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Adaptive mesh extended cubic B-spline method

for singularly perturbed delay Sobolev problems

Shegaye Lema Cheru, Gemechis File Duressa and Tariku Birabasa Mekonnen

Abstract. The purpose of this paper is to develop a robust numerical scheme for

a class of singularly perturbed delay Sobolev (pseudo-parabolic) problems that have

wide application in various branches of mathematical physics and fluid mechanics.

For the small perturbation parameter, the standard numerical schemes for the solu-

tion of these problems fail to resolve the boundary layer(s) and the oscillations occur

near the boundary layer. Thus, in this paper to resolve the boundary layer(s), im-

plicit Euler scheme for the time derivatives on uniform mesh and extended B-splines

basis functions consisting of free parameter λ are presented for spatial variable on

Bakhvalov type mesh. The stability and uniform convergence analysis of the pro-

posed method are established. The error estimation of the developed method is

shown to be first order accurate in time and second order accurate in space. Nu-

merical exprementation is carried out to validate the applicability of the developed

numerical method. The numerical results reveals that the computational result is in

agreement with the theoretical estimations.

Keywords. Delay partial differential equations, extended B-splines, parameter-uniform
convergence, singular perturbation problems, Sobolev problem

1 Introduction

The singularly perturbed delay Sobolev problems in the domain D = Ω × [0, T ],Ω = [0, l],Ω =
(0, l), D = Ω× (0, T ] is the subject of this work. Consider

Lu ≡ L1

[
∂u

∂t

]
+ L2u(x, t) + c(t)u(x, t− r) = f(x, t), (x, t) ∈ D, (1.1)

with interval and boundary conditions:

u(x, t) = φ(x, t), (x, t) ∈ Ω× [−r, 0], (1.2)

u(0, t) = u(l, t) = 0, t ∈ (0, T ], (1.3)
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where

L1

[
∂u

∂t

]
≡ −ε

∂3u(x, t)

∂t∂x2
+ a(x)

∂u(x, t)

∂t
,

L2[u(x, t)] ≡ −ε
∂2u(x, t)

∂x2
+ b(x, t)u(x, t),

and 0 < ε << 1 small perturbation parameter; the functions a, b, c, f and φ are sufficiently
smooth, r > 0 is delay parameter and a(x) ≥ α > 0.

Sobolev equations are characterized by the occurrence of a time derivative in the highest order
term, and many real-world physical problems fall into the category of pseudo-parabolic(Sobolev)
problems. They appear in many areas of mathematical physics and fluid dynamics[2], shear in
second-order fluids[1, 13], thermodynamics[1], astro-physics[12], filtration theory[19] and prop-
agation of long waves with small amplitude[10]. Some existence and uniqueness results about
Sobolev can be found in [13, 14]. The study of Sobolev equations basically began with Sobolev
and others in 1950. Much of his work has been motivated by some recent developments in which
pseudo-parabolic equations arise in place of the parabolic equations demanded by the classical the-
ories. Nhan[19] have proposed Galerkin approximation technique for nonlinear pseudo-parabolic
equations. Amirali[15] considered the 1 − D initial boundary problems for a pseudo-parabolic
equation with time delay in second spatial derivative. For a Sobolev problems involving time
delay in the 2nd−order derivative, a three layer difference method has been developed in [16]. In
[17], a 1 −D delay pseudo-parabolic problem is taken into consideration for numerical solution
through the construction of a higher order difference method. Zhang and Tan[18] considered
linearized compact finite difference methods(FDMs) for nonlinear Sobolev equations with delay
arguments.

Eq. (1.1) is an example of Sobolev equation characterized by having mixed time and space
derivatives appearing in the highest order terms. Various types of numerical methods for a
parameter free version of initial boundary value problem(IBVP) Eq. (1.1) has been studied by
many scholars. There is a scarcity of literature addressing the singularly perturbed nature of
the problem described by Eq. (1.1). Duru[6] analyzed Sobolev type equations through a FDM to
tackle the boundary layers. Amiraliyev et.al[22] developed a parameter uniform method for IBVP
on standard S-mesh on time direction. It is well known that standard discretization methods fail
to give accurate results when ε is small. Therefore, it is important to develop suitable numerical
methods to these problems, whose accuracy does not depend on ε.

