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Abstract. Climate change and global warming have caused catastrophic effects
that are already being felt in Bangladesh. The rise in temperature associated with
global warming, as well as the broader impacts of climate change, are damaging
the planet. These effects are spatial and temporal and have led to unexpected
outcomes, such as the coexistence of humans and mosquitoes in regions where it was
previously unimaginable. Despite being the smallest animals on earth, mosquitoes
are also the deadliest, killing thousands of humans each year. The Culex mosquito, a
common type of mosquito in Bangladesh, is easily accessible and poses a significant
threat to human health. The transmission of viruses to humans is a significant
concern. This article introduces and discusses the LMSEI-SEIR mathematical model,
which can help in understanding this process. The disease-free equilibrium point and
its stability are presented, and the reproduction number is calculated. To further
investigate the implications of this model, a numerical analysis is conducted using
MATLAB. The resulting figures can be used to inform future measures aimed at
protecting against human fatalities.

Keywords. Mosquitoes, human, disease free, reproduction number, stability

1 Introduction

Culex mosquitoes typically have a medium size and are brown in color, with some white markings
visible on the abdomen. There are several different types of Culex mosquitoes, including Culex
pipiens, Culex quinquefasciatus, Culex tritaeniorhynchus, and Culex tarsalis. Culex mosquitoes
are commonly referred to as house mosquitoes and are known for spreading viruses such as West
Nile virus, filariasis, and Japanese encephalitis. These diseases can affect humans, birds, and
other animals. Culex mosquitoes have the ability to transmit viruses to birds, horses, and hu-
mans, making them a significant concern. These mosquitoes typically bite at night and rest
during the day and can be found both indoors and outdoors. They tend to breed in areas such
as containers, floodwater, fresh and polluted water, swamps, and tree holes. Interestingly, Culex
mosquitoes tend to stay relatively close to their larval habitats and are capable of flying a distance
of approximately 1.5 miles
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A mosquito has four stages of life. That is true for all existing mosquitos. The eggs are in
the initial state, turns into larvae, and move to the second stage of their life. The adult is the final
stage, known as the deadliest stage of life because it causes the most damage to human beings
in such a stage. Before the final stage, larvae turn into pupa, widely known as the third stage of
life. The duration of the entire life cycle varies, typically ranging from one week to one month.
However, environmental factors such as temperature, rainfall, and humidity can influence this
timeframe, sometimes causing the cycle to take less than two weeks or up to a year. The first
three stages require water for completion, while adult mosquitoes fly away in search of a blood
meal before beginning the cycle anew.

Adult Culex mosquitoes typically have a lifespan of one to two months, but in some cases,
they can live for up to six months or longer by hibernating during the winter period. Interest-
ingly, male mosquitoes tend to have a shorter lifespan than females. The development of these
mosquitoes’ life cycle is heavily influenced by temperature, with the optimal range falling between
approximately 2oC and 32oC. Ciota et al. [1] conducted research on the development of Culex
mosquitoes and found that the optimal temperature for their development is 16oC. Mosquito
development can still occur at temperatures below 24oC, but as temperatures rise above this
threshold, the mortality rate of the mosquitoes increases.

Chitnis et al. [2] introduced a human: SEIR and mosquitoes: SEI model for malaria and
examined disease-free equilibrium points while calculating the reproductive number, R0. They
studied the various behaviors of R0. Ducrot et al. [3] expanded upon the work of [2] by consid-
ering a non-immune host: SEIS, a semi-immune host: SEIRS, and a mosquito: SEI model. They
derived an explicit formula for the reproductive number, R0. Buonomo and Vargas-De-Leon [4]
provided a condensed version of the studies conducted by [2, 3]. They introduced human: SI and
mosquitoes: SI models for malaria, omitting the exposed class of both humans and mosquitoes.
They also calculated the basic reproductive number and demonstrated that if R0 > 1, the disease
will spread and persist within its host population, while R0 < 1 would result in the disease dying
out. They further discussed local and global stability.

Later on, Li [5] examined a discrete-time model for malaria, which consisted of human:
SEIR and mosquito: SEI components. The author analyzed the disease-free equilibrium point
and derived an explicit expression for the reproductive number, R0. Li and Jin [6] proposed a
continuous-time model for humans: SIR and mosquitoes: SI, which applies to various diseases
such as dengue, malaria, and WNV. The model incorporates the logistic growth of the mosquito
population and examines the stability of the disease-free equilibrium when R0 < 1. Additionally,
the study investigates different types of bifurcations resulting from parameter changes. Ngonghala
et al. [7] introduced an SI-SI model for malaria disease, which is an autonomous model. They
computed the reproduction number, analyzed the stability of equilibria, and discussed various
bifurcations and chaotic dynamics in the model.

