

Ricardo Córdoba and Anyi D. Corredor

Abstract. In this work, using an appropriate Carleman-type estimate, we establish a unique continuation result for the Rosenau equation that models the dynamics of dense discrete systems with high order effects.

Keywords. Rosenau equation, Carleman estimates, UCP, Treve's inequality

1 Introduction

To model the dynamics of dense discrete systems with high order effects, Philip Rosenau [\[14\]](#page-11-0) derived the high order nonlinear partial differential equation,

$$
u_{tt} + a u_{xxxx} + b u_{xxxxtt} - \gamma u_{xx} = (f(u))_{xx}, \qquad (1.1)
$$

 $\ddot{\mathbf{v}}$ \leq $\sqrt{2}$

where $a > 0$, $b > 0$, and $\gamma > 0$ are constants, $f(u) = -\beta |u|^p u$ with $\beta > 0$ and $p > 0$. The equation is called Rosenau equation. When $b = 0$ the Rosenau equation becomes the "good" Boussinesq equation which arises in the modeling of nonlinear strings.

S. Wang and G. Xu in [\[18\]](#page-11-1) showed the well-posedness for the Cauchy problem associated to the model [\(1.1\)](#page-0-0) in the Sobolev space $H^s(\mathbb{R})$, with $s > 1/2$, where $H^s(\mathbb{R})$ is the usual Sobolev space of order s defined as the completion of the Schwartz class with respect to the norm

$$
||w||_{H^{s}(\mathbb{R})} = || (1+|\xi|)^{s} \widehat{w}(\xi)||_{L_{\xi}^{2}},
$$

where \hat{w} is the Fourier transform of w in the space variable x and ξ is the variable in the frequency space related to the variable x. Specifically they proved the following result.

Theorem 1.1. Assume that $s > 1/2$, $\varphi \in H^s(\mathbb{R})$, $\psi \in H^s(\mathbb{R})$ and $f \in C^N(\mathbb{R})$, where $N \geq$ $\max\{1, s-2\}$ is an integer, then there exists a maximal time T_0 which depends only on φ and ψ such that for each $T < T_0$, the Cauchy problem

$$
\begin{cases}\nu_{tt} + au_{xxxx} + bu_{xxxxtt} - \gamma u_{xx} = (f(u))_{xx}, & x \in \mathbb{R}, t > 0, \\
u(x, 0) = \varphi(x), & u_t(x, 0) = \psi(x), & x \in \mathbb{R},\n\end{cases}
$$
\n(1.2)

Corresponding author: Ricardo Córdoba Gómez.

Received date: January 26, 2024; Published online: March 20, 2024. 2010 Mathematics Subject Classification. 58F15, 58F17, 53C35.

has a unique solution $u \in C^1([0,T]; H^s(\mathbb{R}))$. Moreover, if

$$
\sup_{t\in[0,T_0)}\left[\|u(\cdot,t)\|_{H^s}+\|u_t(\cdot,t)\|_{H^s}\right]<\infty,
$$

then $T_0 = \infty$.

In the present work, we will prove a unique continuation result for the Rosenau equation [\(1.1\)](#page-0-0) when $f(u) = -\beta u^{2k+1}$, $k \in \mathbb{N}$. More precisely, we show that if $u = u(x, t)$ is a solution of the model (1.1) in a suitable function space, for example

$$
u \in L^2(-T, T; H^6_{loc}(\mathbb{R})), \quad u_t \in L^2(-T, T; H^2_{loc}(\mathbb{R}))
$$

and u vanishes on an open subset Ω of $\mathbb{R} \times [-T, T]$, then $u \equiv 0$ in the horizontal component of $Ω$. We recall that the horizontal component $Ω_1$ of an open subset $Ω ⊆ ℝ × ℝ$ is defined as the union of all segments $t = constant$ in $\mathbb{R} \times \mathbb{R}$ which contain a point of Ω , this is,

$$
\Omega_1 = \big\{ (x, t) \in \mathbb{R} \times [-T, T] : \exists x_1 \in \mathbb{R}, \ (x_1, t) \in \Omega \big\}.
$$

The unique continuation property has been intensively studied for a long time due to the important role that plays in the applications (see V. Isakov $[9]$ and J. L. Lions $[12]$). An important work on the subject was done by J. C. Saut and B. Scheurer in [\[15\]](#page-11-4). They showed a unique continuation result for a general class of dispersive equations including the well known KdV equation,

$$
u_t + uu_x + u_{xxx} = 0,
$$

and various generalizations. In a similar way, Y. Shang showed in [\[16\]](#page-11-5) a unique continuation result for the symmetric regularized long wave equation,

$$
u_{tt} - u_{xx} + \frac{1}{2} (u^2)_{xt} - u_{xxtt} = 0.
$$

In the previous equations, a Carleman estimate is established to prove that if a solution u vanishes on an open subset Ω , then $u \equiv 0$ in the horizontal component of Ω . By using the inverse scattering transform and some results from the Hardy function theory, B. Zhang in [\[19\]](#page-12-0) established that that if u is a solution of the KdV equation, then it cannot have compact support at two different moments unless it vanishes identically. In the paper [\[1\]](#page-11-6), J. Bourgain introduced a different approach and prove that if a solution u to the KdV equation has compact support in a nontrivial time interval $I = [t_1, t_2]$, then $u \equiv 0$. His argument is based on an analytic continuation of the Fourier transform via the Paley-Wiener Theorem and the dispersion relation of the linear part of the equation. It also applies to higher order dispersive nonlinear models, and to higher spatial dimensions; in particular, M. Panthee in $[13]$ showed that if u is a smooth solution of the Kadomtsev-Petviashvili (KP) equation,

$$
u_t + u_{xxx} + uu_x + \partial_x^{-1} u_{yy} = 0,
$$

such that, for some $B > 0$,

$$
supp u(t) \subset [-B, B] \times [-B, B] \quad \forall t \in [t_1, t_2],
$$

then $u \equiv 0$.

