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Unique continuation property for the Rosenau

equation

Ricardo Córdoba and Anyi D. Corredor

Abstract. In this work, using an appropriate Carleman-type estimate, we establish
a unique continuation result for the Rosenau equation that models the dynamics of
dense discrete systems with high order effects.
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1 Introduction

To model the dynamics of dense discrete systems with high order effects, Philip Rosenau [14]
derived the high order nonlinear partial differential equation,

utt + auxxxx + buxxxxtt − γuxx =
(
f(u)

)
xx
, (1.1)

where a > 0, b > 0, and γ > 0 are constants, f(u) = −β|u|pu with β > 0 and p > 0. The equation
is called Rosenau equation. When b = 0 the Rosenau equation becomes the “good” Boussinesq
equation which arises in the modeling of nonlinear strings.

S. Wang and G. Xu in [18] showed the well-posedness for the Cauchy problem associated to
the model (1.1) in the Sobolev space Hs(R), with s > 1/2, where Hs(R) is the usual Sobolev
space of order s defined as the completion of the Schwartz class with respect to the norm

∥w∥Hs(R) = ∥ (1 + |ξ|)s ŵ(ξ)∥L2
ξ
,

where ŵ is the Fourier transform of w in the space variable x and ξ is the variable in the frequency
space related to the variable x. Specifically they proved the following result.

Theorem 1.1. Assume that s > 1/2, φ ∈ Hs(R), ψ ∈ Hs(R) and f ∈ CN (R), where N ≥
max{1, s− 2} is an integer, then there exists a maximal time T0 which depends only on φ and ψ
such that for each T < T0, the Cauchy problem

utt + auxxxx + buxxxxtt − γuxx =
(
f(u)

)
xx
, x ∈ R, t > 0,

u(x, 0) = φ(x), ut(x, 0) = ψ(x), x ∈ R,
(1.2)
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has a unique solution u ∈ C1([0, T ] ; Hs(R)). Moreover, if

sup
t∈[0,T0)

[
∥u(·, t)∥Hs + ∥ut(·, t)∥Hs

]
<∞,

then T0 = ∞.

In the present work, we will prove a unique continuation result for the Rosenau equation
(1.1) when f(u) = −βu2k+1, k ∈ N. More precisely, we show that if u = u(x, t) is a solution of
the model (1.1) in a suitable function space, for example

u ∈ L2
(
−T, T ;H6

loc(R)
)
, ut ∈ L2

(
−T, T ;H2

loc(R)
)
,

and u vanishes on an open subset Ω of R × [−T, T ], then u ≡ 0 in the horizontal component of
Ω. We recall that the horizontal component Ω1 of an open subset Ω ⊆ R × R is defined as the
union of all segments t = constant in R× R which contain a point of Ω, this is,

Ω1 =
{
(x, t) ∈ R× [−T, T ] : ∃x1 ∈ R, (x1, t) ∈ Ω

}
.

The unique continuation property has been intensively studied for a long time due to the
important role that plays in the applications (see V. Isakov [9] and J. L. Lions [12]). An important
work on the subject was done by J. C. Saut and B. Scheurer in [15]. They showed a unique
continuation result for a general class of dispersive equations including the well known KdV
equation,

ut + uux + uxxx = 0,

and various generalizations. In a similar way, Y. Shang showed in [16] a unique continuation
result for the symmetric regularized long wave equation,

utt − uxx +
1

2

(
u2
)
xt

− uxxtt = 0.

In the previous equations, a Carleman estimate is established to prove that if a solution
u vanishes on an open subset Ω, then u ≡ 0 in the horizontal component of Ω. By using the
inverse scattering transform and some results from the Hardy function theory, B. Zhang in [19]
established that that if u is a solution of the KdV equation, then it cannot have compact support
at two different moments unless it vanishes identically. In the paper [1], J. Bourgain introduced a
different approach and prove that if a solution u to the KdV equation has compact support in a
nontrivial time interval I = [t1, t2], then u ≡ 0. His argument is based on an analytic continuation
of the Fourier transform via the Paley-Wiener Theorem and the dispersion relation of the linear
part of the equation. It also applies to higher order dispersive nonlinear models, and to higher
spatial dimensions; in particular, M. Panthee in [13] showed that if u is a smooth solution of the
Kadomtsev-Petviashvili (KP) equation,

ut + uxxx + uux + ∂−1
x uyy = 0,

such that, for some B > 0,

suppu(t) ⊂ [−B,B]× [−B,B] ∀t ∈ [t1, t2],

then u ≡ 0.

