Unique continuation property for the Rosenau equation

Ricardo Córdoba and Anyi D. Corredor

Abstract

In this work, using an appropriate Carleman-type estimate, we establish a unique continuation result for the Rosenau equation that models the dynamics of dense discrete systems with high order effects.

Keywords. Rosenau equation, Carleman estimates, UCP, Treve's inequality

1 Introduction

To model the dynamics of dense discrete systems with high order effects, Philip Rosenau [14] derived the high order nonlinear partial differential equation,

$$
\begin{equation*}
u_{t t}+a u_{x x x x}+b u_{x x x x t t}-\gamma u_{x x}=(f(u))_{x x}, \tag{1.1}
\end{equation*}
$$

where $a>0, b>0$, and $\gamma>0$ are constants, $f(u)=-\beta|u|^{p} u$ with $\beta>0$ and $p>0$. The equation is called Rosenau equation. When $b=0$ the Rosenau equation becomes the "good" Boussinesq equation which arises in the modeling of nonlinear strings.
S. Wang and G. Xu in [18] showed the well-posedness for the Cauchy problem associated to the model (1.1) in the Sobolev space $H^{s}(\mathbb{R})$, with $s>1 / 2$, where $H^{s}(\mathbb{R})$ is the usual Sobolev space of order s defined as the completion of the Schwartz class with respect to the norm

$$
\|w\|_{H^{s}(\mathbb{R})}=\left\|(1+|\xi|)^{s} \widehat{w}(\xi)\right\|_{L_{\xi}^{2}},
$$

where \widehat{w} is the Fourier transform of w in the space variable x and ξ is the variable in the frequency space related to the variable x. Specifically they proved the following result.

Theorem 1.1. Assume that $s>1 / 2, \varphi \in H^{s}(\mathbb{R}), \psi \in H^{s}(\mathbb{R})$ and $f \in C^{N}(\mathbb{R})$, where $N \geq$ $\max \{1, s-2\}$ is an integer, then there exists a maximal time T_{0} which depends only on φ and ψ such that for each $T<T_{0}$, the Cauchy problem

$$
\left\{\begin{align*}
u_{t t}+a u_{x x x x}+b u_{x x x x t t}-\gamma u_{x x} & =(f(u))_{x x}, \quad x \in \mathbb{R}, t>0, \tag{1.2}\\
u(x, 0)=\varphi(x), \quad u_{t}(x, 0) & =\psi(x), \quad x \in \mathbb{R},
\end{align*}\right.
$$

Received date: January 26, 2024; Published online: March 20, 2024.
2010 Mathematics Subject Classification. 58F15, 58F17, 53C35.
Corresponding author: Ricardo Córdoba Gómez.
has a unique solution $u \in C^{1}\left([0, T] ; H^{s}(\mathbb{R})\right)$. Moreover, if

$$
\sup _{t \in\left[0, T_{0}\right)}\left[\|u(\cdot, t)\|_{H^{s}}+\left\|u_{t}(\cdot, t)\right\|_{H^{s}}\right]<\infty,
$$

then $T_{0}=\infty$.
In the present work, we will prove a unique continuation result for the Rosenau equation (1.1) when $f(u)=-\beta u^{2 k+1}, k \in \mathbb{N}$. More precisely, we show that if $u=u(x, t)$ is a solution of the model (1.1) in a suitable function space, for example

$$
u \in L^{2}\left(-T, T ; H_{l o c}^{6}(\mathbb{R})\right), \quad u_{t} \in L^{2}\left(-T, T ; H_{l o c}^{2}(\mathbb{R})\right)
$$

and u vanishes on an open subset Ω of $\mathbb{R} \times[-T, T]$, then $u \equiv 0$ in the horizontal component of Ω. We recall that the horizontal component Ω_{1} of an open subset $\Omega \subseteq \mathbb{R} \times \mathbb{R}$ is defined as the union of all segments $t=$ constant in $\mathbb{R} \times \mathbb{R}$ which contain a point of Ω, this is,

$$
\Omega_{1}=\left\{(x, t) \in \mathbb{R} \times[-T, T]: \exists x_{1} \in \mathbb{R},\left(x_{1}, t\right) \in \Omega\right\}
$$

The unique continuation property has been intensively studied for a long time due to the important role that plays in the applications (see V. Isakov [9] and J. L. Lions [12]). An important work on the subject was done by J. C. Saut and B. Scheurer in [15]. They showed a unique continuation result for a general class of dispersive equations including the well known KdV equation,

$$
u_{t}+u u_{x}+u_{x x x}=0,
$$

and various generalizations. In a similar way, Y. Shang showed in [16] a unique continuation result for the symmetric regularized long wave equation,

$$
u_{t t}-u_{x x}+\frac{1}{2}\left(u^{2}\right)_{x t}-u_{x x t t}=0 .
$$

In the previous equations, a Carleman estimate is established to prove that if a solution u vanishes on an open subset Ω, then $u \equiv 0$ in the horizontal component of Ω. By using the inverse scattering transform and some results from the Hardy function theory, B. Zhang in [19] established that that if u is a solution of the KdV equation, then it cannot have compact support at two different moments unless it vanishes identically. In the paper [1], J. Bourgain introduced a different approach and prove that if a solution u to the KdV equation has compact support in a nontrivial time interval $I=\left[t_{1}, t_{2}\right]$, then $u \equiv 0$. His argument is based on an analytic continuation of the Fourier transform via the Paley-Wiener Theorem and the dispersion relation of the linear part of the equation. It also applies to higher order dispersive nonlinear models, and to higher spatial dimensions; in particular, M. Panthee in [13] showed that if u is a smooth solution of the Kadomtsev-Petviashvili (KP) equation,

$$
u_{t}+u_{x x x}+u u_{x}+\partial_{x}^{-1} u_{y y}=0
$$

such that, for some $B>0$,

$$
\operatorname{supp} u(t) \subset[-B, B] \times[-B, B] \quad \forall t \in\left[t_{1}, t_{2}\right],
$$

then $u \equiv 0$.
More recently, C. Kenig, G. Ponce and L. Vega in [11] proposed a new method and proved that if a sufficiently smooth solution u to a generalized KdV equation is supported in a half line
at two different instants of time, then $u \equiv 0$. Moreover, L. Escauriaza, C. Kenig, G. Ponce and L. Vega in [6] established uniqueness properties of solutions of the k-generalized Korteweg- de Vries equation,

$$
\begin{equation*}
u_{t}+u^{k} u_{x}+u_{x x x}=0, \quad k \in \mathbb{Z}^{+} . \tag{1.3}
\end{equation*}
$$