More recently, C. Kenig, G. Ponce and L. Vega in [\[11\]](#page-11-8) proposed a new method and proved that if a sufficiently smooth solution u to a generalized KdV equation is supported in a half line at two different instants of time, then $u \equiv 0$. Moreover, L. Escauriaza, C. Kenig, G. Ponce and L. Vega in [\[6\]](#page-11-9) established uniqueness properties of solutions of the k-generalized Korteweg- de Vries equation,

$$
u_t + u^k u_x + u_{xxx} = 0, \quad k \in \mathbb{Z}^+.
$$
 (1.3)

They obtained sufficient conditions on the behavior of the difference $u_1 - u_2$ of two solutions u_1 , u_2 of [\(1.3\)](#page-2-0) at two different times $t_0 = 0$ and $t_1 = 1$ which guarantee that $u_1 \equiv u_2$. This kind of uniqueness results has been deduced under the assumption that the solutions coincide in a large sub-domain of R at two different times. In a similar fashion, E. Bustamante, P. Isaza and J. Mejía in $[2]$ proved that if u is a smooth solution of the Zakharov-Kuznetsov equation,

$$
u_t + u_{xxx} + u_{xyy} + uu_x = 0,
$$

such that, for some $B > 0$,

$$
supp u(t_2), supp u(t_1) \subset [-B, B] \times [-B, B],
$$

then $u \equiv 0$. Moreover, in [\[3\]](#page-11-11) it was proved that if the difference of two sufficiently smooth solutions of the Zakharov-Kuznetsov equation decays as $e^{-a(x^2+y^2)^{3/4}}$ at two different times, for some $a > 0$ large enough, then both solutions coincide. More unique continuation results can be seen in [\[4\]](#page-11-12), [\[5\]](#page-11-13), [\[7\]](#page-11-14), [\[8\]](#page-11-15), [\[10\]](#page-11-16).

Following from close the works of Saut-Scheurer [\[15\]](#page-11-4), we base our analysis in finding an apppropiate Carleman-type estimate for the linear operator $\mathcal L$ associated to the equation [\(1.1\)](#page-0-0). In order to do this we use a particular version of the well known Treves' inequality. For the operator $\mathcal L$ we also prove that if a solution vanishes in a ball in the xt plane, which pass through the origen, then it also vanished in a neighborhood of the origen.

The paper is organized as follows. In Section [2,](#page-2-1) using a particular version of the Treves inequality, we establish a Carleman estimate for a differential operator $\mathcal L$ closely related to our problem. In Section [3,](#page-6-0) first we give some useful technical results. Later, we show the unique continuation result for the model [\(1.1\)](#page-0-0).

2 Carleman estimates

In this section, using a particular version of the Treves' inequality, we establish a Carleman estimate for the differential operator $\mathcal L$ defined as

$$
\mathcal{L} := \partial_t^2 + c_1 \partial_x \partial_t + c_2 \partial_x^5 \partial_t + b \partial_x^4 \partial_t^2 + a \partial_x^4 + c_3 \partial_x^6 + f_1(x, t) \partial_x + f_2(x, t) \partial_x^2.
$$
 (2.1)

In what follows we are going to use the notation $D = (\partial_x, \partial_t)$. If $P = P(\xi_1, \xi_2)$ is a polynomial in two variables, has constant coefficients and degree m , then we consider the differential operator of order m associated to P ,

$$
P(D) = P(\partial_x, \partial_t) = \sum_{|\alpha| \le m} a_{\alpha} D^{\alpha},
$$

where $D^{\alpha} = \partial_x^{\alpha_1} \partial_t^{\alpha_2}$ and $|\alpha| = \alpha_1 + \alpha_2$. By definition $P^{(\beta)}(\xi_1, \xi_2) = \partial_x^{\beta_1} \partial_t^{\beta_2} P(\xi_1, \xi_2)$ where β is given by $\beta = (\beta_1, \beta_2) \in \mathbb{N}^2$.

Theorem 2.1. (Treves' Inequality). Let $P(D) = P(\partial_x, \partial_t)$ be a differential operator of order m with constant coefficients. Then for all $\alpha = (\alpha_1, \alpha_2) \in \mathbb{N}^2$, $\delta > 0$, $\tau > 0$, $\Psi \in C_0^{\infty}(\mathbb{R}^2)$ and $\psi(x,t) = (x - \delta)^2 + \delta^2 t^2$ we have that

$$
\frac{2^{2|\alpha|} \tau^{|\alpha|} \delta^{2\alpha_2}}{\alpha!} \int_{\mathbb{R}^2} |P^{(\alpha)}(D)\Psi|^2 e^{2\tau\psi} dx dt \le C(m,\alpha) \int_{\mathbb{R}^2} |P(D)\Psi|^2 e^{2\tau\psi} dx dt \tag{2.2}
$$

with

$$
|\alpha| = |\alpha_1| + |\alpha_2|, \quad \alpha! = \alpha_1! \alpha_2!,
$$

and

$$
C(m, \alpha) = \begin{cases} \sup_{|r+\alpha| \le m} \binom{r+\alpha}{\alpha}, & \text{if } |\alpha| \le m, \\ 0, & \text{if } |\alpha| > m. \end{cases}
$$

Proof. See Corollary 1 in [\[16\]](#page-11-5).

We present the Carleman estimate for the differential operator \mathcal{L} .