More recently, C. Kenig, G. Ponce and L. Vega in [11] proposed a new method and proved
that if a sufficiently smooth solution u to a generalized KdV equation is supported in a half line
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at two different instants of time, then u ≡ 0. Moreover, L. Escauriaza, C. Kenig, G. Ponce and
L. Vega in [6] established uniqueness properties of solutions of the k-generalized Korteweg- de
Vries equation,

ut + ukux + uxxx = 0, k ∈ Z+. (1.3)

They obtained sufficient conditions on the behavior of the difference u1 − u2 of two solutions u1,
u2 of (1.3) at two different times t0 = 0 and t1 = 1 which guarantee that u1 ≡ u2. This kind of
uniqueness results has been deduced under the assumption that the solutions coincide in a large
sub-domain of R at two different times. In a similar fashion, E. Bustamante, P. Isaza and J.
Mej́ıa in [2] proved that if u is a smooth solution of the Zakharov-Kuznetsov equation,

ut + uxxx + uxyy + uux = 0,

such that, for some B > 0,

suppu(t2), suppu(t1) ⊂ [−B,B]× [−B,B],

then u ≡ 0. Moreover, in [3] it was proved that if the difference of two sufficiently smooth

solutions of the Zakharov-Kuznetsov equation decays as e−a(x
2+y2)

3/4

at two different times, for
some a > 0 large enough, then both solutions coincide. More unique continuation results can be
seen in [4], [5], [7], [8], [10].

Following from close the works of Saut-Scheurer [15], we base our analysis in finding an
apppropiate Carleman-type estimate for the linear operator L associated to the equation (1.1).
In order to do this we use a particular version of the well known Treves’ inequality. For the
operator L we also prove that if a solution vanishes in a ball in the xt plane, which pass through
the origen, then it also vanished in a neighborhood of the origen.

The paper is organized as follows. In Section 2, using a particular version of the Treves
inequality, we establish a Carleman estimate for a differential operator L closely related to our
problem. In Section 3, first we give some useful technical results. Later, we show the unique
continuation result for the model (1.1).

2 Carleman estimates

In this section, using a particular version of the Treves’ inequality, we establish a Carleman
estimate for the differential operator L defined as

L := ∂2t + c1∂x∂t + c2∂
5
x∂t + b∂4x∂

2
t + a∂4x + c3∂

6
x + f1(x, t)∂x + f2(x, t)∂

2
x. (2.1)

In what follows we are going to use the notationD = (∂x, ∂t). If P = P (ξ1, ξ2) is a polynomial
in two variables, has constant coefficients and degreem, then we consider the differential operator
of order m associated to P ,

P (D) = P (∂x, ∂t) =
∑

|α|≤m

aαD
α,

where Dα = ∂α1
x ∂α2

t and |α| = α1 + α2. By definition P (β)(ξ1, ξ2) = ∂β1
x ∂β2

t P (ξ1, ξ2) where β is
given by β = (β1, β2) ∈ N2.
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Theorem 2.1. (Treves’ Inequality). Let P (D) = P (∂x, ∂t) be a differential operator of order
m with constant coefficients. Then for all α = (α1, α2) ∈ N2, δ > 0, τ > 0, Ψ ∈ C∞

0 (R2) and
ψ(x, t) = (x− δ)2 + δ2t2 we have that

22|α|τ |α|δ2α2

α!

∫
R2

|P (α)(D)Ψ|2e2τψdxdt ≤ C(m,α)

∫
R2

|P (D)Ψ|2e2τψdxdt (2.2)

with
|α| = |α1|+ |α2|, α! = α1!α2!,

and

C(m,α) =

sup|r+α|≤m

(
r + α

α

)
, if |α| ≤ m,

0, if |α| > m.

Proof. See Corollary 1 in [16].

We present the Carleman estimate for the differential operator L.