They obtained sufficient conditions on the behavior of the difference $u_{1}-u_{2}$ of two solutions u_{1}, u_{2} of (1.3) at two different times $t_{0}=0$ and $t_{1}=1$ which guarantee that $u_{1} \equiv u_{2}$. This kind of uniqueness results has been deduced under the assumption that the solutions coincide in a large sub-domain of \mathbb{R} at two different times. In a similar fashion, E. Bustamante, P. Isaza and J. Mejía in [2] proved that if u is a smooth solution of the Zakharov-Kuznetsov equation,

$$
u_{t}+u_{x x x}+u_{x y y}+u u_{x}=0
$$

such that, for some $B>0$,

$$
\operatorname{supp} u\left(t_{2}\right), \operatorname{supp} u\left(t_{1}\right) \subset[-B, B] \times[-B, B],
$$

then $u \equiv 0$. Moreover, in [3] it was proved that if the difference of two sufficiently smooth solutions of the Zakharov-Kuznetsov equation decays as $e^{-a\left(x^{2}+y^{2}\right)^{3 / 4}}$ at two different times, for some $a>0$ large enough, then both solutions coincide. More unique continuation results can be seen in [4], [5], [7], [8], [10].

Following from close the works of Saut-Scheurer [15], we base our analysis in finding an apppropiate Carleman-type estimate for the linear operator \mathcal{L} associated to the equation (1.1). In order to do this we use a particular version of the well known Treves' inequality. For the operator \mathcal{L} we also prove that if a solution vanishes in a ball in the $x t$ plane, which pass through the origen, then it also vanished in a neighborhood of the origen.

The paper is organized as follows. In Section 2, using a particular version of the Treves inequality, we establish a Carleman estimate for a differential operator \mathcal{L} closely related to our problem. In Section 3, first we give some useful technical results. Later, we show the unique continuation result for the model (1.1).

2 Carleman estimates

In this section, using a particular version of the Treves' inequality, we establish a Carleman estimate for the differential operator \mathcal{L} defined as

$$
\begin{equation*}
\mathcal{L}:=\partial_{t}^{2}+c_{1} \partial_{x} \partial_{t}+c_{2} \partial_{x}^{5} \partial_{t}+b \partial_{x}^{4} \partial_{t}^{2}+a \partial_{x}^{4}+c_{3} \partial_{x}^{6}+f_{1}(x, t) \partial_{x}+f_{2}(x, t) \partial_{x}^{2} \tag{2.1}
\end{equation*}
$$

In what follows we are going to use the notation $D=\left(\partial_{x}, \partial_{t}\right)$. If $P=P\left(\xi_{1}, \xi_{2}\right)$ is a polynomial in two variables, has constant coefficients and degree m, then we consider the differential operator of order m associated to P,

$$
P(D)=P\left(\partial_{x}, \partial_{t}\right)=\sum_{|\alpha| \leq m} a_{\alpha} D^{\alpha}
$$

where $D^{\alpha}=\partial_{x}^{\alpha_{1}} \partial_{t}^{\alpha_{2}}$ and $|\alpha|=\alpha_{1}+\alpha_{2}$. By definition $P^{(\beta)}\left(\xi_{1}, \xi_{2}\right)=\partial_{x}^{\beta_{1}} \partial_{t}^{\beta_{2}} P\left(\xi_{1}, \xi_{2}\right)$ where β is given by $\beta=\left(\beta_{1}, \beta_{2}\right) \in \mathbb{N}^{2}$.

Theorem 2.1. (Treves' Inequality). Let $P(D)=P\left(\partial_{x}, \partial_{t}\right)$ be a differential operator of order m with constant coefficients. Then for all $\alpha=\left(\alpha_{1}, \alpha_{2}\right) \in \mathbb{N}^{2}, \delta>0, \tau>0, \Psi \in C_{0}^{\infty}\left(\mathbb{R}^{2}\right)$ and $\psi(x, t)=(x-\delta)^{2}+\delta^{2} t^{2}$ we have that

$$
\begin{equation*}
\frac{2^{2|\alpha|} \tau^{|\alpha|} \delta^{2 \alpha_{2}}}{\alpha!} \int_{\mathbb{R}^{2}}\left|P^{(\alpha)}(D) \Psi\right|^{2} e^{2 \tau \psi} d x d t \leq C(m, \alpha) \int_{\mathbb{R}^{2}}|P(D) \Psi|^{2} e^{2 \tau \psi} d x d t \tag{2.2}
\end{equation*}
$$

with

$$
|\alpha|=\left|\alpha_{1}\right|+\left|\alpha_{2}\right|, \quad \alpha!=\alpha_{1}!\alpha_{2}!,
$$

and

$$
C(m, \alpha)= \begin{cases}\sup _{|r+\alpha| \leq m}\binom{r+\alpha}{\alpha}, & \text { if }|\alpha| \leq m \\ 0, & \text { if }|\alpha|>m\end{cases}
$$

Proof. See Corollary 1 in [16].
We present the Carleman estimate for the differential operator \mathcal{L}.
Theorem 2.2. Let \mathcal{L} the differential operator defined in (2.1), where c_{1}, c_{2}, c_{3} are constants in \mathbb{R} and $f_{1}, f_{2} \in L_{\text {loc }}^{\infty}\left(\mathbb{R}^{2}\right)$. Let $\delta>0$ and

$$
B_{\delta}:=\left\{(x, t) \in \mathbb{R}^{2}: x^{2}+t^{2}<\delta^{2}\right\}, \quad \psi(x, t)=(x-\delta)^{2}+\delta^{2} t^{2} .
$$