Many scholars have proposed different numerical methods to solve singularly perturbed
Sobolev problems(SPSPs); for instance[3, 6, 22, 23, 24]. But all the mentioned authors con-
sidered numerical methods for SPSPs only on interpolating quadrature rules with weight and
basis functions. The authors [4, 5] investigated fourth-order SPSPs with time delay. A B-spline
collocation method has been developed for time dependent singularly perturbed problems(SPPs)
with time lag in [10], parabolic SPPs arising in computational neuro-science in [8] and uniformly
convergent collocation method for parabolic SPPs with time delay in[9]. We utilized extended
B-spline basis functions on a Bakhvalov mesh to devise a numerical approach for solving SPSPs
with large time delay. The adoption of these functions is not as prevalent as other methods such
as classical B-splines and FDMs.

Although several works use extended B-splines to build numerical treatments, no paper that
addresses numerical approaches for SPSPs with large time delay has been identified, as far as the
author is aware. In this study, we utilize the extended B-spline collocation method for the spatial
derivative on a Bakhvalov-type mesh and the Implicit Euler scheme for the time derivative on a
uniform mesh. One of the key advantages of extended cubic B-splines is their ability to provide a
flexible, easiness of the implementation and smooth representation of complex data sets. Despite
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this, compared to other approaches like classical B-splines and other methods found in literature,
the optimized value of λ yields better accuracy.

This paper is organized as follows: the analytical behavior of Eqs. (1.1)-(1.3) is provided
in section 2. The numerical scheme and error bounds for time discretization and spatial dis-
cretization using the extended B-spline method on Bakhvalov-type mesh are described in section
3. Section 4 presents the overall error bounds in the spatial direction. Section 5 includes a
tabulation of the results from a numerical experiment. The final section offers a conclusion and
discusses potential future work.

2 Preliminary Results

Here, we deal with the analytical properties of the exact solution, which are needed later in the
numerical aspects. If the solution u of Eq. (1.1) is smooth enough, then the mixed term is written

as
∂

∂t

(
∂2u

∂x2

)
=

∂2

∂x2

(
∂u

∂t

)
. Eq. (1.1), in operator form is:

Lεu = a(x)
∂u

∂t
− ε

∂3u

∂x2∂t
− ε

∂2u

∂x2
+ b(x, t)u(x, t)

Lemma 2.1. (Maximum Principle) Suppose Φ(x, t) ∈ C0(D) ∩ C2(D). If Φ(x, t) ≥ 0,∀(x, t) ∈
∂D and LεΦ(x, t) ≥ 0,∀(x, t) ∈ D, then Φ(x, t) ≥ 0,∀(x, t) ∈ D.

Proof. Assume there exists (x∗, t∗) ∈ D such that Φ(x∗, t∗) = min(x,t)∈D Φ(x, t) < 0. Now,

(x∗, t∗) /∈ ∂D and implies that (x∗, t∗) ∈ D. Applying the differential operator Lεu in Eq. (1.1)
on Φ(x, t) at the critical point (x∗, t∗) yields

LεΦ(x
∗, t∗) = a(x∗)

∂Φ(x∗, t∗)

∂t
− ε

∂3Φ(x∗, t∗)

∂t∂x2
− ε

∂2Φ(x∗, t∗)

∂x2
+ b(x∗, t∗)Φ(x∗, t∗),

By the partial derivative test, we have
∂2Φ(x∗, t∗)

∂x2
≥ 0,

∂Φ(x∗, t∗)

∂t
= 0. Incorporating our

assumptions, that Φ(x∗, t∗) ≤ 0, we can arrive at

LεΦ(x
∗, t∗) = −ε

∂2Φ(x∗, t∗)

∂x2
+ b(x∗, t∗)Φ(x∗, t∗) ≤ 0.

This contradicts the hypothesis. Therefore, we can conclude that the minimum of Φ(x, t) is
nonnegative(see[21]) and uniqueness of Eq. (1.1) follows from this maximum principle.

Lemma 2.2. The solution u(x, t) of Eqs. (1.1)-(1.3) holds

ε

∥∥∥∥∂u∂x
∥∥∥∥2 + α∥u∥2 ≤

{[
ε

∥∥∥∥∂φ(x, 0)∂x

∥∥∥∥2 + ∥φ(x, 0)∥2
]
eCt+∫ t

0

c∗∥φ(x, s)∥2eCtds+

∫ t

0

∥f∥2eCtds

} (2.1)

where ∥.∥ = ∥.∥L2(0,l) and C is a generic positive constant.