Traore et al. [8] examined the effects of seasonal patterns on the transmission of malaria,
both theoretically and through numerical simulations. They introduced a mathematical model
that incorporated the dynamics of both humans (SEIR model) and mosquitoes (EgLSEI model).
The results of their investigation indicated that decreasing the number of breeding sites could be
an effective measure in reducing the spread of malaria. However, it is important to note that this
research did not account for the influence of seasonal variations on the life cycle of mosquitoes.
Bakary et al. [9] put forward an intricate mathematical model that divides the human population
into two distinct groups: non-immune individuals and semi-immune individuals.
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To represent the non-immune group, they utilized the SEI model, while the semi-immune
group was represented by the SEIR model. Additionally, they incorporated a separate group to
account for mosquitoes, employing the LSEI model. Their primary emphasis revolved around
disease-free equilibrium and associated analytical methods. They discovered that the threshold
parameter κ plays a crucial role in regulating disease transmission. Ibrahim et al. [10] examined
the influence of knowledge and understanding of malaria and its significance in managing the
disease. To explore the dynamics of malaria transmission, the researchers proposed a mathe-
matical model that took into account both the human population and the mosquito population
[11]. Specifically, they utilized the SEI1I2R model for humans, where I1 represented the class of
infected individuals who were unaware of their infection, and I2 represented the class of infected
individuals who were aware of their condition. Additionally, they employed the SEI model for
mosquitoes. They found that awareness plays a crucial role in controlling malaria in regions with
a high risk of infection.

In a later study, Al Basir and Abraha [12] introduced a mathematical model aimed at effec-
tively managing and reducing the transmission of malaria. To achieve this, they employed simple
yet effective modeling techniques, specifically targeting the interactions between humans and
mosquitoes. By utilizing the well-established SIS (Susceptible-Infectious-Susceptible) model for
humans and the SI (Susceptible-Infectious) model for mosquitoes, they were able to gain insights
into the dynamics of malaria transmission. They identified social media as a highly effective tool
for raising awareness about malaria transmission. They emphasized that utilizing social media
platforms could result in widespread awareness at a relatively low cost.

Ndamuzi and Gahungu [13] examined how malaria transmission operates in Burundi, an
East African nation. They utilized two models, namely the SLIR model for humans and the
SI model for mosquitoes, to investigate this phenomenon. The study highlighted that a notable
reduction in the transmission of malaria can be achieved by decreasing the frequency of mosquito
bites, thereby leading to a significant decline in the mosquito population. Wyse et al. [14] exam-
ined the effects of genetically modified mosquitoes on the prevention of malaria. They analyzed
various factors including human and mosquito populations using SEIS and SEI models, as well
as heterozygous and homozygous transgenic mosquitoes using SEI models for each group. The
researchers discovered that the introduction of transgenic mosquitoes is significant in reducing
disease transmission. However, they also identified climate change as a potential limitation to
their effectiveness.

Mosquito-borne diseases pose significant threats to public health, particularly in tropical
and subtropical regions. Mathematical models play a crucial role in understanding the dynamics
of these diseases and informing effective control strategies. One such model, the LMSEI-SEIR
model, integrates the life stages of mosquitoes and humans to capture the complex interactions
and transmission dynamics. The existing research on the LMSEI-SEIR model, highlighting its
applications, extensions, and key findings is not enough to deal with the situations in the region
where summer is the most frequent part for such insects. As far as the author is aware, there has
been limited research done on the impact of intraspecific competition among aquatic mosquitoes
and the presence of adult male mosquitoes in disease transmission models.

Therefore, the objective of this paper is to fill this research gap by proposing an LMSEI-
SEIR mathematical model that takes into account these factors in the context of Bangladesh.
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The primary aim of the model is to investigate the disease-free equilibrium point and its stability,
as well as to calculate the reproduction number. The model will be developed by considering the
interactions among different mosquito life stages, including eggs, larvae, pupae, and adults, and
the impact of environmental factors such as temperature and humidity. The presence of adult
male mosquitoes will also be taken into account, as they have a different life span than adult
female mosquitoes and can play a role in disease transmission.

2 Framework of the Mathematical Model

The mosquito life cycle consists of four stages that can be subdivided into two parts: the aquatic
phase, which includes the egg, larva, and pupa, and the adult phase. In this study, we utilized a
logistic growth model to describe the population dynamics of aquatic mosquitoes, as suggested
by Noden et al. [15] due to the realistic intraspecific competition rate. Additionally, we con-
sidered the adult mosquito stage in our model. This study assumes a constant population of
both mosquitoes and humans. The human population is divided into four categories: suscepti-
ble, exposed, infected, and recovered. Meanwhile, the mosquito population is divided into five
categories: aquatic, male adult, female susceptible, exposed, and infected. Let us consider the
following state variables: with the parameters:

Symbol Description

Lm The population of aquatic mosquitoes

Mm The population of male adult mosquitoes

Sm The population of susceptible female adult mosquitoes

Em The population of exposed female adult mosquitoes

Im The population of infected female adult mosquitoes

Sh The population of susceptible human

Eh The population of exposed human

Ih The population of infected human

Rh The population of recovered human

Table 1: Description of Population Symbols

The LMSEI-SEIR model has been extensively applied to various mosquito-borne diseases,
such as dengue, Zika, and Chikungunya. Researchers have utilized the model to analyze dis-
ease transmission dynamics, evaluate control strategies, and predict the impact of interventions.
These applications have provided valuable insights into the key factors influencing disease spread,
such as mosquito biting rates, transmission rates, and population sizes. Hence, the dynamics of
the LMSEI-SEIR model can be mathematically modeled using the following system of differential
equations:
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Symbol Description

rm The per-capita birth rate of mosquitoes

rh The per-capita birth rate of human

δ The per-capita maturation rate of mosquitoes

dl The per-capita death rate of aquatic mosquitoes

k̄ The intraspecific competition rate of aquatic mosquitoes

p Total percentage population of male adult mosquitoes

bm The per-capita biting rate of mosquitoes

βm Transmission rate from an infected human to mosquitoes

βh Transmission rate from infected mosquitoes to human

k1 Per-capita transition rate from exposure to infected mosquitoes

k2 Per-capita transition rate from exposure to infected human

dm The per-capita death rate of adult mosquitoes

dh The per-capita death rate of human

ϵ Per-capita transition rate from recovered to susceptible human

µ The per-capita mortality rate due to the mosquito-borne disease

γ Per-capita recovery rate due to the mosquito-borne disease

Nm Total population of mosquitoes

Nh Total population of human

Table 2: Description of Parameters



dLm

dt = rmNm − δLm − dlLm − k̄L2
m,

dMm

dt = pδLm − dmMm,
dSm

dt = (1− p)δLm − bmβm

Nh
SmIh − dmSm,

dEm

dt = bmβm

Nh
SmIh − k1Em − dmEm,

dIm
dt = k1Em − dmIm

dSh

dt = rhNh − bmβh

Nm
ShIm − dhSh + ϵR,

dEh

dt = bmβh

Nm
ShIm − dhEh − k2Eh,

dIh
dt = k2Eh − dhIh − µIh − γIh,
dRh

dt = γIh − dhRh − ϵRh,

(2.1)

where all the parameters are positive numbers with the initial values belonging to the set

R9
+ =

{
(Lm,Mm, Sm, Em, Im, Sh, Eh, Ih, Rh) ∈ R9

}
,

where

{Lm ≥ 0,Mm ≥ 0, Sm ≥ 0, Em ≥ 0, Im ≥ 0, Sh ≥ 0, Eh ≥ 0, Ih ≥ 0, Rh ≥ 0} .

As the interaction functions on the right-hand side of the system (2.1) are continuous and
possess continuous partial derivatives, it can be noted that a unique and existing solution of the
system (2.1) is guaranteed.
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3 Basic Reproduction Number

The subsequent section presents a discussion and analysis of all feasible equilibrium points, their
stability, and the basic reproduction number. The existence and uniqueness of the solution of
Eq. (2.1) can be ensured since all interaction functions provided on the right-hand side of the
system are continuous and possess continuous partial derivatives. Model (2.1) has a disease-free
equilibrium point, which is referred to as

E0 = (L∗
m,M∗

m, S∗
m, 0, 0, S∗

h, 0, 0, 0),

where L∗
m, M∗

m, and S∗
m are the equilibrium values of Lm, Mm, and Sm, respectively, and S∗

h is
the equilibrium value of Sh.

M∗
m =

pδL∗
m

dm
, S∗

m =
(1− p)δL∗

m

dm
, S∗

h =
rhNh

dh
.

L∗
m =

−(δ + dl) +
√
(δ + dl)2 + 4rmNmk̄

2k̄
.

Now, to compute the basic reproduction number of the Eq. (2.1) using the next-generation
matrix technique [16], [17], the non-negative matrix F of the infection terms (Em, Im, Eh, Ih) and
the non-singular matrix V of transition terms are computed by

F =


0 0 0 bmβm

Nh
Sm

0 0 0 0

0 bhβh

Nm
Sh 0 0

0 0 0 0

 ,

V =


dm + k1 0 0 0
−k1 dm 0 0
0 0 dh + k2 0
0 0 −k2 γ + µ+ dh

 .

Therefore, it is obtained that

V −1 =


1

(dm+k1)
0 0 0

k1

dm(dm+k1)
1
dm

0 0

0 0 1
(dh+k2)

0

0 0 k2

(γ+µ+dh)(dh+k2)
1

γ+µ+dh

 .

