, I4 is a combination of I1 and I3. So, we only need to establish the result for
I3. First, a direct computation shows that

d

dt

∫
RN

(ψ∂zψ̄ − ∂zψψ̄) dx = 2i

∫
RN

(W (ρz +Dφzz)|ψ|2 dx.

On the other hand, we also have that

d

dt

∫
RN

ρ∂zφdx =

∫
RN

(ρz +Dφzz)|ψ|2 dx,

which implies that
d

dt

∫
RN

(ψ∂zψ̄ − ∂zψψ̄ − 2iW∂zφρ) dx = 0,

or also that
d

dt

∫
RN

(
Wρ∂zφ+

i

2
(ψ∂zψ̄ − ∂zψψ̄)

)
dx = 0.

So, we also have that I3(t) = I3(0).

Remark 1. On the global existence result.

As we mention above, G. Ponce and J. C. Saut in [18] obtained weak global solutions due
to the fact that their energy space included the norm ||φ||H1(RN ), but the conserved quantities
control only the term ||∇φ||L2(RN ). The first remark is that we have the following estimate:∫

RN

ϵ|∂zψ|2 dx− iσ2

∫
RN

(
ψ∂zψ̄ − ∂zψψ̄

)
dx ≥ −CI2(0).

In fact, from Young’s inequality, we have for any α > 0 that∣∣∣∣iσ2 ∫
RN

(
ψ∂zψ̄ − ∂zψψ̄

)
dx

∣∣∣∣ ≤ |σ2|
(
α

2
||ψ||22 +

1

2α
||∂zψ||22

)
If we take ϵ > |σ2|

2α and use that ||ψ(t)||22 = ||ψ(0)||22 = I2(0), then we get the conclusion with

C = α|σ2|
2 . From this and previous conserved quantities, we see that∫

RN

(
σ1|∇⊥ψ|2 +

ϵ

2
|∂zψ|2 +

σ

2
|ψ|4 +W (ρ+D∂zφ)|ψ|2 +

W

2
|∇φ|2

+
W

2M2
|ρ|2
)
dx ≤ I4(0) + C1I2(0).

On the other hand, for β > 0, θ > 0 and γ > 0 we also have that

W (ρ+D∂zφ)|ψ|2 ≤ Wβ

2
|ρ|2 + Dθ

2
|∂zφ|2 +

(
W

2β
+
D

2θ

)
|ψ|4,

If we choose β > 0 and θ > 0 such β = 1
2M2 and θ = W

2D , then we have that
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∫
RN

(
σ1|∇⊥ψ|2 +

ϵ

2
|∂zψ|2 +

(
σ

2
−
(
WM2 +

D2

W

))
|ψ|4

+
W

2
|∇⊥φ|2 +

W

4
|∂zφ|2 +

W

4M2
|ρ|2
)
dx ≤ I4(0) + C1I2(0).

Clearly, in the case σ
2 > WM2 + D2

W , we have that

||Ψ||2X
1, 1

2

≤ C(ϵ,W,M,D, σ1, σ)(I4(0) + C1I2(0)),

which implies the existence of global solutions. In particular, for N = 1, F. Linares and C.
Matheus in [12] obtained global solutions under Oliveira’s assumption in [16]: ω > 4ϵ.

We will establish the existence of global solutions for the Benney-Roskes system (1.1), by
imposing the minimum set of restrictions on the parameters, as done by G. Ponce and J. C. Saut
in [18]. Hereafter, we define the quadratic form

C(p, q, r) =
σ

2
p2 +

W

2M2
q2 +

W

2
r2 +Wpq +DWpr +Wσ2qr. (2.33)

We note that under the assumption that the quadratic form C given by (2.33) is positive definite,
we have for any local solution Ψ that

C0||Ψ(t)||2X
1, 1

2

≤ I1(t) = I1(0),

which using the Theorem 4.2 in Ponce-Saut’s paper [18], guarantees the following result.

Theorem 2.3. Assume that ϵ > 0, σ1 > 0 and σ > 0 and that the quadratic form C given

by (2.33) is positive definite. Then, for
(
ψ0, ρ0,

∂φ0

∂xj

)
∈ H1(RN )) × L2(RN )) × L2(RN ) with

1 ≤ j ≤ N , there is a global solution (ψ(t), ρ(t), φ(t)) such that

ψ(t) ∈ L∞((0,∞);H1(RN )), ρ(t),
∂φ(t)

∂xj
∈ L∞((0,∞);L2(RN ))

ψ′(t),ρ′(t),
∂φ′(t)

∂xj
∈ L∞((0,∞);H−1(RN )).