Then, there exists $C>0$ such that for all $\Psi \in C_{0}^{\infty}\left(B_{\delta}\right)$ and $\tau>0$ with

$$
\frac{\left\|f_{1}\right\|_{L^{\infty}\left(B_{\delta}\right)}^{2}}{\tau^{6} c_{3}^{2}} \leq \frac{1}{8}, \quad \frac{\left\|f_{2}\right\|_{L^{\infty}\left(B_{\delta}\right)}^{2}}{\tau^{5} \delta^{4} b^{2}} \leq \frac{1}{8}
$$

we have that

$$
\begin{align*}
\tau^{6} c_{3}^{2} \int_{B_{\delta}}|\Psi|^{2} e^{2 \tau \psi} d x d t+\tau^{5} \delta^{4} b^{2} \int_{B_{\delta}}\left|\partial_{x} \Psi\right|^{2} e^{2 \tau \psi} d x d t & +\tau^{4} \delta^{4} b^{2} \int_{B_{\delta}}\left|\partial_{x}^{2} \Psi\right|^{2} e^{2 \tau \psi} d x d t \\
& \leq C \int_{B_{\delta}}|\mathcal{L} \Psi|^{2} e^{2 \tau \psi} d x d t \tag{2.3}
\end{align*}
$$

Proof. Let $\Psi \in C_{0}^{\infty}\left(B_{\delta}\right)$. Consider the polynomial

$$
P\left(\xi_{1}, \xi_{2}\right)=\xi_{2}^{2}+c_{1} \xi_{1} \xi_{2}+c_{2} \xi_{1}^{5} \xi_{2}+b \xi_{1}^{4} \xi_{2}^{2}+a \xi_{1}^{4}+c_{3} \xi_{1}^{6}
$$

and

$$
P(D)=P\left(\partial_{x}, \partial_{t}\right)=\partial_{t}^{2}+c_{1} \partial_{x} \partial_{t}+c_{2} \partial_{x}^{5} \partial_{t}+b \partial_{x}^{4} \partial_{t}^{2}+a \partial_{x}^{4}+c_{3} \partial_{x}^{6}
$$

the differential operator associated to P. Then, simple calculations show that if $\alpha=(6,0)$ we have that

$$
\begin{gathered}
P^{(\alpha)}\left(\xi_{1}, \xi_{2}\right)=P^{(6,0)}\left(\xi_{1}, \xi_{2}\right)=720 c_{3}, \quad P^{(\alpha)}(D) \Psi=720 c_{3} \Psi, \\
C(6, \alpha)=\sup _{|r+\alpha| \leq 6}\binom{r+\alpha}{\alpha}=1 .
\end{gathered}
$$

Then, using Theorem 2.1 we see that

$$
\tau^{6} c_{3}^{2} \int_{B_{\delta}}|\Psi|^{2} e^{2 \tau \psi} d x d t \leq \frac{2^{12} \tau^{6}}{720} \int_{B_{\delta}}\left|720 c_{3} \Psi\right|^{2} e^{2 \tau \psi} d x d t
$$

$$
\begin{align*}
& =\frac{2^{2|\alpha|} \tau^{|\alpha|} \delta^{\alpha_{2}}}{\alpha!} \int_{B_{\delta}}\left|P^{(\alpha)}(D) \Psi\right|^{2} e^{2 \tau \psi} d x d t \\
& \leq \int_{B_{\delta}}|P(D) \Psi|^{2} e^{2 \tau \psi} d x d t . \tag{2.4}
\end{align*}
$$

Moreover,

$$
P^{(3,2)}\left(\xi_{1}, \xi_{2}\right)=48 b \xi_{1}, \quad P^{(3,2)}(D) \Psi=48 b \partial_{x} \Psi, \quad C(6,(3,2))=6
$$

Then, using again the Theorem 2.1 we obtain that

$$
\begin{align*}
\tau^{5} \delta^{4} b^{2} \int_{B_{\delta}}\left|\partial_{x} \Psi\right|^{2} e^{2 \tau \psi} d x d t & \leq \frac{2^{10} \tau^{5} \delta^{4}}{12} \int_{B_{\delta}}\left|P^{(3,2)}(D) \Psi\right|^{2} e^{2 \tau \psi} d x d t \\
& \leq 6 \int_{B_{\delta}}|P(D) \Psi|^{2} e^{2 \tau \psi} d x d t \tag{2.5}
\end{align*}
$$

In a similar fashion

$$
P^{(2,2)}\left(\xi_{1}, \xi_{2}\right)=24 b \xi_{1}^{2}, \quad P^{(2,2)}(D) \Psi=24 b \partial_{x}^{2} \Psi, \quad C(6,(2,2))=6 .
$$

Then, we have that

$$
\begin{align*}
\tau^{4} \delta^{4} b^{2} \int_{B_{\delta}}\left|\partial_{x}^{2} \Psi\right|^{2} e^{2 \tau \psi} d x d t & \leq \frac{2^{8} \tau^{4} \delta^{4}}{4} \int_{B_{\delta}}\left|P^{(2,2)}(D) \Psi\right|^{2} e^{2 \tau \psi} d x d t \\
& \leq 6 \int_{B_{\delta}}|P(D) \Psi|^{2} e^{2 \tau \psi} d x d t \tag{2.6}
\end{align*}
$$

From (2.4)-(2.6), there is $C>0$ such that

$$
\begin{align*}
\tau^{6} c_{3}^{2} \int_{B_{\delta}}|\Psi|^{2} e^{2 \tau \psi} d x d t+\tau^{5} \delta^{4} b^{2} \int_{B_{\delta}}\left|\partial_{x} \Psi\right|^{2} e^{2 \tau \psi} d x d t & +\tau^{4} \delta^{4} b^{2} \int_{B_{\delta}}\left|\partial_{x}^{2} \Psi\right|^{2} e^{2 \tau \psi} d x d t \\
& \leq C \int_{B_{\delta}}|P(D) \Psi|^{2} e^{2 \tau \psi} d x d t \tag{2.7}
\end{align*}
$$

Now, we note that

$$
\mathcal{L}=\partial_{t}^{2}+c_{1} \partial_{x} \partial_{t}+c_{2} \partial_{x}^{5} \partial_{t}+b \partial_{x}^{4} \partial_{t}^{2}+a \partial_{x}^{4}+c_{3} \partial_{x}^{6}+f_{1}(x, t) \partial_{x}+f_{2}(x, t) \partial_{x}^{2}
$$

implies

$$
P(D) \Psi=\mathcal{L} \Psi-\left(f_{1}(x, t) \partial_{x} \Psi+f_{2}(x, t) \partial_{x}^{2} \Psi\right) .
$$