Then the basic reproduction number R0 is defined as the spectral radius of the basic reproduction
matrix FV −1 at the E0 is

FV −1 =


0 0

(1−p)δbmk2βmL∗
m

(γ+µ+dh)dm(dh+k2)Nh

(1−p)δbmβmL∗
m

(γ+µ+dh)dmNh

0 0 0 0
bmk1Nhrhβh

dhdm(dm+k1)Nm

bmNhrhβh

dhdmNm
0 0

0 0 0 0

 .

Hence, the reproduction number is computed as

R0 =

(
(1− p)δb2mk1k2rhβhβmL∗

m

dhd2m(γ + µ+ dh)(dm + k1)(dh + k2)Nm

)1/2

. (3.1)
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Endemic equilibrium point E1:

E1 = (x1, x2, x3, x4, x5, x6, x7, x8, x9),

where x1, x2, x3, x4, x5, x6, x7, x8, and x9 are the positive solutions of the system:

rmNm − δLm − dlLm − k̄L2
m = 0,

pδLm − dmMm = 0,

(1− p)δLm − bmβm

Nh
SmIh − dmSm = 0,

bmβm

Nh
SmIh − k1Em − dmEm = 0,

k1Em − dmIm = 0,

rhNh − bmβh

Nm
ShIm − dhSh + ϵRh = 0,

bmβh

Nm
ShIm − dhEh − k2Eh = 0,

k2Eh − dhIh − µIh − γIh = 0,

γIh − dhRh − ϵRh = 0.

(3.2)

Now, the local stability results of the disease-free equilibrium point can be summarized in
the following theorem:

Theorem 3.1: The disease-free equilibrium point of the system (2.1) is locally asymptoti-
cally stable provided that R0 < 1, and unstable for R0 > 1.

Proof: Direct computation of the Jacobian matrix of the system (2.1) at E0 is given by

J(E0) =



−δ − dl − 2k̄L∗
m 0 0 0 0 0 0 0 0

pδ −dm 0 0 0 0 0 0 0

δ − pδ 0 −dm 0 0 0 0 − (1−p)δbmβmL∗
m

dmNh
0

0 0 0 −dm − k1 0 0 0
(1−p)δbmβmL∗

m
dmNh

0

0 0 0 k1 −dm 0 0 0 0

0 0 0 0 0 − bmNhrhβh
dhNm

−dh 0 ϵ

0 0 0 0 0
bmNhrhβh

dhNm
0 −dh − k2 0

0 0 0 0 0 0 k2 −γ − µ − dh 0
0 0 0 0 0 0 0 γ −ϵ − dh


.

Then the characteristic polynomial equation of J(E0) can be written as

(−ϵ−λ−dh)(λ+dh)(−λ−dm)(λ+dm)(−δ−λ−dl−2k̄L∗
m)

(
λ4 +A1λ

3 +A2λ
2 +A3λ+A4

)
= 0,
(3.3)

where
A1 = (γ + µ+ 2dh + 2dm + k1 + k2) ,

A2 = (γ + µ+ dh) (dh + k2) + (γ + µ+ 2dh) (2dm + k1) + d2m + dmk1 + (2dm + k1)k2,

A3 = 2dhdm (γ + µ+ dh) (dh + k2) + k1 (γ + µ+ dh) (dh + k2) (dh + k2) + (γ + µ+ 2dh)
(dh + k2) (d

2
m + dmk1) + (d2m + dmk1)k2),

A4 = (γ + µ+ dh) (d
2
m + dmk1)(dh + k2)− ((1−p)δb2mk1k2NhrhL

∗
mβhβm)

dhdmNhNm

= (γ + µ+ dh) (d
2
m + dmk1)(dh + k2)

[
1−R2

0

]
.

From the characteristic polynomial equation (3.3), it is obtained that

λ1 = −δ − dl − 2k̄L∗
m, λ2 = λ3 = −dm, λ6 = −dh, and λ9 = −ϵ− dh,

are negative eigenvalues. However, from the other factor of Eq.(3.3) it is observed that A1, A2,
and A3 are positive, while A4 is positive provided that condition R0 < 1 is satisfied. More-
over, direct computation shows that R0 < 1 guarantees that the two expressions A1A2 − A3
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and (A1A2 − A3)A3 − A2
1A4 are positive. Hence, according to the Routh–Hurwitz criterion, the

fourth-order polynomial equation in Eq.(3.3) has four roots (eigenvalues) with negative real parts.
Thus, E0 is a locally asymptotically stable point.

On the other hand, when R0 > 1 then A4 < 0. Hence, according to Descartes’s rules of
signs, the fourth-order polynomial equation in Eq.(3.3) has at least one positive root. Thus, E0

is an unstable point.

Theorem 3.2: The endemic equilibrium point of the system (2.1) is locally asymptotically
stable provided that the following conditions are met:



dm + bmx8βm

Nh
> bmx3βm

Nh
,

dm + k1 >
(

bmx8βm

Nh
+ bmx3βm

Nh

)
,

dm > k1

dh + bmx5βh

Nm
>

(
bmx6βh

Nm
+ ϵ

)
,

dh + k2 >
(

bmx6βh

Nm
+ bmx5βh

Nm

)
,

γ + µ+ dh > k2,

ϵ+ dh > γ.