Proof. The proof of Lemma(2.2), Eq. (2.1) is provided in [3, 4, 5, 6, 23, 24].
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Lemma 2.3. Under the assumption a ∈ C2[0, l], b ∈ C2
0 (D), f ∈ C(D) and

|a(0)− b(0, t)| ≤ Cε, |a(l)− b(l, t)| ≤ Cε, (2.2)

asymptotic expansion of the solution of Eqs. (1.1)-(1.3) can be written as:

u(x, t) = u0(x, t) + ϑ0(ξ, t) + ω0(η, t) +
√
ε [u1(x, t) + ϑ1(ξ, t) + ω1(η, t)] +R∗(x, t), (2.3)

where u0(x, t) is the solution of reduced problem, ϑ0(ξ, t) and ω0(η, t) are functions taking into
account the layer behavior of the solution near the points x = 0 and x = 1, respectively and each
term in Eq (2.3) are given as follows:a(x)

∂u0

∂t
+ b(x, t)u0 + c(t)u0(x, t− r) = f(x, t),

u0(x, t− τ) = φ(x), −r ≤ t ≤ 0;

a(x)
∂u1

∂t
+ b(x, t)u1 + c(t)u1(x, t− r) = −

√
ε

[
∂3u0

∂t∂x2
+

∂2u0

∂x2

]
,

u1(x, t) = 0, −r ≤ t ≤ 0;
−ε

∂3ϑ0

∂t∂ξ2
+ a(0)

∂ϑ0

∂t
− ε

∂2ϑ0

∂ξ2
+ a(0)ϑ0 + c(t)ϑ0(x, t− r) = 0,

ϑ0(ξ, t) = 0, −r ≤ t ≤ 0;

ϑ0(0, t) = −u0(0, t); ϑ0(
l√
ε
, t) = 0;

−ε
∂3ϑ1

∂t∂ξ2
+ a(0)

∂ϑ1

∂t
− ε

∂2ϑ1

∂ξ2
+ a(0)ϑ1 + c(t)ϑ1(x, t− r) = −ξ

∂b(0, t)

∂x
ϑ0 − ξa′(0)

∂ϑ0

∂t
,

ϑ1(ξ, t) = 0, −r ≤ t ≤ 0;

ϑ1(0, t) = −u1(0, t); ϑ1(
l√
ε
, t) = 0;

−ε
∂3ω0

∂t∂η2
+ a(l)

∂ω0

∂t
− ε

∂2ω0

∂η2
+ a(l)ω0 + c(t)ω0(x, t− r) = 0,

ω0(η, t) = 0, −r ≤ t ≤ 0;

ω0(
l√
ε
, t) = 0; ω0(0, t) = −u0(l, t),

−ε
∂3ω1

∂t∂η2
+ a(l)

∂ω1

∂t
− ε

∂2ω1

∂η2
+ a(l)ω1 + c(t)ω1(x, t− r) = −η

∂b(l, t)

∂x
ω0 − ηa′(l)

∂ω0

∂t
,

ω1(η, t) = 0, −r ≤ t ≤ 0;

ω0(
l√
ε
, t) = 0; ω0(0, t) = −u1(l, t),

where ξ =
x√
ε
and η = l−x√

ε
. The remainder term of the asymptotic expansion is:

εs
∥∥∥∥∂k+sR∗

∂tk∂xs

∥∥∥∥ ≤ Cε
1−

s

2 , k, s = 0, 1, 2.

Proof. Similar proof can be found in [4, 5, 23, 24].
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Lemma 2.4. Under the conditions of Eq. (2.2) and (x, t) ∈ D, k = s = 0, 1, 2 considering∣∣∣∣∂k+sϑ0

∂tk∂xs

∣∣∣∣ ≤ Cε−s/2e−x
√

a(0)/ε and

∣∣∣∣∂k+sω0

∂tk∂xs

∣∣∣∣ ≤ Cε−s/2e−(1−x)
√

a(l)/ε,

and under the assumption f(0, t) = f(l, t) = 0, we have the estimate for k = s = 0, 1, 2∣∣∣∣ ∂k+su

∂tk∂xs

∣∣∣∣ ≤ C
{
1 + ε−s/2

[
e−x

√
a(0)/ε + e−(l−x)

√
a(l)/ε

]}
, (x, t) ∈ D. (2.4)

Proof. For the proof of Lemma (2.4), Eq. (2.4), refer([3, 4, 5, 6])

Remark. The compatibility conditions at the corner points are given as:

φ(0, 0) = 0, φ(l, 0) = 0, and
−ε

∂2φ(0, 0)

∂x2
+ b(0, 0)φ(0, 0) = −c(0)φ(0,−r) + f(0, 0),

−ε
∂2φ(l, 0)

∂x2
+ b(l, 0)φ(l, 0) = −c(0)φ(l,−r) + f(l, 0).