3 Stability of standing waves

In this section we establish the existence and orbital stability of nontrivial standing waves to the
system (1.1) for N = 1, which takes the form, i∂tψ + ϵ∂2xψ =

(
σ|ψ|2 +W (ρ+D∂xφ)

)
ψ,

∂tρ+ σ2∂xρ = −∂2xφ−D∂x(|ψ|2),
∂tφ+ σ2∂xφ = − 1

M2 ρ− |ψ|2,
(3.1)

For this system, we look for solutions of the form

ψ(x, t) = eiωte
ic
2ϵ (x−ct)u(x− ct), ρ(x, t) = −M2u2(x− ct) φ(x, t) = 0, (3.2)

where ω > c2

4ϵ and c ∈ R. We see directly that D = M2(σ2 − c) and that u satisfies the cubic
Schrödinger equation

ϵ∂2xu−
(
ω − c2

4ϵ

)
u+ (M2W − σ)|u|2u = 0, u ∈ H1(R) \ {0}. (3.3)
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From the work by K. McLeod and J. Serrin in [14], we have the following result related with
the decaying positive solutions for (3.3) and also the uniqueness of the positive ground state in
H1(R).

Theorem 3.1. Let ϵ > 0, ω > c2

4ϵ , D = M2(σ2 − c), E = 1
ϵ

(
ω − c2

4ϵ

)
and M2W > σ. Then the

triplet Ψω,c = (ψ, ρ, φ) with

ψ(x, t) = eiωte
ic
2ϵ (x−ct)u(x− ct), ρ(x, t) = −M2u2(x− ct) φ(x, t) = 0

is a standing wave to the 1D-Benney-Roskes system (3.1), where u is the unique positive solution
(3.3), which is even and exponential decreasing for x > 0. Moreover, u is given by

uω,c(x) =

√
2ϵE

(M2W − σ)
sech

(√
Ex
)

(3.4)

As we discuss above, the Benny-Roskes system has the phase and translation symmetries.
So, the orbit Gω associated with a ground state Ψω = (ψ, ρ, φ) reduces, due to the uniqueness,
to the set

Gω =
{(
eiγψ(·+ x0), ρ(·+ x0), φ(·+ x0)

)
: (x0, γ) ∈ R× [0, 2π)

}
,

= {(Ψω)γ,x0 : (x0, γ) ∈ R× [0, 2π)} .

In particular, we have that if Ψ(x, t) = (ψ(x, t), ρ(x, t), φ(x, t)) is a solution for the system (3.1),
then for (x0, γ) ∈ R × [0, 2π) the function Ψx0,γ(t, ·) is also a solution. Finally, we define the
distance between Φ(t, ·) and the orbit of the ground state Gω as

dE(Φ,Ψω) = inf
(x0,γ)∈R×[0,2π)

NE(Φγ,x0
(t, ·),Ψω),

where the metric NE : X1, 12
×X1, 12

→ R is given by

NE(Ψ, Ψ̃) =

√
∥ψ′ − ψ̃′∥L2(R) + E∥ψ − ψ̃∥L2(R) + ∥ρ− ρ̃∥L2(R) + ∥φx − φ̃x∥L2(R),

with E = 1
ϵ

(
ω − c2

4ϵ

)
. We note that the norm defined by the metric NE is equivalent to the

norm in the space X1, 12
.

Definition 1. (Orbital Stability) We say that standing wave Ψω0,c0 of (3.1) with frequency

ω0 >
c2

4ϵ and wave speed c0 ∈ R is orbitally stable in the following sense: for given η > 0, there
exists δ(η) > 0 such that if Ψ0 ∈ X1, 12

satisfies that

NE(Ψ0,Ψω0,c0) < δ(η),

then the Cauchy problem associated with the system (3.1) has a unique weak solution Ψ(t) ∈
C
(
R, X1, 12

)
such that Ψ(0) = Ψ0 and for all t ∈ R

dE(Ψ(t, ·),Ψω0,c0) < η.