Theorem 2.2. Let \mathcal{L} the differential operator defined in [\(2.1\)](#page-2-2), where c_1, c_2, c_3 are constants in \mathbb{R} and $f_1, f_2 \in L^{\infty}_{loc}(\mathbb{R}^2)$. Let $\delta > 0$ and

$$
B_{\delta} := \{ (x, t) \in \mathbb{R}^2 : x^2 + t^2 < \delta^2 \}, \quad \psi(x, t) = (x - \delta)^2 + \delta^2 t^2.
$$

Then, there exists $C > 0$ such that for all $\Psi \in C_0^{\infty}(B_{\delta})$ and $\tau > 0$ with

$$
\frac{\|f_1\|_{L^{\infty}(B_\delta)}^2}{\tau^6 c_3^2} \leq \frac{1}{8}, \quad \frac{\|f_2\|_{L^{\infty}(B_\delta)}^2}{\tau^5 \delta^4 b^2} \leq \frac{1}{8},
$$

we have that

$$
\tau^6 c_3^2 \int_{B_\delta} |\Psi|^2 e^{2\tau\psi} dxdt + \tau^5 \delta^4 b^2 \int_{B_\delta} |\partial_x \Psi|^2 e^{2\tau\psi} dxdt + \tau^4 \delta^4 b^2 \int_{B_\delta} |\partial_x^2 \Psi|^2 e^{2\tau\psi} dxdt
$$

$$
\leq C \int_{B_\delta} |\mathcal{L}\Psi|^2 e^{2\tau\psi} dxdt. \tag{2.3}
$$

Proof. Let $\Psi \in C_0^{\infty}(B_{\delta})$. Consider the polynomial

$$
P(\xi_1, \xi_2) = \xi_2^2 + c_1 \xi_1 \xi_2 + c_2 \xi_1^5 \xi_2 + b \xi_1^4 \xi_2^2 + a \xi_1^4 + c_3 \xi_1^6.
$$

and

$$
P(D) = P(\partial_x, \partial_t) = \partial_t^2 + c_1 \partial_x \partial_t + c_2 \partial_x^5 \partial_t + b \partial_x^4 \partial_t^2 + a \partial_x^4 + c_3 \partial_x^6
$$

the differential operator associated to P. Then, simple calculations show that if $\alpha = (6,0)$ we have that

$$
P^{(\alpha)}(\xi_1, \xi_2) = P^{(6,0)}(\xi_1, \xi_2) = 720c_3, \quad P^{(\alpha)}(D)\Psi = 720c_3\Psi,
$$

$$
C(6, \alpha) = \sup_{|r+\alpha| \le 6} {r+\alpha \choose \alpha} = 1.
$$

Then, using Theorem [2.1](#page-3-0) we see that

$$
\tau^6 c_3^2 \int_{B_\delta} |\Psi|^2 e^{2\tau \psi} dx dt \le \frac{2^{12} \tau^6}{720} \int_{B_\delta} |720c_3 \Psi|^2 e^{2\tau \psi} dx dt
$$

 \Box

$$
= \frac{2^{2|\alpha|} \tau^{|\alpha|} \delta^{\alpha_2}}{\alpha!} \int_{B_{\delta}} |P^{(\alpha)}(D)\Psi|^2 e^{2\tau \psi} dx dt
$$

$$
\leq \int_{B_{\delta}} |P(D)\Psi|^2 e^{2\tau \psi} dx dt.
$$
 (2.4)

Moreover,

$$
P^{(3,2)}(\xi_1, \xi_2) = 48b\xi_1
$$
, $P^{(3,2)}(D)\Psi = 48b\partial_x\Psi$, $C(6,(3,2)) = 6$.

Then, using again the Theorem [2.1](#page-3-0) we obtain that

$$
\tau^5 \delta^4 b^2 \int_{B_\delta} |\partial_x \Psi|^2 e^{2\tau \psi} dx dt \le \frac{2^{10} \tau^5 \delta^4}{12} \int_{B_\delta} |P^{(3,2)}(D) \Psi|^2 e^{2\tau \psi} dx dt
$$

$$
\le 6 \int_{B_\delta} |P(D) \Psi|^2 e^{2\tau \psi} dx dt.
$$
 (2.5)

In a similar fashion

$$
P^{(2,2)}(\xi_1, \xi_2) = 24b\xi_1^2
$$
, $P^{(2,2)}(D)\Psi = 24b\partial_x^2\Psi$, $C(6,(2,2)) = 6$.

Then, we have that

$$
\tau^4 \delta^4 b^2 \int_{B_\delta} |\partial_x^2 \Psi|^2 e^{2\tau \psi} dx dt \le \frac{2^8 \tau^4 \delta^4}{4} \int_{B_\delta} |P^{(2,2)}(D) \Psi|^2 e^{2\tau \psi} dx dt
$$

$$
\le 6 \int_{B_\delta} |P(D) \Psi|^2 e^{2\tau \psi} dx dt.
$$
 (2.6)

From $(2.4)-(2.6)$ $(2.4)-(2.6)$, there is $C > 0$ such that

$$
\tau^6 c_3^2 \int_{B_\delta} |\Psi|^2 e^{2\tau \psi} dx dt + \tau^5 \delta^4 b^2 \int_{B_\delta} |\partial_x \Psi|^2 e^{2\tau \psi} dx dt + \tau^4 \delta^4 b^2 \int_{B_\delta} |\partial_x^2 \Psi|^2 e^{2\tau \psi} dx dt
$$

$$
\leq C \int_{B_\delta} |P(D)\Psi|^2 e^{2\tau \psi} dx dt. \tag{2.7}
$$

Now, we note that

$$
\mathcal{L} = \partial_t^2 + c_1 \partial_x \partial_t + c_2 \partial_x^5 \partial_t + b \partial_x^4 \partial_t^2 + a \partial_x^4 + c_3 \partial_x^6 + f_1(x, t) \partial_x + f_2(x, t) \partial_x^2
$$

implies

$$
P(D)\Psi = \mathcal{L}\Psi - (f_1(x,t)\partial_x\Psi + f_2(x,t)\partial_x^2\Psi).
$$

