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Unique continuation property for the Rosenau

equation
Ricardo Coérdoba and Anyi D. Corredor

Abstract. In this work, using an appropriate Carleman-type estimate, we establish
a unique continuation result for the Rosenau equation that models the dynamics of
dense discrete systems with high order effects.
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1 Introduction

To model the dynamics of dense discrete systems with high order effects, Philip Rosenau [14]
derived the high order nonlinear partial differential equation,

Ut + QUpgza + buzzzmtt — YUgxe = (f(u))a:a:’ (11)

where a > 0, b > 0, and v > 0 are constants, f(u) = —S|u[Pu with 8 > 0 and p > 0. The equation
is called Rosenau equation. When b = 0 the Rosenau equation becomes the “good” Boussinesq
equation which arises in the modeling of nonlinear strings.

S. Wang and G. Xu in [18] showed the well-posedness for the Cauchy problem associated to
the model (1.1) in the Sobolev space H*(R), with s > 1/2, where H*(R) is the usual Sobolev
space of order s defined as the completion of the Schwartz class with respect to the norm

lwll ey = I (14 I€)° D)l 2,

where w is the Fourier transform of w in the space variable 2 and € is the variable in the frequency
space related to the variable x. Specifically they proved the following result.

Theorem 1.1. Assume that s > 1/2, ¢ € H*(R), v € H*(R) and f € CN(R), where N >
max{1,s — 2} is an integer, then there exists a mazimal time Ty which depends only on ¢ and v
such that for each T < Ty, the Cauchy problem

Utt + AQUggze + buzmxmtt — YUgz = (f(u))ww’ WS R, t> O,
(1.2)
u(z,0) = p(x), w(z,0) =o¢(z), zeR,
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has a unique solution u € C*([0,T]; H*(R)). Moreover, if

sup [[lu(- t)||ars + [Jue (1) || ms] < oo,
te[0,To)

then Ty = oo.

In the present work, we will prove a unique continuation result for the Rosenau equation
(1.1) when f(u) = —Bu?*1 k € N. More precisely, we show that if u = u(x,t) is a solution of
the model (1.1) in a suitable function space, for example

we L2 (<T.T; H,o(R), w € L* (T, T; Hf, (R))

and u vanishes on an open subset 2 of R x [-T, T, then v = 0 in the horizontal component of
Q. We recall that the horizontal component 2; of an open subset 2 C R x R is defined as the
union of all segments ¢t = constant in R x R which contain a point of 2, this is,

Q1 = {(z,t) e Rx [-T,T] : 3z; € R, (z1,t) € Q}.

The unique continuation property has been intensively studied for a long time due to the
important role that plays in the applications (see V. Isakov [9] and J. L. Lions [12]). An important
work on the subject was done by J. C. Saut and B. Scheurer in [15]. They showed a unique
continuation result for a general class of dispersive equations including the well known KdV
equation,

Ug + Uy + Ugze = 0,

and various generalizations. In a similar way, Y. Shang showed in [16] a unique continuation
result for the symmetric regularized long wave equation,

U — Ugq + 5 (u2)mt — Ugzr = 0.

In the previous equations, a Carleman estimate is established to prove that if a solution
u vanishes on an open subset €2, then u = 0 in the horizontal component of ). By using the
inverse scattering transform and some results from the Hardy function theory, B. Zhang in [19]
established that that if u is a solution of the KdV equation, then it cannot have compact support
at two different moments unless it vanishes identically. In the paper [1], J. Bourgain introduced a
different approach and prove that if a solution u to the KdV equation has compact support in a
nontrivial time interval I = [ty, t2], then « = 0. His argument is based on an analytic continuation
of the Fourier transform via the Paley-Wiener Theorem and the dispersion relation of the linear
part of the equation. It also applies to higher order dispersive nonlinear models, and to higher
spatial dimensions; in particular, M. Panthee in [13] showed that if u is a smooth solution of the
Kadomtsev-Petviashvili (KP) equation,

U + Uppe + ULy + a;luyy =0,
such that, for some B > 0,
suppu(t) C [-B, B] x [-B, B] Vt € [t1,ta],
then v = 0.