Theorem 2.2. Let L the differential operator defined in (2.1), where c1, c2, c3 are constants in
R and f1, f2 ∈ L∞

loc(R2). Let δ > 0 and

Bδ := {(x, t) ∈ R2 : x2 + t2 < δ2}, ψ(x, t) = (x− δ)2 + δ2t2.

Then, there exists C > 0 such that for all Ψ ∈ C∞
0 (Bδ) and τ > 0 with

∥f1∥2L∞(Bδ)

τ6c23
≤ 1

8
,

∥f2∥2L∞(Bδ)

τ5δ4b2
≤ 1

8
,

we have that

τ6c23

∫
Bδ

|Ψ|2e2τψdxdt+ τ5δ4b2
∫
Bδ

|∂xΨ|2e2τψdxdt+ τ4δ4b2
∫
Bδ

|∂2xΨ|2e2τψdxdt

≤ C

∫
Bδ

|LΨ|2e2τψdxdt. (2.3)

Proof. Let Ψ ∈ C∞
0 (Bδ). Consider the polynomial

P (ξ1, ξ2) = ξ22 + c1ξ1ξ2 + c2ξ
5
1ξ2 + bξ41ξ

2
2 + aξ41 + c3ξ

6
1 .

and
P (D) = P (∂x, ∂t) = ∂2t + c1∂x∂t + c2∂

5
x∂t + b∂4x∂

2
t + a∂4x + c3∂

6
x

the differential operator associated to P. Then, simple calculations show that if α = (6, 0) we
have that

P (α)(ξ1, ξ2) = P (6,0)(ξ1, ξ2) = 720c3, P (α)(D)Ψ = 720c3Ψ,

C(6, α) = sup
|r+α|≤6

(
r + α
α

)
= 1.

Then, using Theorem 2.1 we see that

τ6c23

∫
Bδ

|Ψ|2e2τψdxdt ≤ 212τ6

720

∫
Bδ

|720c3Ψ|2e2τψdxdt
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=
22|α|τ |α|δα2

α!

∫
Bδ

|P (α)(D)Ψ|2e2τψdxdt

≤
∫
Bδ

|P (D)Ψ|2e2τψdxdt. (2.4)

Moreover,

P (3,2)(ξ1, ξ2) = 48bξ1, P (3,2)(D)Ψ = 48b∂xΨ, C(6, (3, 2)) = 6.

Then, using again the Theorem 2.1 we obtain that

τ5δ4b2
∫
Bδ

|∂xΨ|2e2τψdxdt ≤ 210τ5δ4

12

∫
Bδ

|P (3,2)(D)Ψ|2e2τψdxdt

≤ 6

∫
Bδ

|P (D)Ψ|2e2τψdxdt. (2.5)

In a similar fashion

P (2,2)(ξ1, ξ2) = 24bξ21 , P (2,2)(D)Ψ = 24b∂2xΨ, C(6, (2, 2)) = 6.

Then, we have that

τ4δ4b2
∫
Bδ

|∂2xΨ|2e2τψdxdt ≤ 28τ4δ4

4

∫
Bδ

|P (2,2)(D)Ψ|2e2τψdxdt

≤ 6

∫
Bδ

|P (D)Ψ|2e2τψdxdt. (2.6)

From (2.4)-(2.6), there is C > 0 such that

τ6c23

∫
Bδ

|Ψ|2e2τψdxdt+ τ5δ4b2
∫
Bδ

|∂xΨ|2e2τψdxdt+ τ4δ4b2
∫
Bδ

|∂2xΨ|2e2τψdxdt

≤ C

∫
Bδ

|P (D)Ψ|2e2τψdxdt. (2.7)

Now, we note that

L = ∂2t + c1∂x∂t + c2∂
5
x∂t + b∂4x∂

2
t + a∂4x + c3∂

6
x + f1(x, t)∂x + f2(x, t)∂

2
x

implies
P (D)Ψ = LΨ− (f1(x, t)∂xΨ+ f2(x, t)∂

2
xΨ).