Under these assumptions, the IBVP Eq. (1.1)- (1.3) admits a unique solutions.

3 Formulation of the Numerical Method

Here, we discretize the temporal and spatial domain of Eq. (1.1)- (1.3) to develop the numerical
scheme.

3.1 The Time Semi-discretization

Here we present steps to find interpolating points, which can be used to express t − τ, τ = r in
terms of grid points, from which u(x, t− r) can be computed. Now,

1. For a fixed M , compute Λ
M

= {tj : tj = j∆t, j = 0, ...,M} and fix value of τ = r.

2. u(x, t) = φ(x, t) for −r ≤ t ≤ 0, u(0, t) = u(l, t) = 0, from interval and BCs.

3. Compute K such that K = ⌊ τ

∆t
⌋, where ⌊p⌋ is used for the floor of p.

4. For any tj in {tj}Kj=1 ⊂ {t : 0 < t ≤ τ}, it is clear that tj −τ ∈ (−τ, 0] and hence u(x, t−τ)

can be replaced by φ(x, t− τ)(from the interval condition).

5. For any tj ∈ {tj}Mj=K+1 ⊂ {t : τ < t < 1}, then t− τ ∈ [tj−K−1, tj−K ].

Let U j+1(x) be the approximation of u(x, tj+1) at (j + 1)th time level, then introducing the

operator D−
t U

j =
U j
i − U j−1

i

∆t
, we discretize the problem (1.1-1.3) as:

U j+1(x) = φ(x, tj+1), x ∈ Ω,−(K + 1) ≤ j < 0,

−
(
ε+

ε

∆t

)
U j+1
xx (x) +

(
a(x)

∆t
+ bj+1(x

)
U j+1(x) = − ε

∆t
U j
xx(x)+

a(x)

∆t
U j(x)− cj+1U j−K+1(x) + f(x, tj+1), x ∈ Ω, 0 ≤ j ≤ M − 1,

U j+1(0) = U j+1(l) = 0, 0 ≤ j ≤ M.

(3.1)
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Equation (3.1) can be rewritten as
L̃εU

j+1(x) = gj+1(x), x ∈ Ω, 0 ≤ j ≤ M − 1,

U j+1(x) = φ(x, tj+1), x ∈ Ω,−(K + 1) ≤ j < 0,

U j+1(0) = U j+1(l) = 0, 0 ≤ j ≤ M,

(3.2)

where gj+1(x) = − ε

∆t
U j
xx(x) +

a(x)

∆t
U j(x)− cj+1U j−K+1(x) + f(x, tj+1) and the operator L̃ε is

defined as Eq. (3.3):

L̃εU
j+1(x) = −

(
ε+

ε

∆t

)
U j+1
xx (x) +

(
a(x)

∆t
+ bj+1(x

)
U j+1(x). (3.3)

The subsequent lemma estimates the bound for local truncation error(LTE), indicating how much
each time step contributes to the overall error of the time discretization(see[8]).

Lemma 3.1. If∣∣∣∣∂i+ju(x, t)

∂xi∂tj

∣∣∣∣ ≤ C, (x, t) ∈ [0, l]× [0, T ], 0 ≤ j ≤ 3, 0 ≤ i ≤ 3,

then the LTE associated to the semi-discrete scheme Eq. (3.2) satisfies

∥ej+1∥∞ ≤ C(∆t)2, (3.4)

where ej+1 = u(x, tj+1) − U(x, tj+1) is the local error estimates in the temporal direction at
(j + 1)th time level and the global truncation error at time tj+1 satisfies

∥Ej∥∞ ≤ C(∆t). (3.5)

where C is constant independent from number of mesh points in time direction.

Proof. Since U j+1(x) satisfies

L̃εU
j+1(x) = gj+1(x) (3.6)

and solution of Eq. (1.1)- (1.3) is smooth enough, using mean value theorem, we have:

gj+1(x) = L̃εU
j+1(x) +

∫ tj+1

tj

(tj − ς)
∂2u

∂t2
(ς)dς,

= L̃εU
j+1(x) +O((∆t)2).