More recently, C. Kenig, G. Ponce and L. Vega in [11] proposed a new method and proved
that if a sufficiently smooth solution u to a generalized KdV equation is supported in a half line
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at two different instants of time, then u = 0. Moreover, L. Escauriaza, C. Kenig, G. Ponce and
L. Vega in [6] established uniqueness properties of solutions of the k-generalized Korteweg- de
Vries equation,

g + uPuy + Ugyr =0, k€ ZT. (1.3)

They obtained sufficient conditions on the behavior of the difference u; — us of two solutions uq,
ug of (1.3) at two different times tp = 0 and ¢; = 1 which guarantee that u; = ug. This kind of
uniqueness results has been deduced under the assumption that the solutions coincide in a large
sub-domain of R at two different times. In a similar fashion, E. Bustamante, P. Isaza and J.
Mejia in [2] proved that if u is a smooth solution of the Zakharov-Kuznetsov equation,

Ut + Ugge + Ugyy + uu, = 0,
such that, for some B > 0,
supp u(ta), suppu(t;) C [-B,B] x [-B, B,

then v = 0. Moreover, in [3] it was proved that if the difference of two sufficiently smooth

3/4
solutions of the Zakharov-Kuznetsov equation decays as e=(=*+v°)"" at two different times, for
some a > 0 large enough, then both solutions coincide. More unique continuation results can be
seen in [4], [5], [7], [8], [10].

Following from close the works of Saut-Scheurer [15], we base our analysis in finding an
apppropiate Carleman-type estimate for the linear operator £ associated to the equation (1.1).
In order to do this we use a particular version of the well known Treves’ inequality. For the
operator £ we also prove that if a solution vanishes in a ball in the zt plane, which pass through
the origen, then it also vanished in a neighborhood of the origen.

The paper is organized as follows. In Section 2, using a particular version of the Treves
inequality, we establish a Carleman estimate for a differential operator £ closely related to our
problem. In Section 3, first we give some useful technical results. Later, we show the unique
continuation result for the model (1.1).

2 Carleman estimates

In this section, using a particular version of the Treves’ inequality, we establish a Carleman
estimate for the differential operator £ defined as

L= 07 + 10,0, + 2020, + b0207 + ady + 305 + fi(x,t)0, + fo(w, )02 (2.1)

In what follows we are going to use the notation D = (9,, 9;). If P = P(&1,&2) is a polynomial
in two variables, has constant coefficients and degree m, then we consider the differential operator
of order m associated to P,

P(D) =P (0,,0) = Y aaD",

lo|<m

where D = 9219% and |a| = oy + as. By definition P (&, &) = 051072 P(£4,£,) where 3 is
given by 8 = (81, 82) € N2
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Theorem 2.1. (Treves’ Inequality). Let P(D) = P (0,,0:) be a differential operator of order
m with constant coefficients. Then for all o = (a1,2) € N?, 6 >0, 7 > 0, ¥ € C5°(R?) and
W(z,t) = (x — ) + 6%t we have that

22|a|7_|a\520<2
— |P<“>(D)\1/\2e2wdxdtgC(m,a)/ |P(D)W|2e* ¥ dadt (2.2)
(e R2 R2
with
la] = log| + |az], ol = ajlas!,
and
r+ o
su , if |al <m,
C(m,a) _ p|r+o¢|§m ( a ) f | | >
0, if ol >m.
Proof. See Corollary 1 in [16]. O

We present the Carleman estimate for the differential operator L.