Then, using the inequalities (2.5)-(2.6), we have that∫
Bδ

(
|f1(x, t)∂xΨ|2 + |f2(x, t)∂2xΨ|2

)
e2τψdxdt

≤ ∥f1∥2L∞(Bδ)

∫
Bδ

|∂xΨ|2e2τψdxdt+ ∥f2∥2L∞(Bδ)

∫
Bδ

|∂2xΨ|2e2τψdxdt

≤ A

∫
Bδ

|P (D)Ψ|2e2τψdxdt

≤ 2A

∫
Bδ

(
|LΨ|2 + |f1(x, t)∂xΨ|2 + |f2(x, t)∂2xΨ|2

)
e2τψdxdt, (2.8)
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where

A =
∥f1∥2L∞(Bδ)

τ6c23
+

∥f2∥2L∞(Bδ)

τ5δ4b2
.

Next, if we choose τ > 0 large enough such that

∥f1∥2L∞(Bδ)

τ6c23
≤ 1

8
,

∥f2∥2L∞(Bδ)

τ5δ4b2
≤ 1

8
, (2.9)

then from inequality (2.8) we have that∫
Bδ

(
|f1(x, t)∂xΨ|2 + |f2(x, t)∂2xΨ|2

)
e2τψdxdt

≤ 1

2

∫
Bδ

|LΨ|2e2τψdxdt+ 1

2

∫
Bδ

(
|f1(x, t)∂xΨ|2 + |f2(x, t)∂2xΨ|2

)
e2τψdxdt

what implies ∫
Bδ

(
|f1(x, t)∂xΨ|2 + |f2(x, t)∂2xΨ|2

)
e2τψdxdt ≤

∫
Bδ

|LΨ|2e2τψdxdt.

Thus, ∫
Bδ

|P (D)Ψ|2e2τψdxdt ≤ 2

∫
Bδ

(
|LΨ|2 + |f1(x, t)∂xΨ|2 + |f2(x, t)∂2xΨ|2

)
e2τψdxdt

≤ 4

∫
Bδ

|LΨ|2e2τψdxdt.

Hence, from previous inequality and (2.7) we obtain the estimate (2.3).

Remark 1. The estimate (2.3) is invariant under changes of signs of L.

Corollary 2.3. Let T > 0. Assume that in addition to the hypotheses of the Theorem 2.2 we
have that

u ∈ L2(−T, T ;H6
loc(R)), ut ∈ L2(0, T ;H2

loc(R)),

and the support of u is compact contained in Bδ. Then, the inequality (2.3) holds if we replace Ψ
by u. Indeed,

τ6c23

∫
Bδ

|u|2e2τψdxdt+ τ5δ4b2
∫
Bδ

|∂xu|2e2τψdxdt+ τ4δ4b2
∫
Bδ

|∂2xu|2e2τψdxdt

≤ C

∫
Bδ

|Lu|2e2τψdxdt. (2.10)

Proof. Let {ρϵ}ϵ>0 be a regularizing sequence (in two variables) and consider uϵ = ρϵ ∗ u where
∗ denotes the usual convolution. Then we have that uϵ ∈ C∞

0 (Bδ) and the inequality (2.3) folds
for uϵ, that is

τ6c23

∫
Bδ

|ρϵ ∗ u|2e2τψdxdt+ τ5δ4b2
∫
Bδ

|∂x(ρϵ ∗ u)|2e2τψdxdt
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+ τ4δ4b2
∫
Bδ

|∂2x(ρϵ ∗ u)|2e2τψdxdt ≤ C

∫
Bδ

|Luϵ|2e2τψdxdt. (2.11)

Now, for n = 0, 1, 2 we have that

∥∂nx (ρϵ ∗ u)eτψ − ∂nxu e
τψ∥L2(Bδ) = ∥(ρϵ ∗ ∂nxu)eτψ − ∂nxu e

τψ∥L2(Bδ)

≤ C∥∂nx (ρϵ ∗ u)− ∂nxu∥L2(Bδ) → 0,

where C is a positive constant depending only on τ and δ. Similarly we have that∫
Bδ

(
|Luϵ|2 eτψ − |Lu|2 eτψ

)
dxdt→ 0, as ϵ→ 0+,

which allows us to pass to the limit in (2.11) to conclude the proof of Corollary 2.3.

3 Unique continuation

In this section we will prove the unique continuation result for the Rosenau equation (1.1). Before
we do the proof, we establish the following results.