Then, using the inequalities (2.5)-(2.6), we have that

$$
\begin{align*}
\int_{B_{\delta}}\left(\left|f_{1}(x, t) \partial_{x} \Psi\right|^{2}\right. & \left.+\left|f_{2}(x, t) \partial_{x}^{2} \Psi\right|^{2}\right) e^{2 \tau \psi} d x d t \\
& \leq\left\|f_{1}\right\|_{L^{\infty}\left(B_{\delta}\right)}^{2} \int_{B_{\delta}}\left|\partial_{x} \Psi\right|^{2} e^{2 \tau \psi} d x d t+\left\|f_{2}\right\|_{L^{\infty}\left(B_{\delta}\right)}^{2} \int_{B_{\delta}}\left|\partial_{x}^{2} \Psi\right|^{2} e^{2 \tau \psi} d x d t \\
& \leq A \int_{B_{\delta}}|P(D) \Psi|^{2} e^{2 \tau \psi} d x d t \\
& \leq 2 A \int_{B_{\delta}}\left(|\mathcal{L} \Psi|^{2}+\left|f_{1}(x, t) \partial_{x} \Psi\right|^{2}+\left|f_{2}(x, t) \partial_{x}^{2} \Psi\right|^{2}\right) e^{2 \tau \psi} d x d t, \tag{2.8}
\end{align*}
$$

where

$$
A=\frac{\left\|f_{1}\right\|_{L^{\infty}\left(B_{\delta}\right)}^{2}}{\tau^{6} c_{3}^{2}}+\frac{\left\|f_{2}\right\|_{L^{\infty}\left(B_{\delta}\right)}^{2}}{\tau^{5} \delta^{4} b^{2}} .
$$

Next, if we choose $\tau>0$ large enough such that

$$
\begin{equation*}
\frac{\left\|f_{1}\right\|_{L^{\infty}\left(B_{\delta}\right)}^{2}}{\tau^{6} c_{3}^{2}} \leq \frac{1}{8}, \quad \frac{\left\|f_{2}\right\|_{L^{\infty}\left(B_{\delta}\right)}^{2}}{\tau^{5} \delta^{4} b^{2}} \leq \frac{1}{8} \tag{2.9}
\end{equation*}
$$

then from inequality (2.8) we have that

$$
\begin{aligned}
& \int_{B_{\delta}}\left(\left|f_{1}(x, t) \partial_{x} \Psi\right|^{2}+\left|f_{2}(x, t) \partial_{x}^{2} \Psi\right|^{2}\right) e^{2 \tau \psi} d x d t \\
& \leq \frac{1}{2} \int_{B_{\delta}}|\mathcal{L} \Psi|^{2} e^{2 \tau \psi} d x d t+\frac{1}{2} \int_{B_{\delta}}\left(\left|f_{1}(x, t) \partial_{x} \Psi\right|^{2}+\left|f_{2}(x, t) \partial_{x}^{2} \Psi\right|^{2}\right) e^{2 \tau \psi} d x d t
\end{aligned}
$$

what implies

$$
\int_{B_{\delta}}\left(\left|f_{1}(x, t) \partial_{x} \Psi\right|^{2}+\left|f_{2}(x, t) \partial_{x}^{2} \Psi\right|^{2}\right) e^{2 \tau \psi} d x d t \leq \int_{B_{\delta}}|\mathcal{L} \Psi|^{2} e^{2 \tau \psi} d x d t
$$

Thus,

$$
\begin{aligned}
\int_{B_{\delta}}|P(D) \Psi|^{2} e^{2 \tau \psi} d x d t & \leq 2 \int_{B_{\delta}}\left(|\mathcal{L} \Psi|^{2}+\left|f_{1}(x, t) \partial_{x} \Psi\right|^{2}+\left|f_{2}(x, t) \partial_{x}^{2} \Psi\right|^{2}\right) e^{2 \tau \psi} d x d t \\
& \leq 4 \int_{B_{\delta}}|\mathcal{L} \Psi|^{2} e^{2 \tau \psi} d x d t .
\end{aligned}
$$

Hence, from previous inequality and (2.7) we obtain the estimate (2.3).

Remark 1. The estimate (2.3) is invariant under changes of signs of \mathcal{L}.
Corollary 2.3. Let $T>0$. Assume that in addition to the hypotheses of the Theorem 2.2 we have that

$$
u \in L^{2}\left(-T, T ; H_{l o c}^{6}(\mathbb{R})\right), \quad u_{t} \in L^{2}\left(0, T ; H_{l o c}^{2}(\mathbb{R})\right)
$$

and the support of u is compact contained in B_{δ}. Then, the inequality (2.3) holds if we replace Ψ by u. Indeed,

$$
\begin{gather*}
\tau^{6} c_{3}^{2} \int_{B_{\delta}}|u|^{2} e^{2 \tau \psi} d x d t+\tau^{5} \delta^{4} b^{2} \int_{B_{\delta}}\left|\partial_{x} u\right|^{2} e^{2 \tau \psi} d x d t+\tau^{4} \delta^{4} b^{2} \int_{B_{\delta}}\left|\partial_{x}^{2} u\right|^{2} e^{2 \tau \psi} d x d t \\
\leq C \int_{B_{\delta}}|\mathcal{L} u|^{2} e^{2 \tau \psi} d x d t \tag{2.10}
\end{gather*}
$$

Proof. Let $\left\{\rho_{\epsilon}\right\}_{\epsilon>0}$ be a regularizing sequence (in two variables) and consider $u_{\epsilon}=\rho_{\epsilon} * u$ where * denotes the usual convolution. Then we have that $u_{\epsilon} \in C_{0}^{\infty}\left(B_{\delta}\right)$ and the inequality (2.3) folds for u_{ϵ}, that is

$$
\tau^{6} c_{3}^{2} \int_{B_{\delta}}\left|\rho_{\epsilon} * u\right|^{2} e^{2 \tau \psi} d x d t+\tau^{5} \delta^{4} b^{2} \int_{B_{\delta}}\left|\partial_{x}\left(\rho_{\epsilon} * u\right)\right|^{2} e^{2 \tau \psi} d x d t
$$

$$
\begin{equation*}
+\tau^{4} \delta^{4} b^{2} \int_{B_{\delta}}\left|\partial_{x}^{2}\left(\rho_{\epsilon} * u\right)\right|^{2} e^{2 \tau \psi} d x d t \leq C \int_{B_{\delta}}\left|\mathcal{L} u_{\epsilon}\right|^{2} e^{2 \tau \psi} d x d t \tag{2.11}
\end{equation*}
$$