Then, using the inequalities $(2.5)-(2.6)$ $(2.5)-(2.6)$, we have that

$$
\int_{B_{\delta}} \left(|f_1(x,t)\partial_x \Psi|^2 + |f_2(x,t)\partial_x^2 \Psi|^2 \right) e^{2\tau\psi} dx dt
$$
\n
$$
\leq \|f_1\|_{L^{\infty}(B_{\delta})}^2 \int_{B_{\delta}} |\partial_x \Psi|^2 e^{2\tau\psi} dx dt + \|f_2\|_{L^{\infty}(B_{\delta})}^2 \int_{B_{\delta}} |\partial_x^2 \Psi|^2 e^{2\tau\psi} dx dt
$$
\n
$$
\leq A \int_{B_{\delta}} |P(D)\Psi|^2 e^{2\tau\psi} dx dt
$$
\n
$$
\leq 2A \int_{B_{\delta}} \left(|\mathcal{L}\Psi|^2 + |f_1(x,t)\partial_x \Psi|^2 + |f_2(x,t)\partial_x^2 \Psi|^2 \right) e^{2\tau\psi} dx dt, \tag{2.8}
$$

where

$$
A = \frac{\|f_1\|_{L^{\infty}(B_{\delta})}^2}{\tau^6 c_3^2} + \frac{\|f_2\|_{L^{\infty}(B_{\delta})}^2}{\tau^5 \delta^4 b^2}
$$

Next, if we choose $\tau > 0$ large enough such that

$$
\frac{\|f_1\|_{L^{\infty}(B_\delta)}^2}{\tau^6 c_3^2} \le \frac{1}{8}, \quad \frac{\|f_2\|_{L^{\infty}(B_\delta)}^2}{\tau^5 \delta^4 b^2} \le \frac{1}{8},\tag{2.9}
$$

.

then from inequality (2.8) we have that

$$
\int_{B_{\delta}} \left(|f_1(x,t)\partial_x \Psi|^2 + |f_2(x,t)\partial_x^2 \Psi|^2 \right) e^{2\tau\psi} dxdt
$$
\n
$$
\leq \frac{1}{2} \int_{B_{\delta}} |\mathcal{L}\Psi|^2 e^{2\tau\psi} dxdt + \frac{1}{2} \int_{B_{\delta}} \left(|f_1(x,t)\partial_x \Psi|^2 + |f_2(x,t)\partial_x^2 \Psi|^2 \right) e^{2\tau\psi} dxdt
$$

what implies

$$
\int_{B_\delta} \left(|f_1(x,t)\partial_x \Psi|^2 + |f_2(x,t)\partial_x^2 \Psi|^2 \right) e^{2\tau\psi} dx dt \le \int_{B_\delta} |\mathcal{L}\Psi|^2 e^{2\tau\psi} dx dt.
$$

Thus,

$$
\int_{B_{\delta}} |P(D)\Psi|^2 e^{2\tau\psi} dx dt \le 2 \int_{B_{\delta}} \left(|\mathcal{L}\Psi|^2 + |f_1(x,t)\partial_x \Psi|^2 + |f_2(x,t)\partial_x^2 \Psi|^2 \right) e^{2\tau\psi} dx dt
$$

$$
\le 4 \int_{B_{\delta}} |\mathcal{L}\Psi|^2 e^{2\tau\psi} dx dt.
$$

Hence, from previous inequality and (2.7) we obtain the estimate (2.3) .

Remark 1. The estimate (2.3) is invariant under changes of signs of \mathcal{L} .

Corollary 2.3. Let $T > 0$. Assume that in addition to the hypotheses of the Theorem [2.2](#page-3-2) we have that

$$
u \in L^2(-T, T; H^6_{loc}(\mathbb{R})), \quad u_t \in L^2(0, T; H^2_{loc}(\mathbb{R})),
$$

and the support of u is compact contained in B_{δ} . Then, the inequality [\(2.3\)](#page-3-1) holds if we replace Ψ by u. Indeed,

$$
\tau^6 c_3^2 \int_{B_\delta} |u|^2 e^{2\tau \psi} dx dt + \tau^5 \delta^4 b^2 \int_{B_\delta} |\partial_x u|^2 e^{2\tau \psi} dx dt + \tau^4 \delta^4 b^2 \int_{B_\delta} |\partial_x^2 u|^2 e^{2\tau \psi} dx dt
$$

$$
\leq C \int_{B_\delta} |\mathcal{L}u|^2 e^{2\tau \psi} dx dt.
$$
 (2.10)

Proof. Let $\{\rho_{\epsilon}\}_{{\epsilon}>0}$ be a regularizing sequence (in two variables) and consider $u_{\epsilon} = \rho_{\epsilon} * u$ where ∗ denotes the usual convolution. Then we have that $u_\epsilon \in C_0^\infty(B_\delta)$ and the inequality [\(2.3\)](#page-3-1) folds for u_{ϵ} , that is

$$
\tau^6 c_3^2 \int_{B_\delta} |\rho_\epsilon * u|^2 e^{2\tau \psi} dx dt + \tau^5 \delta^4 b^2 \int_{B_\delta} |\partial_x (\rho_\epsilon * u)|^2 e^{2\tau \psi} dx dt
$$

$$
+\tau^4\delta^4b^2\int_{B_\delta}|\partial_x^2(\rho_\epsilon*u)|^2e^{2\tau\psi}dxdt\leq C\int_{B_\delta}|\mathcal{L}u_\epsilon|^2e^{2\tau\psi}dxdt.\tag{2.11}
$$