Lemma 3.1. Let T > 0 and f1, f2 ∈ L∞
loc(R× (−T, T )). Let u with

u ∈ L2(−T, T ;H6
loc(R)), ut ∈ L2(−T, T ; H2

loc(R))

be a solution of Lu = 0 in R× (−T, T ) where L is the differential operator defined in (2.1). Let

ũ =

{
u if t ≥ 0

0 if t < 0.

Suppose that ũ ≡ 0 in the region {(x, t) : x < t} intercepted with a neighborhood of (0, 0). Then
there exists a neighborhood O1 of (0, 0) (in the plane xt) such that ũ ≡ 0 in O1.

Proof. By hypotheses there is 0 < δ < 1 such that ũ ≡ 0 in Rδ = R1 ∪R2, where

R1 = {(x, t) : x < t} ∩Bδ, R2 = {(x, t) : t < 0} ∩Bδ, Bδ = {(x, t) : x2 + t2 < δ2}.

Next, consider χ ∈ C∞
0 (Bδ) such that χ = 1 in a neighborhood O of (0, 0) and define

Ψ := χũ.

Then we have that

Ψ ∈ L2(−T, T ;H6
loc(R)), Ψt ∈ L2(−T, T ;H2

loc(R)),

and
suppΨ ⊂ Bδ.

By using the definition of χ, we note that LΨ = 0 in O. Thus, using the Corollary 2.3, we
have for ψ(x, t) = (x− δ)2 + δ2t2 and τ > 0 large enough that

τ6c23

∫
Bδ

|Ψ|2e2τψdxdt+ τ5δ4b2
∫
Bδ

|∂xΨ|2e2τψdxdt+ τ4δ4b2
∫
Bδ

|∂2xΨ|2e2τψdxdt
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≤ C

∫
Bδ

|LΨ|2e2τψdxdt = C

∫
Bδ\O

|LΨ|2e2τψdxdt. (3.1)

Now, using again the definition of χ and the fact that ũ ≡ 0 in Rδ, we see that

suppΨ ⊂ D, suppLΨ ⊂ D ∩ (Bδ \ O) , D = {(x, t) : 0 ≤ t ≤ x < δ < 1}.

It follows that if (x, t) ̸= (0, 0) and (x, t) ∈ D then

ψ(x, t) = (x− δ)2 + δ2t2 ≤ (t− δ)2 + δ2t2 = t2(1 + δ2)− 2tδ + δ2 < δ2.

Thus, there exists 0 < ϵ < δ2 such that

ψ(x, t) ≤ δ2 − ϵ, (x, t) ∈ D ∩ (Bδ \ O) .

Moreover, since ψ(0, 0) = δ2, we can choose O1 ⊂ O a neighborhood of (0, 0) such that

ψ(x, t) > δ2 − ϵ, (x, t) ∈ O1.

From the above construction and the inequality (3.1) we have that there exists C1 > 0 such that

τ6e2τ(δ
2−ϵ)

∫
O1

|Ψ|2dxdt ≤ τ6
∫
O1

|Ψ|2e2τψdxdt

≤ τ6
∫
Bδ

|Ψ|2e2τψdxdt

≤ C1

∫
Bδ\O

|LΨ|2e2τψdxdt

≤ C1e
2τ(δ2−ϵ)

∫
Bδ\O

|LΨ|2dxdt.

Therefore ∫
O1

|Ψ|2dxdt ≤ C1

τ6

∫
Bδ\O

|LΨ|2dxdt.

Then, passing to the limit as τ → +∞, we have that Ψ ≡ 0 in O1. Since ũ = Ψ in O and O1 ⊂ O,
we see that ũ = 0 in O1.

Similarly we can also show the following result.

Lemma 3.2. Let T > 0 and f1, f2 ∈ L∞
loc(R× (−T, T )). Let u with

u ∈ L2(−T, T ;H6
loc(R)), ut ∈ L2(−T, T ;H2

loc(R))

be a solution of Lu = 0 in R× (−T, T ) where L is the differential operator defined in (2.1). Let

ũ =

{
0 if t ≥ 0

u if t < 0.