Now, for $n=0,1,2$ we have that

$$
\begin{aligned}
\left\|\partial_{x}^{n}\left(\rho_{\epsilon} * u\right) e^{\tau \psi}-\partial_{x}^{n} u e^{\tau \psi}\right\|_{L^{2}\left(B_{\delta}\right)} & =\left\|\left(\rho_{\epsilon} * \partial_{x}^{n} u\right) e^{\tau \psi}-\partial_{x}^{n} u e^{\tau \psi}\right\|_{L^{2}\left(B_{\delta}\right)} \\
& \leq C\left\|\partial_{x}^{n}\left(\rho_{\epsilon} * u\right)-\partial_{x}^{n} u\right\|_{L^{2}\left(B_{\delta}\right)} \rightarrow 0,
\end{aligned}
$$

where C is a positive constant depending only on τ and δ. Similarly we have that

$$
\int_{B_{\delta}}\left(\left|\mathcal{L} u_{\epsilon}\right|^{2} e^{\tau \psi}-|\mathcal{L} u|^{2} e^{\tau \psi}\right) d x d t \rightarrow 0, \quad \text { as } \quad \epsilon \rightarrow 0^{+}
$$

which allows us to pass to the limit in (2.11) to conclude the proof of Corollary 2.3.

3 Unique continuation

In this section we will prove the unique continuation result for the Rosenau equation (1.1). Before we do the proof, we establish the following results.

Lemma 3.1. Let $T>0$ and $f_{1}, f_{2} \in L_{l o c}^{\infty}(\mathbb{R} \times(-T, T))$. Let u with

$$
u \in L^{2}\left(-T, T ; H_{l o c}^{6}(\mathbb{R})\right), \quad u_{t} \in L^{2}\left(-T, T ; H_{l o c}^{2}(\mathbb{R})\right)
$$

be a solution of $\mathcal{L} u=0$ in $\mathbb{R} \times(-T, T)$ where \mathcal{L} is the differential operator defined in (2.1). Let

$$
\widetilde{u}= \begin{cases}u & \text { if } t \geq 0 \\ 0 & \text { if } t<0\end{cases}
$$

Suppose that $\widetilde{u} \equiv 0$ in the region $\{(x, t): x<t\}$ intercepted with a neighborhood of $(0,0)$. Then there exists a neighborhood \mathcal{O}_{1} of $(0,0)$ (in the plane xt) such that $\widetilde{u} \equiv 0$ in \mathcal{O}_{1}.

Proof. By hypotheses there is $0<\delta<1$ such that $\widetilde{u} \equiv 0$ in $R_{\delta}=R_{1} \cup R_{2}$, where

$$
R_{1}=\{(x, t): x<t\} \cap B_{\delta}, \quad R_{2}=\{(x, t): t<0\} \cap B_{\delta}, \quad B_{\delta}=\left\{(x, t): x^{2}+t^{2}<\delta^{2}\right\} .
$$

Next, consider $\chi \in C_{0}^{\infty}\left(B_{\delta}\right)$ such that $\chi=1$ in a neighborhood \mathcal{O} of $(0,0)$ and define

$$
\Psi:=\chi \widetilde{u} .
$$

Then we have that

$$
\Psi \in L^{2}\left(-T, T ; H_{l o c}^{6}(\mathbb{R})\right), \quad \Psi_{t} \in L^{2}\left(-T, T ; H_{l o c}^{2}(\mathbb{R})\right)
$$

and

$$
\operatorname{supp} \Psi \subset B_{\delta}
$$

By using the definition of χ, we note that $\mathcal{L} \Psi=0$ in \mathcal{O}. Thus, using the Corollary 2.3, we have for $\psi(x, t)=(x-\delta)^{2}+\delta^{2} t^{2}$ and $\tau>0$ large enough that

$$
\tau^{6} c_{3}^{2} \int_{B_{\delta}}|\Psi|^{2} e^{2 \tau \psi} d x d t+\tau^{5} \delta^{4} b^{2} \int_{B_{\delta}}\left|\partial_{x} \Psi\right|^{2} e^{2 \tau \psi} d x d t+\tau^{4} \delta^{4} b^{2} \int_{B_{\delta}}\left|\partial_{x}^{2} \Psi\right|^{2} e^{2 \tau \psi} d x d t
$$

$$
\begin{equation*}
\leq C \int_{B_{\delta}}|\mathcal{L} \Psi|^{2} e^{2 \tau \psi} d x d t=C \int_{B_{\delta} \backslash \mathcal{O}}|\mathcal{L} \Psi|^{2} e^{2 \tau \psi} d x d t . \tag{3.1}
\end{equation*}
$$

Now, using again the definition of χ and the fact that $\widetilde{u} \equiv 0$ in R_{δ}, we see that

$$
\operatorname{supp} \Psi \subset D, \quad \operatorname{supp} \mathcal{L} \Psi \subset D \cap\left(B_{\delta} \backslash \mathcal{O}\right), \quad D=\{(x, t): 0 \leq t \leq x<\delta<1\} .
$$

It follows that if $(x, t) \neq(0,0)$ and $(x, t) \in D$ then

$$
\psi(x, t)=(x-\delta)^{2}+\delta^{2} t^{2} \leq(t-\delta)^{2}+\delta^{2} t^{2}=t^{2}\left(1+\delta^{2}\right)-2 t \delta+\delta^{2}<\delta^{2}
$$

Thus, there exists $0<\epsilon<\delta^{2}$ such that

$$
\psi(x, t) \leq \delta^{2}-\epsilon, \quad(x, t) \in D \cap\left(B_{\delta} \backslash \mathcal{O}\right)
$$