Now, for $n = 0, 1, 2$ we have that

$$
\|\partial_x^n (\rho_\epsilon * u)e^{\tau \psi} - \partial_x^n u e^{\tau \psi}\|_{L^2(B_\delta)} = \|(\rho_\epsilon * \partial_x^n u)e^{\tau \psi} - \partial_x^n u e^{\tau \psi}\|_{L^2(B_\delta)}
$$

$$
\leq C \|\partial_x^n (\rho_\epsilon * u) - \partial_x^n u\|_{L^2(B_\delta)} \to 0,
$$

where C is a positive constant depending only on τ and δ . Similarly we have that

$$
\int_{B_{\delta}} \left(|\mathcal{L}u_{\epsilon}|^2 e^{\tau \psi} - |\mathcal{L}u|^2 e^{\tau \psi} \right) dx dt \to 0, \text{ as } \epsilon \to 0^+,
$$

which allows us to pass to the limit in (2.11) to conclude the proof of Corollary [2.3.](#page-5-0)

 \Box

3 Unique continuation

In this section we will prove the unique continuation result for the Rosenau equation (1.1) . Before we do the proof, we establish the following results.

Lemma 3.1. Let $T > 0$ and $f_1, f_2 \in L^{\infty}_{loc}(\mathbb{R} \times (-T, T))$. Let u with

$$
u \in L^2(-T, T; H^6_{loc}(\mathbb{R})), \quad u_t \in L^2(-T, T; H^2_{loc}(\mathbb{R}))
$$

be a solution of $\mathcal{L}u = 0$ in $\mathbb{R} \times (-T, T)$ where $\mathcal L$ is the differential operator defined in [\(2.1\)](#page-2-2). Let

$$
\widetilde{u} = \begin{cases} u & \text{if} \quad t \ge 0 \\ 0 & \text{if} \quad t < 0. \end{cases}
$$

Suppose that $\tilde{u} \equiv 0$ in the region $\{(x, t) : x < t\}$ intercepted with a neighborhood of $(0, 0)$. Then there exists a neighborhood \mathcal{O}_1 of $(0,0)$ (in the plane xt) such that $\widetilde{u} \equiv 0$ in \mathcal{O}_1 .

Proof. By hypotheses there is $0 < \delta < 1$ such that $\tilde{u} \equiv 0$ in $R_{\delta} = R_1 \cup R_2$, where

$$
R_1 = \{(x,t) : x < t\} \cap B_\delta, \quad R_2 = \{(x,t) : t < 0\} \cap B_\delta, \quad B_\delta = \{(x,t) : x^2 + t^2 < \delta^2\}.
$$

Next, consider $\chi \in C_0^{\infty}(B_\delta)$ such that $\chi = 1$ in a neighborhood $\mathcal O$ of $(0,0)$ and define

$$
\Psi:=\chi\widetilde{u}.
$$

Then we have that

$$
\Psi \in L^2(-T, T; H^6_{loc}(\mathbb{R})), \quad \Psi_t \in L^2(-T, T; H^2_{loc}(\mathbb{R})),
$$

and

$$
supp \, \Psi \subset B_{\delta}.
$$

By using the definition of χ , we note that $\mathcal{L}\Psi = 0$ in \mathcal{O} . Thus, using the Corollary [2.3,](#page-5-0) we have for $\psi(x,t) = (x - \delta)^2 + \delta^2 t^2$ and $\tau > 0$ large enough that

$$
\tau^6 c_3^2 \int_{B_\delta} |\Psi|^2 e^{2\tau \psi} dxdt + \tau^5 \delta^4 b^2 \int_{B_\delta} |\partial_x \Psi|^2 e^{2\tau \psi} dxdt + \tau^4 \delta^4 b^2 \int_{B_\delta} |\partial_x^2 \Psi|^2 e^{2\tau \psi} dxdt
$$

$$
\leq C \int_{B_{\delta}} |\mathcal{L}\Psi|^2 e^{2\tau\psi} dx dt = C \int_{B_{\delta}\setminus\mathcal{O}} |\mathcal{L}\Psi|^2 e^{2\tau\psi} dx dt. \tag{3.1}
$$

Now, using again the definition of χ and the fact that $\tilde{u} \equiv 0$ in R_{δ} , we see that

$$
supp \Psi \subset D, \quad supp \mathcal{L}\Psi \subset D \cap (B_{\delta} \setminus \mathcal{O}), \quad D = \{(x, t) : 0 \le t \le x < \delta < 1\}.
$$

It follows that if $(x, t) \neq (0, 0)$ and $(x, t) \in D$ then

$$
\psi(x,t) = (x - \delta)^2 + \delta^2 t^2 \le (t - \delta)^2 + \delta^2 t^2 = t^2 (1 + \delta^2) - 2t\delta + \delta^2 < \delta^2.
$$

Thus, there exists $0 < \epsilon < \delta^2$ such that

$$
\psi(x,t) \leq \delta^2 - \epsilon, \quad (x,t) \in D \cap (B_{\delta} \setminus \mathcal{O}).
$$