(3.4)

Proof. Direct computation of the Jacobian matrix of the system (2.1) at E1 is given by

J(E1) =



−δ − dl − 2k̄x1 0 0 0 0 0 0 0 0
pδ −dm 0 0 0 0 0 0 0

δ − pδ 0 −dm − bmx8βm
Nh

0 0 0 − bmx3βm
Nh

0

0 0
bmx8βm

Nh
−dm − k1 0 0 0

bmx3βm
Nh

0

0 0 0 k1 −dm 0 0 0 0

0 0 0 0 − bmx6βh
Nm

−dh − bmx5βh
Nm

0 0 ϵ

0 0 0 0
bmx6βh

Nm

bmx5βh
Nm

−dh − k2 0 0

0 0 0 0 0 0 k2 −γ − µ − dh 0
0 0 0 0 0 0 0 γ −ϵ − dh


.

It is well known that the point E1 is locally asymptotically stable if and only if all the
eigenvalues of J(E1) lie entirely in the left half of the complex plane. Now, from Gershgorin’s
theorem (Allen, [18]), since the entries of J(E1) are real, if the diagonal elements of J(E1) satisfy
|aii| > ri, where ri =

∑n
j=1,j ̸=i |aij | with n being the size of the matrix, for i = 1, 2, . . . , n, then

the eigenvalues of J(E1) are negative or have negative real parts. Consequently, straightforward
computation shows that the given conditions guarantee that Gershgorin’s theorem condition is
satisfied, and hence all the eigenvalues fall in the disks that lie in the left half of the complex
plane. Thus the proof is done.

Studies utilizing the LMSEI-SEIR model have contributed significantly to our understanding
of mosquito-borne diseases. Key findings include the identification of critical thresholds for
disease persistence, the influence of mosquito control measures on disease prevalence, and the
impact of human and mosquito demographic factors on disease dynamics [19]. These detections
have substantial essences for conceiving effective prevention and control strategies, such as vector
control interventions and vaccination campaigns.
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4 Analysis of Endemic Equilibrium Points

Let us set the following equations to zero:

dLm

dt
= 0,

dMm

dt
= 0,

dSm

dt
= 0,

dEm

dt
= 0,

dIm
dt

= 0,

dSh

dt
= 0,

dEh

dt
= 0,

dIh
dt

= 0,
dRh

dt
= 0.

It gives that 

rmNm − δLm − dlLm − k̄L2
m = 0,

pδLm − dmMm = 0

(1− p)δLm − bmβm

Nh
SmIh − dmSm = 0,

bmβm

Nh
SmIh − k1Em − dmEm = 0,

k1Em − dmIm = 0

rhNh − bmβh

Nm
ShIm − dhSh + ϵRh = 0,

bmβh

Nm
ShIm − dhEh − k2Eh = 0,

k2Eh − dhIh − µIh − γIh = 0,

γIh − dhRh − ϵRh = 0.

(4.1)

Let us assume that

a1 = rmNm, a2 = δ + dl, a3 = k̄, a4 = pδ, a5 = dm, a6 = (1− p)δ,

a7 =
bmβm

Nh
, a8 = k1 + dm, a9 = k1, a10 =

bmβh

Nh
, a11 = dh, a12 = ϵ,

a13 = rhNh, a14 = dh + k2, a15 = k2, a16 = dh + µ+ γ,

a17 = γ, a18 = dh + ϵ.

It gives us a simplified non-linear form of equations:

a1 − a2Lm − a3L
2
m = 0,

a4Lm − a5Mm = 0,

a6Lm − a7SmIh − a5Sm = 0,

a7SmIh − a8Em = 0,

a9Em − a5Im = 0,

−a10ShIm − a11Sh + a12Rh + a13 = 0,

a10ShIm − a14Eh = 0,

a15Eh − a16Ih = 0,

a17Ih − a18Rh = 0.
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Solving this system of nonlinear equations for (Lm,Mm, Sm, Em, Im, Sh, Eh, Ih, Rh), we get
E1 = (x1, x2, x3, x4, x5, x6, x7, x8, x9), where

x8 = B1x7,
x9 = B2x7,

x6 = B3x7 +B4,
x5 = x7

B5x7+B6
,

x4 = B7x7

B5x7+B6
,

x3 = B8

B5x7+B6
,

x1= B9

(
B10x7+a5

B5x7+B6

)
,

x2= B11

(
B10x7+a5

B5x7+B6

)
,

where

B1 =
a15
a16

, B2 =
a17a15
a18a16

, B3 =
a12B2 − a14

a11
, B4 =

a13
a11

, B5 =
a10B3

a14
, B6 =

a10B4

a14

B7 =
a5
a9

, B8 =
a8B7

a7B1
, B9 =

B8

a6
, B10 = a7B1, B11 =

a4B9

a5
,

while x7 is a positive root of the second-order equation:

a1(B5x7+B6)
2 − a2B9 (B10x7+a5) (B5x7+B6)− a3B9

2(B10x7+a5)
2
= 0.