Before going further, we consider the linear operators L+ and L− corresponding to the real
part and imaginary part, respectively, of the Nonlinear Schrödinger type system (3.1) linearized
operator about the ground state u,

L+ = −∂2xx + EI +
3

ϵ
(σ −M2W )u2, L− = −∂2xx + EI +

1

ϵ
(σ −M2W )u2.
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We point out that this linear operator are related with the second variation of the action functional
associated with the standing waves,

Fω,c(Φ) =
1

2ϵ
(I1(Φ) + ωI2(Φ)− cI3(Φ)) , (3.5)

which according with Proposition (2.1) is a conserved quantity in time on solutions for the Benny-
Roskes system. As done in the case of the NLS in [23], Fω,c will be estimated in terms of ρE and
will be used to measure the deviation of Ψ(·, t) from the ground state orbit. We write

W(t, ·) = Φx0,γ(t, ·)−Ψω,c(t, ·) = (υ1(t, ·), υ2(t, ·), υ3(t, ·)), (3.6)

Then, if ∆Fω.c(t) denotes the deviation of Ψ(·, t) from the orbit of the ground state orbit of Ψω,c,
then

∆Fω.c(t) = Fω.c(Ψ0(·))−Fω.c(Ψω,c)

= Fω.c(Ψ(·, t))−Fω,c(Ψω,c)

= Fω.c(Ψγ,x0
(·, t))−Fω,c(Ψω,c)

= Fω.c(Ψω,c +W)−Fω.c(Ψω,c),

where we are using that Fω,c is conserved in time on solutions and the scale invariance. So, the
main goal is to establish for some positive constants A,B,C that

∆Fω,c(t) ≥ A||W(t, ·)||2X
1, 1

2

(
1−B||W(t, ·)||X

1, 1
2

− C||W(t, ·)||2X
1, 1

2

)
,

where ||W(t, ·)||2X
1, 1

2

= ||υ1(t, ·)||2H1 + ||υ2(t, ·)||2L2 + ||υ′3(t, ·)||2L2 .

Lemma 3.1. Let ω > c2

4ϵ and Ψ(t, ·) ∈ X1, 12
be a solution of the Benny-Roskes system with initial

condition Ψ0 ∈ X1, 12
. Then for c > 0 large enough there are positive constants A1, A2, A3 and

A4 such that,

∆Fω,c(t) ≥
1

2
((L+h1, h1) + (L−h2, h2)) +A1||υ2||2L2 +A2||υ′3||2L2

−A3||υ1||3H1 −A4||υ1||4H1 , (3.7)

where h1 = ℜ(υ1) and h2 = ℑ(υ1).

Proof. As done by M. Weinstein in [23] (see also the work by F. Oliveira [16]), to estimate the
deviation of a solution Ψ(t, ·) and the ground state orbit of Ψω,c, we consider the perturbation
variable W(t, ·) = Ψx0,γ(t, ·)−Ψω,c(t, ·) = (υ1(t, ·), υ2(t, ·), υ3(t, ·)). Now, we may assume without

losing generality that υ1(t, ) can be replaced by eiωte
ic
2ϵ (x−ct)υ1(t, ·), since the deviation depends

on the ||v1(t, ·)||H1 and that

||eiωte
ic
2ϵ (x−ct)υ1(t, ·)||2H1 ∼ ||υ1(t, ·)||2H1 ,

for c > 0 large enough. From this fact, we may assume that

eiγψ(t, x+ x0) = eiωte
ic
2ϵ (x−ct)(υ1(t, x) + u(x− ct)),

ρ(t, x+ x0) = υ2(t, x)−M2u2(x− ct),
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φ(t, x+ x0) = υ3(t, x).

The first observation is that

Fω,c(Ψω,c) =
1

2

∫
R

(
ϵ(u′)2 +

(
ω − c2

4ϵ

)
u2 +

1

2

(
σ −M2W

)
u4
)
dx.

Now, a direct computation shows that

|ψ′(t, x+ x0)|2 = |υ′1|2 + 2h′1u
′ + (u′)2 +

ic

2ϵ
(υ1υ′1 − υ1υ

′
1)−

c

ϵ
h2u

′ +
c

ϵ
h′2u,

+
c2

4ϵ2
(|υ1|2 + 2h1u+ (u)2),

|ψ(t, x+ x0)|4 = |υ1|4 + u4 + 4h21u
2 + 4|υ1|2h1u+ 2|υ1|2u2 + 4h1u

3,

|ρ(t, x+ x0)|2 = |υ2|2 − 2M2υ2u
2 +M4u4,

(ρφ′)(t, x+ x0) = υ2υ
′
3 −M2u2υ′3,

(ρ+Dφ′)|ψ|2(t, x+ x0) = υ2|υ1|2 + 2h1υ2u+ υ2u
2 −M2|υ1|2u2 − 2M2h1u

3 −M2u4

+D(|υ1|2υ′3 + 2h1uυ
′
3 + u2υ′3),

i

2
(ψψ′ − ψ′ψ) =

c

2ϵ
(|υ1|2 + 2h1u+ u2) +

i

2
(υ1υ′1 − υ′1υ1)− h2u

′ + h′2u.