Moreover, since $\psi(0,0) = \delta^2$, we can choose $\mathcal{O}_1 \subset \mathcal{O}$ a neighborhood of $(0,0)$ such that

$$
\psi(x,t) > \delta^2 - \epsilon, \quad (x,t) \in \mathcal{O}_1.
$$

From the above construction and the inequality [\(3.1\)](#page-7-0) we have that there exists $C_1 > 0$ such that

$$
\tau^6 e^{2\tau(\delta^2 - \epsilon)} \int_{\mathcal{O}_1} |\Psi|^2 dx dt \leq \tau^6 \int_{\mathcal{O}_1} |\Psi|^2 e^{2\tau \psi} dx dt
$$

$$
\leq \tau^6 \int_{B_\delta} |\Psi|^2 e^{2\tau \psi} dx dt
$$

$$
\leq C_1 \int_{B_\delta \setminus \mathcal{O}} |\mathcal{L}\Psi|^2 e^{2\tau \psi} dx dt
$$

$$
\leq C_1 e^{2\tau(\delta^2 - \epsilon)} \int_{B_\delta \setminus \mathcal{O}} |\mathcal{L}\Psi|^2 dx dt.
$$

Therefore

$$
\int_{\mathcal{O}_1} |\Psi|^2 dxdt \le \frac{C_1}{\tau^6} \int_{B_\delta \backslash \mathcal{O}} |\mathcal{L}\Psi|^2 dxdt.
$$

Then, passing to the limit as $\tau \to +\infty$, we have that $\Psi \equiv 0$ in \mathcal{O}_1 . Since $\widetilde{u} = \Psi$ in \mathcal{O} and $\mathcal{O}_1 \subset \mathcal{O}$, we see that $\widetilde{u} = 0$ in \mathcal{O}_1 .

 \Box

Similarly we can also show the following result.

Lemma 3.2. Let $T > 0$ and $f_1, f_2 \in L^{\infty}_{loc}(\mathbb{R} \times (-T, T))$. Let u with

$$
u \in L^2(-T, T; H^6_{loc}(\mathbb{R})), \quad u_t \in L^2(-T, T; H^2_{loc}(\mathbb{R}))
$$

be a solution of $\mathcal{L}u = 0$ in $\mathbb{R} \times (-T, T)$ where $\mathcal L$ is the differential operator defined in [\(2.1\)](#page-2-2). Let

$$
\widetilde{u} = \begin{cases} 0 & \text{if} \quad t \ge 0 \\ u & \text{if} \quad t < 0. \end{cases}
$$

Suppose that $\tilde{u} \equiv 0$ in the region $\{(x, t) : x < -t\}$ intercepted with a neighborhood of $(0, 0)$. Then there exists a neighborhood \mathcal{O}_2 of $(0, 0)$ (in the plane xt) such that $\widetilde{u} \equiv 0$ in \mathcal{O}_2 .

Corollary 3.1. Let $T > 0$ and $F_1, F_2 \in L^{\infty}_{loc}(\mathbb{R} \times (-T, T))$. Let u with

 $u \in L^2(-T, T; H_{loc}^6(\mathbb{R})), \quad u_t \in L^2(-T, T; H_{loc}^2(\mathbb{R}))$

be a solution in $\mathbb{R} \times (-T, T)$ of the equation

 $u_{tt} + a u_{xxxx} + b u_{xxxxtt} + F_1(x, t)u_x + F_2(x, t)u_{xx} = 0.$

Let γ be a circumference passing through the origin (0,0). Suppose that $u \equiv 0$ in the interior of the circle (with boundary γ) in a neighborhood of (0,0). Then, there exists a neighborhood of $(0, 0)$ where $u \equiv 0$.

Proof. Let us assume that the circumference (a piece of it) γ is given by $x = g(t)$ with $g''(t) < 0$ in a neighborhood of $(0, 0)$. By using the hypotheses, we have that $u \equiv 0$ in the region $\{(x, t) : x <$ $g(t)$ intercepted with a neighborhood of (0,0). Then, we can see that there exists $\omega \in \mathbb{R} \setminus \{0,1\}$ such that $u \equiv 0$ in a neighborhood of $(0,0)$ in the region $\{(x,t) : x < h(t)\}$ where

$$
h(t) = \begin{cases} \omega t & \text{if } t \ge 0\\ -\frac{1}{\omega}t & \text{if } t < 0. \end{cases}
$$

Now, we consider the following change of variables $(x, t) \rightarrow (X, T)$ with

$$
X = x - h(t) + |t|
$$

$$
T = t.
$$

Notice that in the new variables, if $T \geq 0$ then the function $u = u(X,T)$ is a solution of

$$
\partial_T^2 u + c_1 \partial_X \partial_T u + c_2 \partial_X^5 \partial_T u + b \partial_X^4 \partial_T^2 + a \partial_X^4 u + c_3 \partial_X^6 u + f_1(X, T) \partial_X u + f_2(X, T) \partial_X^2 u = 0
$$

with

$$
c_1 = 2(1 - \omega), c_2 = bc_1, c_3 = b(1 - \omega)^2, f_1 = F_1, f_2 = (1 - \omega)^2 + F_2.
$$

Then, $u \equiv 0$ in the region $\{(X,T) : X < T, T \geq 0\}$ intercepted with a neighborhood of $(0,0)$ and u satisfies

$$
\mathcal{L}u = 0 \quad \text{if} \quad T \ge 0,
$$

where

$$
\mathcal{L} = \partial_T^2 + c_1 \partial_X \partial_T + c_2 \partial_X^5 \partial_T + b \partial_X^4 \partial_T^2 + a \partial_X^4 + c_3 \partial_X^6 + f_1(X, T) \partial_X + f_2(X, T) \partial_X^2.
$$

So, using the Lemma [3.1](#page-6-2) with the previous differential operator \mathcal{L} , we obtain that there exists a neighborhood \mathcal{O}_1 of $(0, 0)$ in the plane XT where $u \equiv 0$.