Moreover, since $\psi(0,0)=\delta^{2}$, we can choose $\mathcal{O}_{1} \subset \mathcal{O}$ a neighborhood of $(0,0)$ such that

$$
\psi(x, t)>\delta^{2}-\epsilon, \quad(x, t) \in \mathcal{O}_{1} .
$$

From the above construction and the inequality (3.1) we have that there exists $C_{1}>0$ such that

$$
\begin{aligned}
\tau^{6} e^{2 \tau\left(\delta^{2}-\epsilon\right)} \int_{\mathcal{O}_{1}}|\Psi|^{2} d x d t & \leq \tau^{6} \int_{\mathcal{O}_{1}}|\Psi|^{2} e^{2 \tau \psi} d x d t \\
& \leq \tau^{6} \int_{B_{\delta}}|\Psi|^{2} e^{2 \tau \psi} d x d t \\
& \leq C_{1} \int_{B_{\delta} \backslash \mathcal{O}}|\mathcal{L} \Psi|^{2} e^{2 \tau \psi} d x d t \\
& \leq C_{1} e^{2 \tau\left(\delta^{2}-\epsilon\right)} \int_{B_{\delta} \backslash \mathcal{O}}|\mathcal{L} \Psi|^{2} d x d t
\end{aligned}
$$

Therefore

$$
\int_{\mathcal{O}_{1}}|\Psi|^{2} d x d t \leq \frac{C_{1}}{\tau^{6}} \int_{B_{\delta} \backslash \mathcal{O}}|\mathcal{L} \Psi|^{2} d x d t .
$$

Then, passing to the limit as $\tau \rightarrow+\infty$, we have that $\Psi \equiv 0$ in \mathcal{O}_{1}. Since $\widetilde{u}=\Psi$ in \mathcal{O} and $\mathcal{O}_{1} \subset \mathcal{O}$, we see that $\widetilde{u}=0$ in \mathcal{O}_{1}.

Similarly we can also show the following result.
Lemma 3.2. Let $T>0$ and $f_{1}, f_{2} \in L_{\text {loc }}^{\infty}(\mathbb{R} \times(-T, T))$. Let u with

$$
u \in L^{2}\left(-T, T ; H_{l o c}^{6}(\mathbb{R})\right), \quad u_{t} \in L^{2}\left(-T, T ; H_{l o c}^{2}(\mathbb{R})\right)
$$

be a solution of $\mathcal{L} u=0$ in $\mathbb{R} \times(-T, T)$ where \mathcal{L} is the differential operator defined in (2.1). Let

$$
\widetilde{u}= \begin{cases}0 & \text { if } t \geq 0 \\ u & \text { if } t<0\end{cases}
$$

Suppose that $\widetilde{u} \equiv 0$ in the region $\{(x, t): x<-t\}$ intercepted with a neighborhood of $(0,0)$. Then there exists a neighborhood \mathcal{O}_{2} of $(0,0)$ (in the plane xt) such that $\widetilde{u} \equiv 0$ in \mathcal{O}_{2}.

Corollary 3.1. Let $T>0$ and $F_{1}, F_{2} \in L_{\text {loc }}^{\infty}(\mathbb{R} \times(-T, T))$. Let u with

$$
u \in L^{2}\left(-T, T ; H_{l o c}^{6}(\mathbb{R})\right), \quad u_{t} \in L^{2}\left(-T, T ; H_{l o c}^{2}(\mathbb{R})\right)
$$

be a solution in $\mathbb{R} \times(-T, T)$ of the equation

$$
u_{t t}+a u_{x x x x}+b u_{x x x x t t}+F_{1}(x, t) u_{x}+F_{2}(x, t) u_{x x}=0
$$

Let γ be a circumference passing through the origin (0,0). Suppose that $u \equiv 0$ in the interior of the circle (with boundary γ) in a neighborhood of (0,0). Then, there exists a neighborhood of $(0,0)$ where $u \equiv 0$.

Proof. Let us assume that the circumference (a piece of it) γ is given by $x=g(t)$ with $g^{\prime \prime}(t)<0$ in a neighborhood of $(0,0)$. By using the hypotheses, we have that $u \equiv 0$ in the region $\{(x, t): x<$ $g(t)\}$ intercepted with a neighborhood of $(0,0)$. Then, we can see that there exists $\omega \in \mathbb{R} \backslash\{0,1\}$ such that $u \equiv 0$ in a neighborhood of $(0,0)$ in the region $\{(x, t): x<h(t)\}$ where

$$
h(t)=\left\{\begin{array}{lll}
\omega t & \text { if } & t \geq 0 \\
-\frac{1}{\omega} t & \text { if } & t<0
\end{array}\right.
$$

Now, we consider the following change of variables $(x, t) \rightarrow(X, T)$ with

$$
\begin{aligned}
& X=x-h(t)+|t| \\
& T=t .
\end{aligned}
$$

Notice that in the new variables, if $T \geq 0$ then the function $u=u(X, T)$ is a solution of

$$
\partial_{T}^{2} u+c_{1} \partial_{X} \partial_{T} u+c_{2} \partial_{X}^{5} \partial_{T} u+b \partial_{X}^{4} \partial_{T}^{2}+a \partial_{X}^{4} u+c_{3} \partial_{X}^{6} u+f_{1}(X, T) \partial_{X} u+f_{2}(X, T) \partial_{X}^{2} u=0
$$

with

$$
c_{1}=2(1-\omega), c_{2}=b c_{1}, c_{3}=b(1-\omega)^{2}, f_{1}=F_{1}, f_{2}=(1-\omega)^{2}+F_{2} .
$$

Then, $u \equiv 0$ in the region $\{(X, T): X<T, T \geq 0\}$ intercepted with a neighborhood of $(0,0)$ and u satisfies

$$
\mathcal{L} u=0 \quad \text { if } \quad T \geq 0,
$$

where

$$
\mathcal{L}=\partial_{T}^{2}+c_{1} \partial_{X} \partial_{T}+c_{2} \partial_{X}^{5} \partial_{T}+b \partial_{X}^{4} \partial_{T}^{2}+a \partial_{X}^{4}+c_{3} \partial_{X}^{6}+f_{1}(X, T) \partial_{X}+f_{2}(X, T) \partial_{X}^{2} .
$$

So, using the Lemma 3.1 with the previous differential operator \mathcal{L}, we obtain that there exists a neighborhood \mathcal{O}_{1} of $(0,0)$ in the plane $X T$ where $u \equiv 0$.