Theorem 2.2. Let L the differential operator defined in (2.1), where ¢1,ca,c3 are constants in
R and f1, fo € LS. (R?). Let § > 0 and

loc
Bs = {(z,t) € R? : 22 + 12 < 5%}, o(a,t) = (x —0)* + 512
Then, there exists C' > 0 such that for all ¥ € C§°(Bs) and 7 > 0 with

123w 5

8 o

2

<
6 =
T°C3

1
<77
-8

we have that

7%¢2 / | U 2e*™ dadt + 7554b? / |0,V |2e2™ dxdt + 746 b? / |02W|2e2™Y dxdt
Bs Bs Bs

<C | |LTPe*Vdudt. (2.3)
B;s

Proof. Let ¥ € C§°(Bjs). Consider the polynomial

P(£1,6) = & + c1&1&a + 2676 + bE1ES + a&l + 38
and
P(D) = P(y,0;) = 02 + ¢10,0; 4 2020, + b0*0? + ad? + ¢30°

the differential operator associated to P. Then, simple calculations show that if o = (6,0) we
have that
P (&, &) = POO(g, &) = 7203, P)(D)¥ = 720c;37,

C(6,a) = sup <r—|—a> =1.
lr+aj<6 \ @
Then, using Theorem 2.1 we see that

127_6
/ |720c3 W |2e*™ dadt
Bs

B 2
75¢3 /B(S [T 2e2™ dadt < =50
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92la] 1lo] gao

' / |P\) (D)W |2e>™ dadt
(e Bs

g/ |P(D)¥|?e®™ dxdt. (2.4)
Bs
Moreover,

PG (g, &) = 48b¢y, PB2(D)W = 48b0, U, (C(6,(3,2)) = 6.

Then, using again the Theorem 2.1 we obtain that

2107_554

254h? / 10,0 [2e* Y dxdt < / |P32)(D)W |2 dadt
B(; Bzi

<6 / | P(D) U262 dudt. (2.5)
B;s
In a similar fashion
PEA(&, &) =24b¢7,  PP?(D)W = 24607, C(6,(2,2)) = 6.

Then, we have that

287.454

4542 / |20 2> dadt < / |P22)(D)W|2e> ™V ddt
Bs Bs

< 6/ |P(D)¥|?e* ™ dxdt. (2.6)
Bs

From (2.4)-(2.6), there is C' > 0 such that

7%¢2 / | U 2e*™ dadt + 75642 / 10,0 |2e2™ dxdt + 746 b? / |02W|2e2™Y dxdt
Bs Bs Bs

<C [ |P(D)V|?e*¥dxdt. (2.7)
Bs

Now, we note that
L = 0} + c10,0; + 2050, + b0207 + ads + c305 + f1(2, )0 + fo(w, )02

implies
P(D)V = LU — (f1(2,1)0, Y + fo(z,t)02T).

Then, using the inequalities (2.5)-(2.6), we have that
| (1510 00,9 + |fafe, 020 ) ¥ o
Bs
< ||f1|\%oo(35)/ \8$‘I’|262”/’dxdt+||f2||2Lw(BS)/ |02W|2e2™Y dadt
Bs Bs
<A [ |P(D)V|?e* Y dxdt

Bs

< 2A/ (LT + | f1(2, )0, U + | fo(z, 1) 020|?) 27V dadt, (2.8)
Bs
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where ) )
_ Hf1||Loo(B5) ||f2||Loo(Bé)
76¢3 79542

A

Next, if we choose 7 > 0 large enough such that

I f2llZ e 85)

Il ey _ 1
8" 73042

<
62 —
T-Cy

1
<77
-8

then from inequality (2.8) we have that

/ (|f1(x,t)8$\11\2 + |f2(:c,t)82\11\2) 2™ dadt
Bs

1 1
<= / ‘£W|262demdt + — / (‘f1($,t)awlll|2 + ‘fg(x,t)a§\11|2) 2™ drdt
2 Bs 2 Bs

what implies

/ (1f1(2,8)0, T + | fo(2, ) 02U |?) >V dadt < / |LU|2e? ™V dadt.
Bs

Bs

Thus,

/ |P(D)¥?e®™ dxdt < 2/ (LY + | fi(2, )0, U + | fo(x, 1) 020 |?) 27V dadt
35 B§

< 4/ |LV|2e2™ dadt.
B;s

Hence, from previous inequality and (2.7) we obtain the estimate (2.3).