5 Construction of Lyapunov Function

In this section, a Lyapunov function has been constructed to establish the conditions of the global
asymptotic stability of the endemic equilibrium point, as shown in the following theorem.

Theorem 5.1: The endemic equilibrium point is globally asymptotically stable under the
following sufficient conditions

(pδ)
2
< 2dm

(
δ + dl + kx1

)
.

((1− p) δ)
2
<

4

6

[
δ + dl + kx1

](
dm +

bmβm

Nh

)
.

(
bmβm

Nh
Nm

)2

< min

{
1

3

(
dm +

bmβm

Nh

)
(dh + µ+ γ) ,

1

3
(k1 + dm) (dh + µ+ γ)

}
.

(
bmβm

Nh
x8

)2

<
4

9

(
dm +

bmβm

Nh

)
(k1 + dm) .

k1
2 <

4

9
dm (k1 + dm) .(

bmβh

Nm
x6

)2

<
4

9
dmdh.

ϵ2 <
4

6

(
dh +

bmβh

Nm
Im

)
(dh + ϵ) .

(bmβh)
2
<

4

9
dh (dh + k2) .
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k2
2 <

1

3
(dh + k2) (dh + µ+ γ) .

γ2 <
1

2
(dh + µ+ γ) (dh + ϵ) .

Proof. Consider the proposed Lyapunov function

V = (Lm−x1)
2

2 + (Mm−x2)
2

2 + (Sm−x3)
2

2 + (Em−x4)
2

2 + (Im−x5)
2

2 + (Sh−x6)
2

2

+ (Eh−x7)
2

2 + (Ih−x8)
2

2 + (Rh−x9)
2

2 .

The function V is a positive definite function concerning the endemic equilibrium point. More-
over, computing the time derivative for V gives after simplification steps that:

dV
dt = −

[
δ + dl + k (Lm + x1)

]
(Lm − x1)

2
+ pδ (Lm − x1) (Mm − x2)

−dm(Mm − x2)
2
+ (1− p) δ (Lm − x1) (Sm − x3)− bmβm

Nh
Sm (Sm − x3) (Ih − x8)

−
(
dm + bmβm

Nh

)
(Sm − x3)

2
+ bmβm

Nh
Sm (Em − x4) (Ih − x8)

+ bmβm

Nh
x8 (Sm − x3) (Em − x4)− (k1 + dm) (Em − x4)

2

+k1 (Em − x4) (Im − x5)− dm(Im − x5)
2 − bmβh

Nm
x6 (Im − x5) (Sh − x6)

−
(
dh + bmβh

Nm
Im

)
(Sh − x6)

2
+ ϵ (Sh − x6) (Rh − x9) +

bmβh

Nm
Im (Sh − x6) (Eh − x7)

+ bmβh

Nm
x6 (Im − x5) (Eh − x7)− (dh + k2) (Eh − x7)

2

+k2 (Eh − x7) (Ih − x8)− (dh + µ+ γ) (Ih − x8)
2

+γ (Ih − x8) (Rh − x9)− (dh + ϵ) (Rh − x9)
2
.

Using the method of completing the square with the help of the given conditions, we obtain the
following:

dV
dt ≤ −

[√
[δ+dl+k(Lm+x1)]

2 (Lm − x1)−
√
dm (Mm − x2)

]2
−

[√
[δ+dl+k(Lm+x1)]

2 (Lm − x1)−

√(
dm+ bmβm

Nh

)
3 (Sm − x3)

]2

−

[√(
dm+ bmβm

Nh

)
3 (Sm − x3) +

√
(dh+µ+γ)

4 (Ih − x8)

]2

−

[√
bmβm

Nh
Sm

3 (Em − x4)−
√

(dh+µ+γ)
4 (Ih − x8)

]2

−

[√(
dm+ bmβm

Nh

)
3 (Sm − x3)−

√
(k1+dm)

3 (Em − x4)

]2

−
[√

(k1+dm)
3 (Em − x4)−

√
dm

3 (Im − x5)

]2

−

[√
dm

3 (Im − x5) +

√(
dh+

bmβh
Nm

Im
)

3 (Sh − x6)

]2

−

[√(
dh+

bmβh
Nm

Im
)

3 (Sh − x6)−
√

(dh+ϵ)
2 (Rh − x9)

]2

−

[√(
dh+

bmβh
Nm

Im
)

3 (Sh − x6)−
√

(dh+k2)
3 (Eh − x7)

]2
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−
[√

dm

3 (Im − x5)−
√

(dh+k2)
3 (Eh − x7)

]2
−
[√

(dh+k2)
3 (Eh − x7)−

√
(dh+µ+γ)

4 (Ih − x8)

]2
−
[√

(dh+µ+γ)
4 (Ih − x8)−

√
(dh+ϵ)

2 (Rh − x9)

]2
.