In a similar fashion, $u \equiv 0$ in the region $\{(X,T) : X < -T, T < 0\}$ intercepted with a neighborhood of $(0, 0)$ and u satisfies

$$
\mathcal{L}u = 0 \quad \text{if} \quad T < 0,
$$

where

$$
c_1 = 2\left(\frac{1}{\omega} - 1\right), c_2 = bc_1, c_3 = b\left(\frac{1}{\omega} - 1\right)^2,
$$

and

$$
f_1 = F_1
$$
, $f_2 = \left(\frac{1}{\omega} - 1\right)^2 + F_2$.

Then, from Lemma [3.2](#page-7-1) we have that there exists a neighborhood \mathcal{O}_2 of $(0, 0, 0)$ in the plane XT where $u \equiv 0$. Thus, returning to the original variables (x, t) we have the result.

 \Box

Now we have the main result on the unique continuation property for the equation [\(1.1\)](#page-0-0).

Theorem 3.2. Let $T > 0$ and u with

$$
u \in L^2(-T, T; H^6_{loc}(\mathbb{R})), \quad u_t \in L^2(-T, T; H^2_{loc}(\mathbb{R}))
$$

be a solution in $\mathbb{R} \times (-T, T)$ of the Rosenau equation [\(1.1\)](#page-0-0). If $u \equiv 0$ in an open subset $\Omega \subset$ $\mathbb{R} \times (-T, T)$, then $u \equiv 0$ in the horizontal component of Ω .

Proof. By defining the functions

$$
F_1(x,t) = 2k(2k+1)\beta u^{2k-1}u_x, \quad F_2(x,t) = -\gamma + (2k+1)\beta u^{2k}, \quad \beta, \gamma > 0, \quad k \in \mathbb{N},
$$

the Rosenau equation (1.1) takes the form

$$
u_{tt} + a u_{xxxx} + b u_{xxxxtt} + F_1(x, t) u_x + F_2(x, t) u_{xx} = 0,
$$
\n(3.2)

with $F_1, F_2 \in L^{\infty}_{loc}(\mathbb{R} \times (-T, T))$. Then, we will show the result for model [\(3.2\)](#page-9-0).

Denote by Ω_1 the horizontal component of Ω and let

$$
\Lambda = \{(x, t) \in \Omega_1 : u \equiv 0 \text{ in a neighborhood of } (x, t)\}.
$$

Let $Q \in \Omega_1$ arbitrary. Choose $P \in \Lambda$ and let Γ be a continuous curve contained in Ω_1 joining P to Q, parametrized by a continuous function $f : [0,1] \to \Omega_1$ with $f(0) = P$ and $f(1) = Q$. Since $P \in \Lambda$, there exists $r > 0$ such that

$$
u \equiv 0 \quad \text{in} \quad B_r(P). \tag{3.3}
$$

Taking $0 < r_0 < \min\{r, dist(\Gamma, \partial \Omega_1)\}\$, where $\partial \Omega_1$ denotes the boundary of Ω_1 , we have that

$$
B_{r_0}(P) \subset \Lambda.
$$

Now, if $r_1 < \frac{r_0}{4}$ we see that

$$
B_{2r_1}(f(s)) \subset \Omega_1, \quad \text{ for all } s \in [0,1]; \tag{3.4}
$$

in fact, if $w \in B_{2r_1}(f(s))$ and $w \notin \Omega_1$ then

$$
||w - f(s)|| < 2r_1 < r_0 < dist(\Gamma, \partial \Omega_1) \le ||w - f(s)||,
$$

which is a contradiction.

Next, let

$$
\Lambda_1 = \{(x, t) \in \Lambda : u \equiv 0 \quad \text{in} \quad B_{r_1}(x, t) \cap \Omega_1\}
$$

and

$$
S = \{0 \le \ell \le 1 : f(s) \in \Lambda_1 \quad \text{whenever} \quad 0 \le s \le \ell\}, \quad \ell_0 = \sup S.
$$

We will prove that $f(\ell_0) \in \Lambda_1$. If $w \in B_{r_1}(f(\ell_0))$ and $r_2 = ||w - f(\ell_0)||$ then there exists $0 < \delta < \ell_0$ such that $|| f(\ell_0) - f(\ell_0 - \delta) || < r_1 - r_2$. Therefore

$$
||w - f(\ell_0 - \delta)|| \le ||w - f(\ell_0)|| + ||f(\ell_0) - f(\ell_0 - \delta)|| < r_1,
$$

and so $w \in B_{r_1}(f(\ell_0 - \delta))$. Now, from the definition of ℓ_0 there exists $\ell_{\delta} \in S$ such that $\ell_0 - \delta <$ $\ell_{\delta} \leq \ell_0$, what implies $f(\ell_0 - \delta) \in \Lambda_1$. Then, using [\(3.4\)](#page-9-1) we see that

$$
u \equiv 0 \quad \text{in} \quad B_{r_1}(f(\ell_0 - \delta)) \cap \Omega_1 = B_{r_1}(f(\ell_0 - \delta)). \tag{3.5}
$$

Consequently we obtain that $u(w) = 0$ and then

$$
u \equiv 0 \quad \text{in} \quad B_{r_1}(f(\ell_0)). \tag{3.6}
$$

Hence, we have showed $f(\ell_0) \in \Lambda_1$.