Remark 1. The estimate (2.3) is invariant under changes of signs of L.

Corollary 2.3. Let T > 0. Assume that in addition to the hypotheses of the Theorem 2.2 we
have that
(AS LQ(_T7 T; HISOC(R))7 ug € L2(O’T; HZQOC(R))7

and the support of u is compact contained in Bs. Then, the inequality (2.3) holds if we replace ¥
by u. Indeed,
Tﬁcg/ |u|?e?™ dxdt + 56 [ |Opul?e* Vdxdt + 7'454b2/ |0%u|?e2™ dadt
Bs

Bs Bs

<C |Cul?e*™ dadt. (2.10)
Bs

Proof. Let {p}eso be a regularizing sequence (in two variables) and consider u. = p. * u where
* denotes the usual convolution. Then we have that u. € C§°(Bjs) and the inequality (2.3) folds
for u., that is

70c [ |pe * u?e® ™V dxdt + 70540 / 102 (pe % w)|e* ™ dudt
Bs Bs
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+ 7'464112/ |02 (pe * u)[2e*™Vdxdt < C |Luc | dadt. (2.11)
Bs Bs

Now, for n =0, 1,2 we have that

107 (pe  w)e™ — Opue™ | 12(5s) = ll(pe  Fu)e™ — Fue™ | ra(m,)
< C|0 (pe * ) — O ullL2(Bs) = 0,

where C' is a positive constant depending only on 7 and 4. Similarly we have that
/ (|£u5\2 e™ — | Lul? e”p)dxdt —0, as e€—0T,
Bs

which allows us to pass to the limit in (2.11) to conclude the proof of Corollary 2.3.

3 Unique continuation

In this section we will prove the unique continuation result for the Rosenau equation (1.1). Before
we do the proof, we establish the following results.

Lemma 3.1. Let T > 0 and fi, fo € LYS.(R x (=T,T)). Let u with
u € L2(—T,T; HZGOC(R))7 up € L2(_T7T; H?OC(R))
be a solution of Lu=0 in R x (=T, T) where L is the differential operator defined in (2.1). Let
- u if t>0
U=
0 if t<O.

Suppose that © = 0 in the region {(x,t) : © < t} intercepted with a neighborhood of (0,0). Then
there exists a neighborhood Oy of (0,0) (in the plane xt) such that w =0 in O;.

Proof. By hypotheses there is 0 < § < 1 such that © =0 in Rs = R; U Ry, where
Ry ={(x,t) : 2 <t} N Bs, Ro={(x,t): t<0}NBs, Bs={(w,t): 2>+t <5}
Next, consider x € C§°(Bs) such that x =1 in a neighborhood O of (0,0) and define
U = yu.
Then we have that
Ve L*(-T,T; Hp,(R), ¥, € L*(=T,T; Hp,,.(R)),

and
supp ¥ C Bs.

By using the definition of x, we note that LU = 0 in O. Thus, using the Corollary 2.3, we
have for ¥ (x,t) = (z — §)% + 6%t? and 7 > 0 large enough that

7%¢3 / [T 2e* ™ dadt + 755402 / |0, V|22 ™ dadt 4+ 716 b? / |20 |22 dxdt
Bs Bs Bs
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<C | |LY]2e™Vdxdt = C |LT|2e2™ dadt. (3.1)
Bs Bs\O

Now, using again the definition of y and the fact that u = 0 in Rs, we see that

suppW® C D, suppLY C DN (Bs\O), D={(z,t): 0<t<z<i<l}.
It follows that if (x,t) # (0,0) and (z,t) € D then

P(x,t) = (. — 6)% + 02> < (t — 8)2 + 622 = t2(1 + 62) — 2t0 + 6% < 6%
Thus, there exists 0 < € < §2 such that
Y(x,t) < 6% —€, (r,t)€eDN(Bs\O).
Moreover, since 1(0,0) = 62, we can choose O; C O a neighborhood of (0,0) such that
Y(x,t) > 6% —¢€, (z,t) € O.