(3.7)

From Eq. (3.6)- (3.7), the LTE corresponding to Eq. (3.1) is given by ej+1 = u(x, tj+1)−U(x, tj+1)
and satisfy the boundary value problem:

L̃εej+1 = O((∆t)2) ⇒ ej+1 =
(
L̃εu

)−1

O((∆t)2), ej+1(0) = ej+1(l) = 0. (3.8)

An application of maximum principle on operator L̃εu and Eq. (3.8) gives:

∥ej+1∥∞ ≤ C(∆t)2.
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The LTE given in Eq. (3.4) measures the contributions of each time step to the global error of
time discretization. The global error estimate(Eq. (3.5)) at the jth time step is

∥Ej∥∞ =

∥∥∥∥∥
j−1∑
i=1

ei

∥∥∥∥∥
∞

, (j) ≤ T

∆t
,

≤ ∥e1∥∞ + ∥e2∥∞ + ...+ ∥ej−1∥∞ ,

≤ C((j)k)(∆t)2 ≤ C(j∆t)(∆t) ≤ C1T (∆t) ≤ C1T (∆t) ≤ C3(∆t).

where C1 is a positive constant independent of ε and ∆t.

3.2 The spatial discretization

To discretize space variable, layer adapted meshes called Bakhvalov mesh is presented.

3.2.1 The Mesh Generation

In this section, we construct Bakhvalov mesh that generates more mesh points in the layer re-
gion than in the other part of the domain. We divide the three non overlapping subintervals
[0, σ1], [σ1, σ2] and [σ2, l] into N/4, N/2 and N/4 equidistant subintervals respectively. The tran-
sition point is taken as:

σ1 = min

{
l

4
, α−1ε |ln ε|

}
, σ2 = l − σ1. (3.9)

Moreover, using Eq. (3.9) xi, node points are specified as(see [23, 24]):

xi =



−α−1ε ln

(
1− (1− ε)

4i

N

)
, i = 0(1)

N

4
, xi ∈ [0, σ1], σ1 <

l

4
;

−α−1ε ln

(
1−

(
1− e−αl/4ε

) 4i
N

)
, i = 0(1)

N

4
, xi ∈ [0, σ1], σ1 =

l

4
;

σ1 +

(
i− N

4

)
2(σ2 − σ1)

N
, i =

N

4
+ 1(1)

3N

4
, xi ∈ [σ1, σ2];

σ2 − α−1ε ln

(
1− (1− ε)

4
(
i− 3N

4

)
N

)
, i =

3N

4
+ 1(1)N, xi ∈ [σ2, l], σ2 <

3l

4
;

σ2 − α−1ε ln

(
1− (1− e−αl/4ε)

4
(
i− 3N

4

)
N

)
, i =

3N

4
+ 1(1)N, xi ∈ [σ2, l], σ2 =

3l

4
.

(3.10)

3.2.2 Extended B-spline Collocation Method

Let xi : 0 = x0 < ... < xN = l be the spatial domain [0, l] with non-uniform mesh spacing
hi = xi−xi−1 which is given in Eq. (3.10). The extended form of B-spline of degree 4, Qi(x, λ), i =
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−1, 0, ..., N + 1, is defined by[8, 9, 10],

Qi(x, λ) =
1

24h2
i



4hi(1− λ)(x− xi−2)
3 + 3λ(x− xi−2)

4, if [xi−2, xi−1],

(4− λ)h4
i + 12h3

i (x− xi−1) + 6h2
i (2 + λ)(x− xi−1)

2−
12hi(x− xi−1)

3 − 3λ(x− xi−1)
4, if [xi−1, xi],

(4− λ)h4
i + 12h3

i (xi+1 − x) + 6h2
i (2 + λ)(xi+1 − x)2−

12hi(xi+1 − x)3 − 3λ(xi+1 − x)4, if [xi, xi+1],

4hi(1− λ)(xi+2 − x)3 + 3λ(xi+2 − x)4, if [xi+1, xi+2],

0, otherwise.