If $\ell_0 = 1$ then from previous analysis we have that $Q = f(1) \in \Lambda_1 \subset \Lambda$. Thus, since Q was arbitrarily chosen we obtain that $u \equiv 0$ in Ω_1 , which proves Theorem [3.2.](#page-8-0) Then to finish the proof of Theorem [3.2](#page-8-0) remains to prove that $\ell_0 = 1$. In fact, let us suppose that $\ell_0 < 1$ and let

$$
G = \{ Y \in \Omega_1 : ||Y - f(\ell_0)|| = r_1 \}.
$$

For $w = (x_1, t_1) \in G$ fixed, we consider the change of variable $(x, t) \to (X, T)$ where

$$
X = x - x_1,
$$

$$
T = t - t_1.
$$

Notice that $(0,0) \in G^* = \{ Y = (X,T) : ||Y - (f(\ell_0) - w)|| = r_1 \}.$ Moreover, from (3.6) we see that

$$
u(X,T) = 0, \quad (X,T) \in B_{r_1}(f(\ell_0) - w).
$$

So that, by using Corollary [3.1,](#page-8-1) there exists $r_w^* > 0$ such that

$$
u(X,T) = 0, \quad (X,T) \in B_{r_w^*}(0,0).
$$

Returning to the original variables we have that for each $w \in G$ there exists $r_w^* > 0$ such that

$$
u \equiv 0 \quad \text{in} \quad B_{r_w^*}(w).
$$

Then, using [\(3.6\)](#page-10-0) and the compactness of G, we have that there is $\epsilon_1 > 0$ such that

$$
u \equiv 0 \quad \text{in} \quad B_{r_1 + \epsilon_1}(f(\ell_0)).\tag{3.7}
$$

Now, we note that there exists $0 < \delta_1 < 1 - \ell_0$ such that if $w \in B_{r_1}(f(\ell_0 + \delta_1))$ then

$$
||w - f(\ell_0)|| \le ||w - f(\ell_0 + \delta_1)|| + ||f(\ell_0 + \delta_1) - f(\ell_0)|| < r_1 + \epsilon_1.
$$

Thus, $w \in B_{r_1+\epsilon_1}(f(\ell_0))$ and so $B_{r_1}(f(\ell_0+\delta_1)) \subset B_{r_1+\epsilon_1}(f(\ell_0))$. Therefore, using [\(3.7\)](#page-10-1) we have that $u \equiv 0$ in $B_{r_1}(f(\ell_0 + \delta_1))$. Consequently $f(\ell_0 + \delta_1) \in \Lambda_1$, which contradicts the definition of ℓ_0 . So, $\ell_0 = 1$ and the proof of Theorem [3.2](#page-8-0) is complete.

 \Box

Acknowledgments

R. Córdoba was supported by University of Nariño (Colombia) and Anyi D. Corredor was supported by University of Cauca (Colombia).

References

- [1] J. Bourgain, On the compactness of the support of solutions of dispersive equations, Internat. Math. Res. Notices, 5(9) (1997), 437–447.
- [2] E. Bustamante and P. Isaza and J. Mejía, On the support of solutions to the Zakharov-Kuznetsov, J. Diff. Eq., 251 (2011), 2728–2736.
- [3] E. Bustamante and P. Isaza and J. Mejía, On uniqueness properties of solutions of the Zakharov-Kuznetsov, J. Funct. Anal., 264 (2013), 2529–2549.
- [4] X. Carvajal and M. Panthee, Unique continuation property for a higher order nonlinear Schrödinger equation, J. Math. Anal. Appl., **303** (2005), 188–207.
- [5] X. Carvajal and M. Panthee, On uniqueness of solution for a nonlinear Schrödinger-Airy equation, Nonlinear Analysis: Theory, Methods and Applications, 64(1) (2006), 146–158.
- [6] L. Escauriaza and C. Kenig and G. Ponce and L. Vega, On uniqueness properties of solutions of the k-generalized KdV equations, J. Funct. Anal., $244(2)$ (2007), 504–535.
- [7] R. J. Iório Jr., Unique continuation principles for the Benjamin-Ono equation, Differential Integral Equations, 16(11) (2003), 1281–1291.
- [8] R. J. Iório Jr., Unique Continuation Principles for Some Equations of Benjamin-Ono Type, Nonlinear Equations: Methods, Models and Applications, 54 (2003), 163–179.
- [9] V. Isakov, Inverse problems for partial differential equations, Appal. Math. Sci., 1997.
- [10] C. Kenig and G. Ponce and L. Vega, On unique continuation for nonlinear Schrödinger equation, Comm. Pure Appl. Math., 56 (2003), 1247–1262.
- [11] C. Kenig and G. Ponce and L. Vega, On the support of solutions to the generalized KdV equation, Ann. Inst. H. Poincaré Anal.Non. Linéarire, $19(2)$ (2002), 191–208.
- [12] J. Lions, Exact controllability, stabilization and perturbations for distributed systems, SIAM Reviews, 30(1) (1988), 1–68.
- [13] M. Panthee, Unique continuation property for the Kadomtsev-Petviashvili (KP-II) equation, Electronic Journal of Differential Equations, 59 (2005), 1–12.
- [14] P. Rosenau, Dynamics of dense discrete systems, Prog. Theoret. Phys., 79 (1988), 1028–1042.
- [15] J. Saut and B. Scheurer, Unique continuation for some evolution equations, J. Diff. Equations, 66 (1987), 118–139.
- [16] Y. Shang, Unique continuation for the symmetric regularized long wave equation, Mathematical Methods in Applied Sciences, 30 (2007), 375–388.
- [17] F. Treves, Linear Partial Differential Equations with Constant Coefficients, Gordon and Breach, N. York, London, Paris, 1966.
- [18] S. Wang and G. Xu, The Cauchy problem for the Rosenau equation, Nonlinear Analysis: Theory, Methods and Applications, $71(1)$ (2009), 456–466.

[19] B. Zhang, Unique continuation for the Korteweg-de Vries equation, SIAM J. Anal., 23 (1992), 55–71.

Ricardo Córdoba Gómez University of Nariño (Colombia)

E-mail: rcordoba@udenar.edu.co

Anyi Daniela Corredor Imbachi University of Cauca (Colombia)

E-mail: corredorim@unicauca.edu.co