It is clear that dV
dt is negative definite and hence the endemic equilibrium point is globally asymp-

totically stable.

6 Sensitivity Analysis

The basic reproduction number is a crucial factor to examine when studying infectious disease
models. Equation (3.1) was derived as the model’s basic reproduction number, which is now being
analyzed in a sensitivity analysis (3.1) [20]. This investigation helps us understand the impact of
each variable on the spread of the disease [21]. Given the potential for errors in data collection and
parameter assumptions, sensitivity analysis is a common tool to evaluate the model’s robustness
to changes in parameter values. This method is employed to pinpoint variables that require
intervention efforts, as they strongly influence R0. Sensitivity indices allow for an evaluation of
the extent to which a variable changes when a parameter is modified. Specifically, the normalized
forward sensitivity index for a variable concerning a particular parameter is utilized. This index
is defined as the ratio of the variable’s relative change to the relative change in the parameter.
If the variable is differentiable concerning the parameter, the sensitivity index is expressed using
partial derivatives as follows.

Given a parameter θ, the normalized forward sensitivity index of R0 is differentiable and is
defined by [22]

Accordingly, the normalized forward sensitivity index of R0 with respect to system’s param-
eters can be calculated as:

SSR0

θ =
θ

R0

∂R0

∂θ
,

SSR0
rm = − rmk̄Nm√

(δ + dl)2 + 4k̄Nmrm(δ + dl −
√
(δ + dl)2 + 4k̄Nmrm)

,

SSR0

δ =
−δ +

√
(δ + dl)2 + 4k̄Nmrm

2
√
(δ + dl)2 + 4k̄Nmrm

,

SSR0

dl
= − dl

2
√
(δ + dl)2 + 4k̄Nmrm

,

SSR0

k̄
=

d2l + 2k̄Nmrm + δ(δ −
√

(δ + dl)2 + 4k̄Nmrm)− dl(−2δ +
√
(δ + dl)2 + 4k̄Nmrm)

2
√
(δ + dl)2 + 4k̄Nmrm(δ + dl −

√
(δ + dl)2 + 4k̄Nmrm)

,

SSR0

dm
= − 3dm + 2k1

2(dm + k1)
,

SSR0

bm
= 1, SSR0

βm
=

1

2
, SSR0

βh
=

1

2
, SSR0

rh
=

1

2
, SSR0

ϵ = 0, SSR0

Nh
= 0,



Climate impacts on mosquito-borne diseases 13

SSR0
p = − p

2(1− p)
, SSR0

k1
=

dm
2(dm + k1)

, SSR0

k2
=

dh
2(dh + k2)

,

SSR0

dh
= −3d2h + (γ + µ)k2 + 2dh(γ + µ+ k2)

2(γ + µ+ dh)(dh + k2)
,

SSR0
µ = − µ

2(γ + µ+ dh)
, SSR0

γ = − γ

2(γ + µ+ dh)
,

SSR0

Nm
=

d2l + 2k̄Nmrm + δ(δ −
√
(δ + dl)2 + 4k̄Nmrm)− dl(−2δ +

√
(δ + dl)2 + 4k̄Nmrm)

2
√
(δ + dl)2 + 4k̄Nmrm(δ + dl −

√
(δ + dl)2 + 4k̄Nmrm)

.

Accordingly, using data given in Table (1), it is obtained that

SSR0
rm = 0.31417, SSR0

rh
= 0.5, SSR0

δ = 0.48326, SSR0

dl
= −0.111601, SSR0

k̄
= −0.185828,

SSR0

k1
= 0.2222218, SSR0

k2
= 0.0711834, SSR0

dm
= −1.2222202, SSR0

dh
= −0.7419400, SSR0

ϵ = 0,

SSR0
p = −0.75, SSR0

bm
= 1, SSR0

βm
= 0.5, SSR0

βh
= 0.5,

SSR0
µ = −0.0000699, SSR0

γ = −0.324171908, SSR0

Nm
= −0.1858292, SSR0

Nh
= 0.

7 Computer Simulations

To analyze the behavior of the suggested model and identify the key parameters that impact
the spread of the disease, a numerical simulation is conducted utilizing the dataset presented in
Table 1.