(3.11)
The extended B-splines and its first four derivatives vanish outside the region xi−2, xi+2 and
−m(m− 2) ≤ λ ≤ 1 is a free parameter which is used to change the shape of extended cubic B-
splines functions. The variation in m gives different forms of extended cubic B-splines functions.
The extended cubic B-spline function has one free parameter λ, which controls tension of the
solution curve and when λ → 0, the extended cubic B-spline reduced to convectional cubic
B-spline functions. For λ ∈ [−8, 1], cubic B-spline and extended cubic B-spline share the same
properties. Since, B-spline of degree p are (p−1) continuously differentiable piecewise polynomials
that forms a basis of splines, let Ξ3(Ω) ⊂ C2(Ω). Since each Qi(x) is also a piecewise cubic with
knots at Ω, each Qi(x) ∈ Ξ3(Ω). Suppose that Q3(Ω) = span {Q−1, Q0, ..., QN , QN+1}. Since,
the functions Q′

is are linearly independent on [0, l], Q3(Ω) is an (N + 3) dimensional. The value
of extended B-splines and its derivatives at the nodal points can be calculated from Eq. (3.11)
and depicted in Table. (1).

Table 1: Values of Qi(x, λ), Q
′
i(x, λ) and Q

′′
i (x, λ) at nodal points

xi−2 xi−1 xi xi+1 xi+2

Qi(x, λ) 0 4−λ
24

8+λ
12

4−λ
24 0

Q
′
i(x, λ) 0 1

2hi
0 −1

2hi
0

Q
′′
i (x, λ) 0 2+λ

2h2
i

−2+λ
h2
i

2+λ
2h2

i
0

Let S(x, λ) be the B-spline interpolating function for U(x, t) at the nodal points and S(x, λ) ∈
Q3(Ω). We aim to find an approximate solution, denoted as S(x, λ), to the problem described
by Eq. (3.1) through (3.2). This solution is expressed as:

S(x, λ) =

N+1∑
i=−1

γiQi(x, λ), (3.12)

where γi are unknown real coefficients to be determined by requiring that S(x, λ) satisfies Eq. (3.2)
at (N+1) collocation points and BCs. Using Eq. (3.12) and Table (1), Si(x, λ) and its derivatives
at the knots are determined in terms of the parameters as follows:

Si(x, λ) =
4−λ
24 γi−1 +

8+λ
12 γi +

4−λ
24 γi+1,

S
′

i(x, λ) =
1

2hi
γi+1 − 1

2hi
γi−1,

S
′′

i (x, λ) =
2+λ
2h2

i
γi−1 − 2+λ

h2
i
γi +

2+λ
2h2

i
γi+1.

(3.13)

We determine the values of γ′
is and thus the approximation to the solution of BVP, by selecting

collocation points to coincide with nodes and then substituting the approximate solution Si(x, λ)
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and its derivatives Eq. (3.13) at the knots into Eq. (3.2), we obtain (N + 1) linear equations in
(N + 3) unknowns.

r−i γ
j+1
i−1 + rciγ

j+1
i + r+i γ

j+1
i+1 = E−

i γj
i−1 + Ec

i γ
j
i + E+

i γj
i+1 + G̃i, for i = 0(1)N, (3.14)

where the coefficients are given by:

r−i = −ε

(
2 + λ

2h2
i

+
2 + λ

2∆th2
i

)
+

ai(4− λ)

24∆t
+

bj+1
i (4− λ)

24
,

rci = ε

(
2 + λ

h2
i

+
2 + λ

∆th2
i

)
+

ai(8 + λ)

12∆t
+

bj+1
i (8 + λ)

12
,

r+i = −ε

(
2 + λ

2h2
i

+
2 + λ

2∆th2
i

)
+

ai(4− λ)

24∆t
+

bj+1
i (4− λ)

24
,

E−
i = −ε

2 + λ

2∆th2
i

+
ai(4− λ)

24∆t
, Ec

i = ε
2 + λ

∆th2
i

+
ai(8 + λ)

12∆t
,

E+
i = −ε

2 + λ

2∆th2
i

+
ai(4− λ)

24∆t
, G̃i = f j+1

i − cj+1U j−K+1
i .

(3.15)

Imposing Boundary conditions

BCs in Eq. (3.2) at x0 = 0 and xN = N must be imposed to the system in Eq. (3.14) to
obtain the unique solution. Thus, the approximate solution at two boundary points is:

γj+1
−1 = −2

(8 + λ)

4− λ
γj+1
0 − γj+1

1 , for i = 0.

γj+1
N+1 = −γj+1

N−1 − 2
(8 + λ)

4− λ
γj+1
N , for i = N.