Suppose that ũ ≡ 0 in the region {(x, t) : x < −t} intercepted with a neighborhood of (0, 0). Then
there exists a neighborhood O2 of (0, 0) (in the plane xt) such that ũ ≡ 0 in O2.
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Corollary 3.1. Let T > 0 and F1, F2 ∈ L∞
loc(R× (−T, T )). Let u with

u ∈ L2(−T, T ;H6
loc(R)), ut ∈ L2(−T, T ;H2

loc(R))

be a solution in R× (−T, T ) of the equation

utt + auxxxx + buxxxxtt + F1(x, t)ux + F2(x, t)uxx = 0.

Let γ be a circumference passing through the origin (0, 0). Suppose that u ≡ 0 in the interior
of the circle (with boundary γ) in a neighborhood of (0, 0). Then, there exists a neighborhood of
(0, 0) where u ≡ 0.

Proof. Let us assume that the circumference (a piece of it) γ is given by x = g(t) with g′′(t) < 0 in
a neighborhood of (0, 0). By using the hypotheses, we have that u ≡ 0 in the region {(x, t) : x <
g(t)} intercepted with a neighborhood of (0, 0). Then, we can see that there exists ω ∈ R \ {0, 1}
such that u ≡ 0 in a neighborhood of (0, 0) in the region {(x, t) : x < h(t)} where

h(t) =

{
ωt if t ≥ 0

− 1
ω t if t < 0.

Now, we consider the following change of variables (x, t) → (X,T ) with

X = x− h(t) + |t|
T = t.

Notice that in the new variables, if T ≥ 0 then the function u = u(X,T ) is a solution of

∂2Tu+ c1∂X∂Tu+ c2∂
5
X∂Tu+ b∂4X∂

2
T + a∂4Xu+ c3∂

6
Xu+ f1(X,T )∂Xu+ f2(X,T )∂

2
Xu = 0

with
c1 = 2(1− ω), c2 = bc1, c3 = b(1− ω)2, f1 = F1, f2 = (1− ω)2 + F2.

Then, u ≡ 0 in the region {(X,T ) : X < T, T ≥ 0} intercepted with a neighborhood of (0, 0)
and u satisfies

Lu = 0 if T ≥ 0,

where

L = ∂2T + c1∂X∂T + c2∂
5
X∂T + b∂4X∂

2
T + a∂4X + c3∂

6
X + f1(X,T )∂X + f2(X,T )∂

2
X .

So, using the Lemma 3.1 with the previous differential operator L, we obtain that there exists a
neighborhood O1 of (0, 0) in the plane XT where u ≡ 0.

In a similar fashion, u ≡ 0 in the region {(X,T ) : X < −T, T < 0} intercepted with a
neighborhood of (0, 0) and u satisfies

Lu = 0 if T < 0,

where

c1 = 2

(
1

ω
− 1

)
, c2 = bc1, c3 = b

(
1

ω
− 1

)2

,

and

f1 = F1, f2 =

(
1

ω
− 1

)2

+ F2.

Then, from Lemma 3.2 we have that there exists a neighborhood O2 of (0, 0, ) in the plane XT
where u ≡ 0. Thus, returning to the original variables (x, t) we have the result.
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Now we have the main result on the unique continuation property for the equation (1.1).

Theorem 3.2. Let T > 0 and u with

u ∈ L2(−T, T ;H6
loc(R)), ut ∈ L2(−T, T ;H2

loc(R))

be a solution in R × (−T, T ) of the Rosenau equation (1.1). If u ≡ 0 in an open subset Ω ⊂
R× (−T, T ), then u ≡ 0 in the horizontal component of Ω.

Proof. By defining the functions

F1(x, t) = 2k(2k + 1)βu2k−1ux, F2(x, t) = −γ + (2k + 1)βu2k, β, γ > 0, k ∈ N,

the Rosenau equation (1.1) takes the form

utt + auxxxx + buxxxxtt + F1(x, t)ux + F2(x, t)uxx = 0, (3.2)

with F1, F2 ∈ L∞
loc(R× (−T, T )). Then, we will show the result for model (3.2).

Denote by Ω1 the horizontal component of Ω and let

Λ = {(x, t) ∈ Ω1 : u ≡ 0 in a neighborhood of (x, t)}.

Let Q ∈ Ω1 arbitrary. Choose P ∈ Λ and let Γ be a continuous curve contained in Ω1 joining P
to Q, parametrized by a continuous function f : [0, 1] → Ω1 with f(0) = P and f(1) = Q. Since
P ∈ Λ, there exists r > 0 such that

u ≡ 0 in Br(P ). (3.3)

Taking 0 < r0 < min{r, dist(Γ, ∂Ω1)}, where ∂Ω1 denotes the boundary of Ω1, we have that

Br0(P ) ⊂ Λ.