In a similar fashion, $u \equiv 0$ in the region $\{(X, T): X<-T, T<0\}$ intercepted with a neighborhood of $(0,0)$ and u satisfies

$$
\mathcal{L} u=0 \quad \text { if } \quad T<0,
$$

where

$$
c_{1}=2\left(\frac{1}{\omega}-1\right), c_{2}=b c_{1}, c_{3}=b\left(\frac{1}{\omega}-1\right)^{2}
$$

and

$$
f_{1}=F_{1}, \quad f_{2}=\left(\frac{1}{\omega}-1\right)^{2}+F_{2} .
$$

Then, from Lemma 3.2 we have that there exists a neighborhood \mathcal{O}_{2} of $(0,0$,$) in the plane XT$ where $u \equiv 0$. Thus, returning to the original variables (x, t) we have the result.

Now we have the main result on the unique continuation property for the equation (1.1).
Theorem 3.2. Let $T>0$ and u with

$$
u \in L^{2}\left(-T, T ; H_{l o c}^{6}(\mathbb{R})\right), \quad u_{t} \in L^{2}\left(-T, T ; H_{l o c}^{2}(\mathbb{R})\right)
$$

be a solution in $\mathbb{R} \times(-T, T)$ of the Rosenau equation (1.1). If $u \equiv 0$ in an open subset $\Omega \subset$ $\mathbb{R} \times(-T, T)$, then $u \equiv 0$ in the horizontal component of Ω.

Proof. By defining the functions

$$
F_{1}(x, t)=2 k(2 k+1) \beta u^{2 k-1} u_{x}, \quad F_{2}(x, t)=-\gamma+(2 k+1) \beta u^{2 k}, \quad \beta, \gamma>0, \quad k \in \mathbb{N},
$$

the Rosenau equation (1.1) takes the form

$$
\begin{equation*}
u_{t t}+a u_{x x x x}+b u_{x x x x t t}+F_{1}(x, t) u_{x}+F_{2}(x, t) u_{x x}=0 \tag{3.2}
\end{equation*}
$$

with $F_{1}, F_{2} \in L_{l o c}^{\infty}(\mathbb{R} \times(-T, T))$. Then, we will show the result for model (3.2).
Denote by Ω_{1} the horizontal component of Ω and let

$$
\Lambda=\left\{(x, t) \in \Omega_{1}: u \equiv 0 \quad \text { in a neighborhood of } \quad(x, t)\right\} .
$$

Let $Q \in \Omega_{1}$ arbitrary. Choose $P \in \Lambda$ and let Γ be a continuous curve contained in Ω_{1} joining P to Q, parametrized by a continuous function $f:[0,1] \rightarrow \Omega_{1}$ with $f(0)=P$ and $f(1)=Q$. Since $P \in \Lambda$, there exists $r>0$ such that

$$
\begin{equation*}
u \equiv 0 \quad \text { in } \quad B_{r}(P) . \tag{3.3}
\end{equation*}
$$

Taking $0<r_{0}<\min \left\{r, \operatorname{dist}\left(\Gamma, \partial \Omega_{1}\right)\right\}$, where $\partial \Omega_{1}$ denotes the boundary of Ω_{1}, we have that

$$
B_{r_{0}}(P) \subset \Lambda
$$

Now, if $r_{1}<\frac{r_{0}}{4}$ we see that

$$
\begin{equation*}
B_{2 r_{1}}(f(s)) \subset \Omega_{1}, \quad \text { for all } s \in[0,1] ; \tag{3.4}
\end{equation*}
$$

in fact, if $w \in B_{2 r_{1}}(f(s))$ and $w \notin \Omega_{1}$ then

$$
\|w-f(s)\|<2 r_{1}<r_{0}<\operatorname{dist}\left(\Gamma, \partial \Omega_{1}\right) \leq\|w-f(s)\|,
$$

which is a contradiction.
Next, let

$$
\Lambda_{1}=\left\{(x, t) \in \Lambda: u \equiv 0 \quad \text { in } \quad B_{r_{1}}(x, t) \cap \Omega_{1}\right\}
$$

and

$$
S=\left\{0 \leq \ell \leq 1: f(s) \in \Lambda_{1} \quad \text { whenever } \quad 0 \leq s \leq \ell\right\}, \quad \ell_{0}=\sup S
$$

We will prove that $f\left(\ell_{0}\right) \in \Lambda_{1}$. If $w \in B_{r_{1}}\left(f\left(\ell_{0}\right)\right)$ and $r_{2}=\left\|w-f\left(\ell_{0}\right)\right\|$ then there exists $0<\delta<\ell_{0}$ such that $\left\|f\left(\ell_{0}\right)-f\left(\ell_{0}-\delta\right)\right\|<r_{1}-r_{2}$. Therefore

$$
\left\|w-f\left(\ell_{0}-\delta\right)\right\| \leq\left\|w-f\left(\ell_{0}\right)\right\|+\left\|f\left(\ell_{0}\right)-f\left(\ell_{0}-\delta\right)\right\|<r_{1}
$$

and so $w \in B_{r_{1}}\left(f\left(\ell_{0}-\delta\right)\right)$. Now, from the definition of ℓ_{0} there exists $\ell_{\delta} \in S$ such that $\ell_{0}-\delta<$ $\ell_{\delta} \leq \ell_{0}$, what implies $f\left(\ell_{0}-\delta\right) \in \Lambda_{1}$. Then, using (3.4) we see that

$$
\begin{equation*}
u \equiv 0 \quad \text { in } \quad B_{r_{1}}\left(f\left(\ell_{0}-\delta\right)\right) \cap \Omega_{1}=B_{r_{1}}\left(f\left(\ell_{0}-\delta\right)\right) \tag{3.5}
\end{equation*}
$$

Consequently we obtain that $u(w)=0$ and then

$$
\begin{equation*}
u \equiv 0 \quad \text { in } \quad B_{r_{1}}\left(f\left(\ell_{0}\right)\right) . \tag{3.6}
\end{equation*}
$$

Hence, we have showed $f\left(\ell_{0}\right) \in \Lambda_{1}$.
If $\ell_{0}=1$ then from previous analysis we have that $Q=f(1) \in \Lambda_{1} \subset \Lambda$. Thus, since Q was arbitrarily chosen we obtain that $u \equiv 0$ in Ω_{1}, which proves Theorem 3.2. Then to finish the proof of Theorem 3.2 remains to prove that $\ell_{0}=1$. In fact, let us suppose that $\ell_{0}<1$ and let

$$
G=\left\{Y \in \Omega_{1}:\left\|Y-f\left(\ell_{0}\right)\right\|=r_{1}\right\} .
$$