We have used the values from different references and got the following results.
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Figure 1: Sensitivity of basic reproduction number using data set given in Table 1

Parameter Description Value
rm Per-capita birth rate of mosquitoes 0.6
rh Per-capita birth rate of human 0.035
δ Per-capita maturation rate of mosquitoes 0.06
dl Per-capita death rate of aquatic mosquitoes 0.4
k̄ Intraspecific competition rate of aquatic mosquitoes 0.005
p Total percentage population of male adult mosquitoes 0.6
bm Per-capita biting rate of mosquitoes 0.5
βm Transmission rate from infected human to mosquitoes 0.63
βh Transmission rate from infected mosquitoes to human 1.12
k1 Per-capita transition rate from exposed to infected mosquitoes 0.125
k2 Per-capita transition rate from exposed to infected human 0.5
dm Per-capita death rate of adult mosquitoes 0.1
dh Per-capita death rate of human 0.083
ϵ Per-capita transition rate from recovered to susceptible human 0.1
µ Per-capita mortality rate due to the mosquitoes born disease 0.000034
γ Per-capita recovery rate due to the mosquitoes born disease 0.16
Nm Total population of mosquitoes 250
Nh Total population of human 10,000

According to Fig. 1, the set of parameters that are positively proportional to R0 is given by
rm, rh, δ, bm, βm, βh, k1, k2, while the set of parameters that are negatively proportional to R0

includes dl, k̄, p, dm, dh, µ, γ,Nm. However, the parameters ϵ and Nh do not affect R0.
Fig. 2 illustrates the impact of the parameters βh and βm on infected humans and mosquitoes,
respectively. The results indicate that an increase in the value of βh from 0.75 to 1.5 leads to
a rise in the number of infected humans from approximately 1700 to 2500 within the first 60
days. Subsequently, all profiles of infected humans exhibit a decreasing trend over time [23].
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Figure 2: Effect of βh and βmon infected human and mosquitoes respectively.

Additionally, an increase in the value of βm from 0.4 to 0.9 results in a rise in the number of
infected mosquitoes from approximately 63 to 72 within the initial 60 days. This suggests that
as the number of infected humans increases during the [0, 60] day period, susceptible mosquitoes
become infected, leading to a peak in the number of infected mosquitoes during this timeframe.
These findings underscore the importance of controlling mosquito populations to mitigate trans-
mission and manage the spread of malaria.

Fig. 3 demonstrates the impact of the parameters k2 and k1 on infected humans and
mosquitoes, respectively. The results indicate that an increase in the value of k2 from 0.1 to
1.0 leads to a rise in the number of infected humans from approximately 1000 to 2500 within
the first 80 days. Following this, the profiles of infected humans consistently show a decline over
time. Additionally, an increase in the value of k1 from 0.1 to 1.0 results in a rise in the number
of infected mosquitoes from approximately 35 to 78 within the initial 60 days. This implies that
with an increase in the number of exposed susceptible humans, there is a higher likelihood of
mosquito bites, resulting in a rise in the infected human population. Conversely, an increase
in the number of mosquitoes poses a greater risk of infection for the human population during
this period. These observations highlight the significance of implementing additional measures
to control exposure to mosquito bites among humans, ultimately reducing the transmission of
malaria.

Fig. 4 demonstrates the impact of the parameters βh and k2 on recovered humans. The
results indicate that an increase in the value of βh from 0.75 to 1.5 leads to a rise in the number of
recovered humans from approximately 1100 to 1700 within the first 100 days. Following this, the
profiles of recovered humans consistently show a decline over time. Additionally, an increase in the
value of k2 from 0.1 to 1.0 results in a rise in the number of recovered humans from approximately
700 to 1600 within the initial 130 days. These observations are linked to the results depicted in
Fig. 2 and 3, indicating a higher number of infected humans in the early days. Subsequently,
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Figure 3: Effect of k2 and k1 on infected humans and mosquitoes respectively.

Figure 4: Effect of βh and k2 on recovered human.
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these individuals recover, contributing to the peak observed in the recovered human class, as
illustrated in Fig. 4 However, over time, the number of recovered humans decreases for both βh

and k2, associated with the transition from the recovered human class to the susceptible human
class. This transition is influenced by the fact that all recovered individuals have the potential
to be infected by malaria again.

8 Discussion and Concluding Remarks

The LMSEI-SEIR model has emerged as a valuable tool for studying mosquito-borne disease dy-
namics. Its applications have provided insights into disease transmission, control strategies, and
the impact of interventions. The model’s extensions have improved its realism, enabling a better
understanding of the complexities of disease dynamics. However, further research is needed to
address the model’s limitations and refine its applicability in real-world scenarios. While the
LMSEI-SEIR model provides valuable insights, it also has certain limitations. These include as-
sumptions regarding homogeneous mixing, constant parameter values, and lack of consideration
for behavioural changes. Future research should focus on refining the model to incorporate these
aspects and explore the impacts of interventions in real-world settings. Additionally, data-driven
approaches for parameter estimation and model validation should be pursued to enhance the
model’s accuracy and applicability.
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