From the above construction and the inequality (3.1) we have that there exists C1 > 0 such that
76e27(8" =€) / |U|?dadt < 7'6/ |U|2e2 Y dadt
Ol Ol
< 76/ | U 2> drdt
Bs
< / |L|?e* ™ dadt
B(;\O

< ¥ (579 / L2 dadt.
Bs\O

Therefore
2 Gy 2
|| *dzdt < = |L¥|“dxdt.
O T JBs\O

Then, passing to the limit as 7 — 400, we have that ¥ = 0 in O;. Since u = ¥ in O and O; C O,
we see that ©w = 0 in O;.

O

Similarly we can also show the following result.

Lemma 3.2. Let T > 0 and fi, fo € L{S.(R x (=T,T)). Let u with

loc
we L*(~T,T; HS (R)), wu; € L*(=T,T; HE . (R))

be a solution of Lu =0 in R x (=T,T) where L is the differential operator defined in (2.1). Let

N {0 if t>0
u

“u i t<o.

Suppose that uw = 0 in the region {(z,t) : x < —t} intercepted with a neighborhood of (0,0). Then
there exists a neighborhood Oy of (0,0) (in the plane xt) such that @ =0 in Oa.
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Corollary 3.1. Let T > 0 and Fy, Fy € LS (R x (=T,T)). Let u with
we I3 (-T,T HE, (R), w € L3(~T,T; 2, (R))
be a solution in R x (=T,T) of the equation
Utt + QUzgzy + DUggrare + F1(2, 0)uy + Fo(x, t)uz, = 0.

Let v be a circumference passing through the origin (0,0). Suppose that w = 0 in the interior
of the circle (with boundary ~) in a neighborhood of (0,0). Then, there exists a neighborhood of
(0,0) where u = 0.

Proof. Let us assume that the circumference (a piece of it) ~ is given by x = ¢(¢) with ¢”(¢) < 0 in
a neighborhood of (0,0). By using the hypotheses, we have that « = 0 in the region {(z,t) :
g(t)} intercepted with a neighborhood of (0,0). Then, we can see that there exists w € R\ {0 1}
such that v = 0 in a neighborhood of (0,0) in the region {(x,¢) : © < h(t)} where

wt if t>0
h(t) = =
®) { Ly if ¢t<0.

Now, we consider the following change of variables (z,t) — (X, T) with

X =x—h(t) + |t
T=t.

Notice that in the new variables, if ' > 0 then the function u = u(X,T') is a solution of

2u 4 c10x Oru + c20% 0pu + b0 0% + adu + c30%u + f1(X, T)0xu + fo( X, T)0%u = 0
with
c1=2(1—-w), ca=bey, c3=b(l —w)?, fi=F, fo=(1—-w)?+ F.
Then, u = 0 in the region {(X,T) : X < T, T > 0} intercepted with a neighborhood of (0, 0)

and u satisfies
Lu=0 if T >0,

where
L= 8% + c10x0r + 628§(8T + b8§(8% + a@éﬂ + 03(9% + (X, T)0x + f2(X, T)a§(.

So, using the Lemma 3.1 with the previous differential operator £, we obtain that there exists a
neighborhood O; of (0,0) in the plane XT where u = 0.

In a similar fashion, © = 0 in the region {(X,T) : X < =T, T < 0} intercepted with a
neighborhood of (0,0) and u satisfies

Lu=0 if T<O0,

1 1 2
01:2<—1),62:b81,63=b(—1> s
w w

1 2
fi=F, fo= (w_1> + Fy.

Then, from Lemma 3.2 we have that there exists a neighborhood Oz of (0,0,) in the plane XT
where v = 0. Thus, returning to the original variables (z,¢) we have the result.

where

and

O
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Now we have the main result on the unique continuation property for the equation (1.1).
Theorem 3.2. Let T > 0 and u with
we L*(-T,T;H (R)), wu, € L*(—=T,T; HZ.(R))

be a solution in R x (=T, T) of the Rosenau equation (1.1). If u = 0 in an open subset  C
R x (=T,T), then u =0 in the horizontal component of ).