Now, using previous formulas and that D =M2(σ2 − c), we see that

Fω,c(Ψx0,γ(t, ·)) =
1

2

∫
R

(
(ϵ|υ′1|2 + |υ1|2

(
ω − c2

4ϵ
+ (σ −WM2)u2

)
+

2h1

(
−ϵu′′ +

(
ω − c2

4ϵ

)
u+ (σ −WM2)u3

)
+

(
ϵ(u′)2 +

(
ω − c2

4ϵ

)
u2 +

1

2
(σ −WM2)u4

)
+
W

2
(υ′3)

2 +
W

2M2
υ22 +

σ

2
|υ1|4 + 2σh21u

2 + 2σ|υ1|2h1u+
WD

M2
υ2υ

′
3 +DW |υ2|2υ′3

+ 2DWh1uυ
′
3 +W |υ1|2υ2 + 2Wh1uυ2

)
dx. (3.8)

Using that ∆Fω,c(t) = Fω,c(Ψx0,γ(t, ·))−Fω,c(Ψω,c) and the equation for u, we get that

∆Fω,c(t) =
1

2

∫
R

(
|υ′1|2 +

|υ1|2

ϵ

(
ω − c2

4ϵ
+ (σ −WM2)u2

)
+

1

2ϵ
(WM2 − σ)u4 +

W

4ϵM2
K +

W

4ϵ
(υ′3)

2 +
W

4ϵM2
υ22

)
dx. (3.9)

where the function K is defined as,

K = υ22 +M2(υ′3)
2 +

2σM2

W
|υ1|4 +

8σM2

W
h21u

2 +
8σM2

W
|υ1|2h1u+ 4Dυ2υ

′
3

+ 4M2D|υ1|2υ′3 + 8M2Dh1uυ
′
3 + 4M2|υ1|2υ2 + 8M2h1uυ2. (3.10)

Now, we see directly that,

(υ2 + 2Dυ′3 + 4M2h1u+ 2M2|υ1|2)2 +
(√

M2 − 4D2υ′3 −
4DM2

√
M2 − 4D2

h1u
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− 2DM2

√
M2 − 4D2

|υ1|2
)2

= K +
2M2

W
N(σ,M,W,D)(|υ1|4 + 4u2h21 + 4|υ1|2h1u), (3.11)

where N(σ,M,W,D) =
(σ(M2−4D2)−2M2(M2−3D2)W)

(M2−4D2) . On the other hand, we also have that,

∫
R

(
|υ′1|2 +

|υ1|2

ϵ

(
ω − c2

4ϵ
+ (σ −WM2)u2

)
) dx = (L+h1, h1) + (L−h2, h2)

+
2(WM2 − σ)

ϵ

∫
R

u2h21 dx. (3.12)

Putting this estimates together, we conclude that,

∆Fω,c(t) =
1

2
((L+h1, h1) + (L−h2, h2))−

N

2ϵ

∫
R

(
|υ1|4 + 4|υ1|2h1u

)
dx

+

∫
R

(2
ϵ
((WM2 − σ)−N(σ,M,W,D))u2h21 +

1

2ϵ
(WM2 − σ)u4 +

W

4ϵ
(υ′3)

2 +
W

4ϵM2
υ22

)
dx.

Now, for M2 − 4D2 > 0 and WM2 − σ > 0, we have that,

(WM2 − σ)−N(σ,M,W,D) =
(3M2W − 2σ)(M2 − 4D2) + 2M2D2W

(M2 − 4D2)
> 0.

From these fact and the Young inequality, we conclude for positive constants A3, A4 such that

∆Fω,c(t) ≥
1

2
((L+h1, h1) + (L−h2, h2)) +

W

4ϵM2
||υ2||2L2 +

W

4ϵ
||υ′3||2L2

−A3||υ1||4 −A4||υ1||3H1 ,

where we are using that H1 ↪→ L4 and H1 ↪→ L∞.