For $w=\left(x_{1}, t_{1}\right) \in G$ fixed, we consider the change of variable $(x, t) \rightarrow(X, T)$ where

$$
\begin{aligned}
& X=x-x_{1} \\
& T=t-t_{1}
\end{aligned}
$$

Notice that $(0,0) \in G^{*}=\left\{Y=(X, T):\left\|Y-\left(f\left(\ell_{0}\right)-w\right)\right\|=r_{1}\right\}$. Moreover, from (3.6) we see that

$$
u(X, T)=0, \quad(X, T) \in B_{r_{1}}\left(f\left(\ell_{0}\right)-w\right)
$$

So that, by using Corollary 3.1, there exists $r_{w}^{*}>0$ such that

$$
u(X, T)=0, \quad(X, T) \in B_{r_{w}^{*}}(0,0)
$$

Returning to the original variables we have that for each $w \in G$ there exists $r_{w}^{*}>0$ such that

$$
u \equiv 0 \quad \text { in } \quad B_{r_{w}^{*}}(w) .
$$

Then, using (3.6) and the compactness of G, we have that there is $\epsilon_{1}>0$ such that

$$
\begin{equation*}
u \equiv 0 \quad \text { in } \quad B_{r_{1}+\epsilon_{1}}\left(f\left(\ell_{0}\right)\right) . \tag{3.7}
\end{equation*}
$$

Now, we note that there exists $0<\delta_{1}<1-\ell_{0}$ such that if $w \in B_{r_{1}}\left(f\left(\ell_{0}+\delta_{1}\right)\right)$ then

$$
\left\|w-f\left(\ell_{0}\right)\right\| \leq\left\|w-f\left(\ell_{0}+\delta_{1}\right)\right\|+\left\|f\left(\ell_{0}+\delta_{1}\right)-f\left(\ell_{0}\right)\right\|<r_{1}+\epsilon_{1} .
$$

Thus, $w \in B_{r_{1}+\epsilon_{1}}\left(f\left(\ell_{0}\right)\right)$ and so $B_{r_{1}}\left(f\left(\ell_{0}+\delta_{1}\right)\right) \subset B_{r_{1}+\epsilon_{1}}\left(f\left(\ell_{0}\right)\right)$. Therefore, using (3.7) we have that $u \equiv 0$ in $B_{r_{1}}\left(f\left(\ell_{0}+\delta_{1}\right)\right)$. Consequently $f\left(\ell_{0}+\delta_{1}\right) \in \Lambda_{1}$, which contradicts the definition of ℓ_{0}. So, $\ell_{0}=1$ and the proof of Theorem 3.2 is complete.

Acknowledgments

R. Córdoba was supported by University of Nariño (Colombia) and Anyi D. Corredor was supported by University of Cauca (Colombia).

References

[1] J. Bourgain, On the compactness of the support of solutions of dispersive equations, Internat. Math. Res. Notices, 5(9) (1997), 437-447.
[2] E. Bustamante and P. Isaza and J. Mejía, On the support of solutions to the ZakharovKuznetsov, J. Diff. Eq., 251 (2011), 2728-2736.
[3] E. Bustamante and P. Isaza and J. Mejía, On uniqueness properties of solutions of the Zakharov-Kuznetsov, J. Funct. Anal., 264 (2013), 2529-2549.
[4] X. Carvajal and M. Panthee, Unique continuation property for a higher order nonlinear Schrödinger equation, J. Math. Anal. Appl., 303 (2005), 188-207.
[5] X. Carvajal and M. Panthee, On uniqueness of solution for a nonlinear Schrödinger-Airy equation, Nonlinear Analysis: Theory, Methods and Applications, 64(1) (2006), 146-158.
[6] L. Escauriaza and C. Kenig and G. Ponce and L. Vega, On uniqueness properties of solutions of the k-generalized KdV equations, J. Funct. Anal., 244(2) (2007), 504-535.
[7] R. J. Iório Jr., Unique continuation principles for the Benjamin-Ono equation, Differential Integral Equations, 16(11) (2003), 1281-1291.
[8] R. J. Iório Jr., Unique Continuation Principles for Some Equations of Benjamin-Ono Type, Nonlinear Equations: Methods, Models and Applications, 54 (2003), 163-179.
[9] V. Isakov, Inverse problems for partial differential equations, Appal. Math. Sci., 1997.
[10] C. Kenig and G. Ponce and L. Vega, On unique continuation for nonlinear Schrödinger equation, Comm. Pure Appl. Math., 56 (2003), 1247-1262.
[11] C. Kenig and G. Ponce and L. Vega, On the support of solutions to the generalized KdV equation, Ann. Inst. H. Poincaré Anal.Non. Linéarire, 19(2) (2002), 191-208.
[12] J. Lions, Exact controllability, stabilization and perturbations for distributed systems, SIAM Reviews, 30(1) (1988), 1-68.
[13] M. Panthee, Unique continuation property for the Kadomtsev-Petviashvili (KP-II) equation, Electronic Journal of Differential Equations, 59 (2005), 1-12.
[14] P. Rosenau, Dynamics of dense discrete systems, Prog. Theoret. Phys., 79 (1988), 1028-1042.
[15] J. Saut and B. Scheurer, Unique continuation for some evolution equations, J. Diff. Equations, 66 (1987), 118-139.
[16] Y. Shang, Unique continuation for the symmetric regularized long wave equation, Mathematical Methods in Applied Sciences, 30 (2007), 375-388.
[17] F. Treves, Linear Partial Differential Equations with Constant Coefficients, Gordon and Breach, N. York, London, Paris, 1966.
[18] S. Wang and G. Xu, The Cauchy problem for the Rosenau equation, Nonlinear Analysis: Theory, Methods and Applications, 71(1) (2009), 456-466.
[19] B. Zhang, Unique continuation for the Korteweg-de Vries equation, SIAM J. Anal., 23 (1992), 55-71.

Ricardo Córdoba Gómez University of Nariño (Colombia)
E-mail: rcordoba@udenar.edu.co

Anyi Daniela Corredor Imbachi University of Cauca (Colombia)
E-mail: corredorim@unicauca.edu.co