Now, if r1 <
r0
4 we see that

B2r1(f(s)) ⊂ Ω1, for all s ∈ [0, 1]; (3.4)

in fact, if w ∈ B2r1(f(s)) and w /∈ Ω1 then

∥w − f(s)∥ < 2r1 < r0 < dist(Γ, ∂Ω1) ≤ ∥w − f(s)∥,

which is a contradiction.

Next, let
Λ1 = {(x, t) ∈ Λ : u ≡ 0 in Br1(x, t) ∩ Ω1}

and
S = {0 ≤ ℓ ≤ 1 : f(s) ∈ Λ1 whenever 0 ≤ s ≤ ℓ}, ℓ0 = supS.

We will prove that f(ℓ0) ∈ Λ1. If w ∈ Br1(f(ℓ0)) and r2 = ∥w−f(ℓ0)∥ then there exists 0 < δ < ℓ0
such that ∥f(ℓ0)− f(ℓ0 − δ)∥ < r1 − r2. Therefore

∥w − f(ℓ0 − δ)∥ ≤ ∥w − f(ℓ0)∥+ ∥f(ℓ0)− f(ℓ0 − δ)∥ < r1,
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and so w ∈ Br1(f(ℓ0 − δ)). Now, from the definition of ℓ0 there exists ℓδ ∈ S such that ℓ0 − δ <
ℓδ ≤ ℓ0, what implies f(ℓ0 − δ) ∈ Λ1. Then, using (3.4) we see that

u ≡ 0 in Br1(f(ℓ0 − δ)) ∩ Ω1 = Br1(f(ℓ0 − δ)). (3.5)

Consequently we obtain that u(w) = 0 and then

u ≡ 0 in Br1(f(ℓ0)). (3.6)

Hence, we have showed f(ℓ0) ∈ Λ1.

If ℓ0 = 1 then from previous analysis we have that Q = f(1) ∈ Λ1 ⊂ Λ. Thus, since Q was
arbitrarily chosen we obtain that u ≡ 0 in Ω1, which proves Theorem 3.2. Then to finish the
proof of Theorem 3.2 remains to prove that ℓ0 = 1. In fact, let us suppose that ℓ0 < 1 and let

G = {Y ∈ Ω1 : ∥Y − f(ℓ0)∥ = r1} .

For w = (x1, t1) ∈ G fixed, we consider the change of variable (x, t) → (X,T ) where

X = x− x1,

T = t− t1.

Notice that (0, 0) ∈ G∗ = {Y = (X,T ) : ∥Y − (f(ℓ0)− w)∥ = r1}. Moreover, from (3.6) we see
that

u(X,T ) = 0, (X,T ) ∈ Br1(f(ℓ0)− w).

So that, by using Corollary 3.1, there exists r∗w > 0 such that

u(X,T ) = 0, (X,T ) ∈ Br∗w(0, 0).

Returning to the original variables we have that for each w ∈ G there exists r∗w > 0 such that

u ≡ 0 in Br∗w(w).

Then, using (3.6) and the compactness of G, we have that there is ϵ1 > 0 such that

u ≡ 0 in Br1+ϵ1(f(ℓ0)). (3.7)

Now, we note that there exists 0 < δ1 < 1− ℓ0 such that if w ∈ Br1(f(ℓ0 + δ1)) then

∥w − f(ℓ0)∥ ≤ ∥w − f(ℓ0 + δ1)∥+ ∥f(ℓ0 + δ1)− f(ℓ0)∥ < r1 + ϵ1.

Thus, w ∈ Br1+ϵ1(f(ℓ0)) and so Br1(f(ℓ0 + δ1)) ⊂ Br1+ϵ1(f(ℓ0)). Therefore, using (3.7) we have
that u ≡ 0 in Br1(f(ℓ0 + δ1)). Consequently f(ℓ0 + δ1) ∈ Λ1, which contradicts the definition of
ℓ0. So, ℓ0 = 1 and the proof of Theorem 3.2 is complete.
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