Proof. By defining the functions
Fi(z,t) = 2k(2k + 1) pu®* "Tu,, Fy(z,t) = —y+ 2k +1)Bu?*, B,v>0, keN,
the Rosenau equation (1.1) takes the form
Ut + QUzgrs + Dgrrare + F1(2,0)uy + Fo(x, t) g, = 0, (3.2)
with Fy, F» € L$S (R x (=T,T)). Then, we will show the result for model (3.2).
Denote by €27 the horizontal component of 2 and let
A={(z,t) €Q; : =0 in aneighborhood of (z,?)}.

Let @ € Q1 arbitrary. Choose P € A and let " be a continuous curve contained in 2; joining P
to @, parametrized by a continuous function f : [0,1] — 27 with f(0) = P and f(1) = @. Since
P € A, there exists r > 0 such that

u=0 in B.(P). (3.3)
Taking 0 < rg < min{r, dist(T',0Q)}, where 9Q; denotes the boundary of €1, we have that
B,,(P) C A.

Now, if 71 < 7 we see that

B, (f(s)) € 1, forall s €0,1]; (3.4)
in fact, if w € Ba,, (f(s)) and w ¢ Q; then

lw— f(s)|l < 2r1 < 1o < dist(T,001) < |lw— f(s)l,

which is a contradiction.

Next, let
A ={(x,t)eA:u=0 in B, (x,t)NQ}

and
S={0<¢<1: f(s) €Ay whenever 0<s</}, {y=sups.

We will prove that f(y) € A1. If w € By, (f(£p)) and o = |Jw— f(€o)|| then there exists 0 < § < &g
such that || f(¢y) — f(lo — O)|| < r1 — ra. Therefore

[w— f(lo—0)|| < llw— f(lo)|l + [|f(£o) — f(lo —0)|| < 71,
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and so w € B, (f(¢y — ¢)). Now, from the definition of ¢y there exists {5 € S such that £y — <
L5 < ly, what implies f(fo — ) € Ay. Then, using (3.4) we see that

w=0 in B, (f(lo—9) N = B (f(to - 9)). (3.5)
Consequently we obtain that w(w) = 0 and then
u=0 in B, (f(%)). (3.6)
Hence, we have showed f({y) € A;.

If 4y = 1 then from previous analysis we have that @ = f(1) € Ay C A. Thus, since Q) was
arbitrarily chosen we obtain that v = 0 in €y, which proves Theorem 3.2. Then to finish the
proof of Theorem 3.2 remains to prove that £o = 1. In fact, let us suppose that ¢y < 1 and let

G={Ye :|Y - fl)| =r}.
For w = (z1,%1) € G fixed, we consider the change of variable (z,t) — (X,T) where

X=x—ux,
T=t—t.
Notice that (0,0) € G* ={Y = (X,T) : |Y — (f(¢p) — w)|| = r1}. Moreover, from (3.6) we see

that
w(X,T)=0, (X,T)€ B, (f{ty)—w).

So that, by using Corollary 3.1, there exists r, > 0 such that
uw(X,T)=0, (X,T)¢€ B,(0,0).
Returning to the original variables we have that for each w € G there exists r}, > 0 such that
u=0 in B (w).
Then, using (3.6) and the compactness of G, we have that there is ¢; > 0 such that
u=0 in Bp i (f)). (3.7)
Now, we note that there exists 0 < d; < 1 — £y such that if w € B, (f(o + 61)) then
o — £ < w = (€ + 1)l + 1 £(€o + 61) — F(Eo)I| < 71 + 1.

Thus, w € By, 4, (f(4o)) and so By, (f(€o+ 01)) C Bryte, (f(€o)). Therefore, using (3.7) we have
that w =0 in B,, (f(¢o + 61)). Consequently f(¢o+ 1) € Ay, which contradicts the definition of
ly. So, £y = 1 and the proof of Theorem 3.2 is complete.

O
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