From the work by J. Bona in [2], it is possible to obtain the following technical result,

Lemma 3.2. If x0 = x0(t) and γ0 = γ(t) are chosen to minimize

N (Ψx0(t),γ0(t),Ψω), (3.13)

then there are positive constants D1, D2 and D3 such that,

(L+h1, h1) + (L−h2, h2) ≥ D1||υ1||2H1 −D2||υ1||3H1 −D3||υ1||4H1 , (3.14)

in the case ∫
R
|ψ(t, x)|2 dx =

∫
R
u2(x) dx.

Proof. That the minimum is attained at finite values x0 and γ and that W(t, ·) as defined in
(3.6) has a continuous H1 norm can be obtained by performing the approach used by J. Bona in
[2]. We note that the minimization of (3.13) over x0 and γ implies that∫

R

(
3(M2W − σ)u2u′h1(t, x) +M2u2ϕ′2(t, x)

)
dx = 0, (3.15)∫

R
u3h2(t, x) dx = 0, (3.16)
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after differentiating with respect to x0 and γ, respectively.

Now, from the fact that L− is non-degenerate and that L−u = 0 where u > 0 is the
ground state of L−, we have that L− is a non-negative operator. If we consider the infimum
of (L−v, v)/(v, v) subject to (3.16), we have that is non zero. In fact, if this were zero, then
it is attained at u, contradicting the restriction (3.16), meaning that the minimum is positive.
Therefore, there is a positive constant A3 > 0 such that for any v ∈ H1,

(L−v, v) ≥ A3(v, v).

Taking δ > 0 in such a way that A3 > 3δ(M2W − σ)||u||2L∞ , we have that

(1 + δ)(L−v, v) ≥ δ||v′||2L2 + (A3 + δω)||v||2L2 − 3δ(M2W − σ)

∫
u2v2 dx,

≥ δ||v′||2L2 + (A3 + δω − 3δ(M2W − σ)||u||2L∞)||v||2L2 .

In other words, there is A0 > 0 such that

(L−v, v) ≥ A0||v||2H1 .

On the other hand, From Lemma 4.2 in the work by M. Weinstein [23], L+ has exactly one neg-
ative eigenvalue, but (3.15) is not enough to assure the positivity of (L+z, z). From Proposition
3.1 in the work by M. Weinstein in [23], we have that (L+z, z) ≥ 0 for any z ∈ H1 such that
(z, u) = 0 and that

inf
(f,u)=0

(L+f, f) = 0.

So, to obtain a lower bound on (L+f, f), it is necessary to assume that the perturbed solution
have the same square integral as the first component of the ground state,∫

R
|ψ(t, x)|2 dx =

∫
R
u(x)2 dx.

In this setting, we have that

(ℜυ1, u) = (h1, u) = −1

2
(||h1||2L2 + ||h2|||2L2) = −1

2
||υ1||2L2 .

In this case, we assume that ||u||L2 = 1 and decompose h1 = ℜυ1 ∈ H1 by h1 = f1 + f2 in such
a way that (f2, u) = 0, meaning that

f1 = (h1, u)u = −1

2
||υ1|||2L2u,

f2 = h1 − (h1, u)u = h1 +
1

2
||υ1|||2L2u.

Moreover, we also have that

(L+h1, h1) = (L+f1, f1) + 2(L+f1, f2) + (L+f2, f2)

From the discussion above, we have that (L+f2, f2) ≥ 0. Now, if we consider the infimun of
(L+f2, f2)/(f2, f2) subject to (3.15), we see that, if this were zero, it is attained at cu′, but this
contradicts (3.15), since the second component of Ψω is −M2u2 and (3.15) reads

0 =

∫
R

(
3(M2W − σ)u2(u′)2 +M2u2(−M2u2)′

)
dx = 3(M2W − σ)

∫
R
u2(u′)2 dx.
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As a consequence of this, we have that

(L+f2, f2) ≥ C3(f2, f2) = C3((f, f)− (f1, f1))

≥ C3

(
||h1||2L2 −

1

4
||υ1||4L2

)
,

(L+f1, f1) =
1

4
(||h1||2L2 + ||h2||2L2)2(L+u, u) = −1

2
(M2W − σ)||u||4L4 ||υ1||4L4 ,

(L+f1, f2) = −1

2
(||h1||2L2 + ||h2||2L2)(L+f2, u)

≥ −C4||υ1||2L2 ||υ1||H1 ≥ −C4||υ1||3H1 .

From this estimates, we have that

(L+h1, h1) ≥ D1||h1||2H1 −D2||υ1||3H1 −D3||υ1||4H1 .

for some positive constants D1, D2, D3 > 0. So, we have shown that the estimate (3.14) holds,
under the assumption ||ψ||L2 = ||u||L2 .

Now, we are in position to establish the stability result to the standing waves.

Theorem 3.2. Let ω > c2

4ϵ , M
2 > 4D2 and M2W > σ. Then for c > 0 large enough, the

standing wave Ψω,c(t, x) = (ψ(t, x), ρ(t, x), φ(t, x)) where

ψ(x, t) = eiωte
ic
2ϵ (x−ct)uω,c(x− ct), ρ(x, t) = −M2u2ω,c(x− ct) φ(x, t) = 0,

is orbitally stable, uω,c is the unique positive solution (3.3).

Proof. From estimates (3.7) and (3.14), in the case ||ψ|L2 = ||u||L2 , we have the estimate

∆Fω,c(t) ≥
1

2
(A0 +D1)||υ1||2H1 +A1||υ2||2L2 +A2||υ′3||2L2

− (D2 +A3)||υ1||3H1 − (D3 +A4)||υ1||4H1 .

Moreover, we also have for some positive constants A,B,C that

∆Fω,c(t) ≥ A||W(t, ·)||2X
1, 1

2

(
1−B||W(t, ·)||X

1, 1
2

− C||W(t, ·)||2X
1, 1

2

)
, (3.17)

since we have that

||W(t, ·)||2X
1, 1

2

= ||υ1||2H1 + ||υ2||2L2 + ||υ′3||2L2 , ||υ1||H1 ≤ ||Υ(t, ·)||X
1, 1

2

.

Now, let η > 0 be given. To remove the restriction on the L2 norm, we take a ground state Ψω,c̃

for c̃ near c in such a way that ||Ψω,c − Ψω,c̃||H1 ≤ η
2 and that ||ψ||L2 = ||uω,c̃||L2 . In fact, a

direct computation shows that

||uω,c||2L2 =
2
√
ϵ
√
ω − c2

4ϵ

M2W − σ

∫
R
sech2(y) dy,

which implies that

||uω,c||2L2

||uω,c̃||2L2

=

√
ω − c2

4ϵ√
ω − c̃2

4ϵ

.
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So, for δ(η) > 0 small enough, we can choose c̃ near c such that

||uω,c||2L2

||ψ||2L2

=

√
ω − c2

4ϵ√
ω − c̃2

4ϵ

,

meaning that ||uω,c̃||2L2 = ||ψ||2L2 . Therefore, we have that

||Ψx0,γ0
(t, ·)−Ψω,c||H1 ≤ ||Ψx0,γ0

(t, ·)−Ψω,c̃||H1 + ||Ψω,c̃ −Ψω,c||H1 ,

which implies that the estimate (3.17) holds also in this case using the continuity of Fω,c and
using the estimate of the deviation from Ψ(t, ·) and Ψω,c̃. So, under previous estimates we have
that

∆Fω,c(t) ≥ ν(dE(Φ(t, ·),Gω)),

where ν(y) = Ay2(1−By − Cy2).

We see directly that the function ν is such that ν(0) = 0, ν(y) > 0 for 0 < y ≪ 1 and ν is
an increasing function near zero. Now, by the continuity in X1, 12

of Fω,c near Ψω,c, we have for
this η > 0, that there exists δ > 0 such that

dE(Φ0,Gω) < δ ⇒ ∆Fω,c(0) < ν(η).

which implies for all t > 0 that

ν(η) > ∆Fω,c(0) = ∆Fω,c(t) ≥ ν(dE(Φ(t, ·),Gω)),

where we are using that ∆Fω,c(t) is conserved in time. From this estimate and the properties of
the function ν near zero, we conclude for all t > 0 that

dE(Ψ(t, ·),Gω)) < η,

as desired.
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José Raúl Quintero Universidad del Valle(Colombia)

E-mail: jose.quintero@correounivalle.edu.co

mailto:jose.quintero@correounivalle.edu.co

	Introduction
	Local and global well posedness
	Conserved quantities and global solutions

	Stability of standing waves