(3.16)

Thus, Eq. (3.14) and Eq. (3.16) lead to (N + 3)× (N + 3) system with (N + 3) unknowns. Now
by substituting Eq. (3.16) in Eq. (3.14), we obtain(

rc0 − 2r−0
8 + λ

4− λ

)
γj+1
0 +

(
r+0 − r−0

)
γj+1
1 =(

Ec
0 − 2E−

0

8 + λ

4− λ

)
γj
0 +

(
E+

0 − E−
0

)
γj
1 + G̃j+1

0 , i = 0.

(3.17)

(
r−N − r+N

)
γj+1
N−1 +

(
rcN − 2r+N

8 + λ

4− λ

)
γj+1
N =

(
E−

N − E+
N

)
γj
N−1 +

(
Ec

N − 2E+
N

8 + λ

4− λ

)
γj
N + G̃j+1

N , i = N.

(3.18)

Now, Eq. (3.14)- (3.18) lead to (N + 3) × (N + 3) linear system with (N + 3) unknowns
γ−1, γ0, ..., γN , γN+1. Excluding the unknowns γ−1 and γN+1 from Eq. (3.17) and Eq. (3.18)
for i = 0 and i = N , then Eq. (3.14) becomes solvable (N + 1) × (N + 1) system of linear
equations in (N + 1) unknowns γ0, γ1, ..., γN−1, γN , in matrix form as

Mγj+1
i = Nγj

i +G, i = 1, 2, ..., N − 1, (3.19)
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where the entries of the tridiagonal matrix M = mij and N = nij are given as:

M =



(
rc0 − 2r−0

8 + λ

4− λ

) (
r+0 − r−0

)
0 0 . . . 0 0 0

r−1 rc1 r+1 0 . . . 0 0 0
0 r−2 rc2 r+2 . . . 0 0 0
...

...
... . . .

...
...

...
0 0 0 0 . . . r−N−1 rcN−1 r+N−1

0 0 0 0 . . . 0
(
r−N + r+N

) (
rcN − 2r+N

8 + λ

4− λ

)



N =



(
Ec

0 − 2E−
0

8 + λ

4− λ

) (
E+

0 − E−
0

)
0 . . . 0 0 0

E−
1 Ec

1 E+
1 . . . 0 0 0

...
...

...
...

...
...

0 0 0 . . . E−
N−1 Ec

N−1 E+
N−1

0 0 0 . . . 0
(
E−

N + E+
N

) (
Ec

N − 2E+
N

8 + λ

4− λ

)


The entries of column vector γ are γ = (γ0, ..., γN−1, γN )

T
and column vector G is

G =


G̃j+1

0 , j = 0,

G̃j+1
i , j = 1(1)M − 1,

G̃j+1
N , j = N.

(3.20)

Now, Eq. (3.19- 3.20) can be rewritten as:

Mγj+1
i = Hi, where, Hi = Nγj

i +G, (3.21)

The matrix M in Eq. (3.21) is strictly diagonally dominant as they satisfy the relations

|ai,j | − (|ai,j−1|+ |ai,j+1|) =
ai

12∆t
(4 + 2λ) > 0,

since ai ≥ α > 0, we observe that for λ > −2, the matrix M is strictly diagonally dominant and
hence non-singular. For a matrix M which is diagonally dominant both rows and by columns, we
give bounds for

∥∥M−1
∥∥
1
and

∥∥M−1
∥∥
∞, which can be used to give a lower bound for the smallest

singular value. If M is diagonally dominant by rows (i.e., |akk| >
∑

j ̸=k |akj | , 1 ≤ k ≤ n), we can

bound the L∞ norm of M−1 by the following lemma:

Lemma 3.2. Assume M is diagonally dominant by rows and set

ν = min
k

|akk| −
∑
j ̸=k

|akj |

 , then
∥∥M−1

∥∥
∞ ≤ 1

ν

Therefore, we can solve the linear system Eq. (3.19) uniquely for real unknowns (γ0, γ1, ..., γN−1, γN )
by an existing algorithm to solve tridiagonal system and then using BCs Eq. (3.17) and Eq. (3.18),
we obtain γ−1 and γN+1. Hence, the method of collocation using a basis of extended cubic B-
splines applied to Eq. (3.2) produces a unique approximate solution S(x, λ) at (j + 1)th time
level. The obtained values of γ′

is are substituted in Eq. (3.12), which is the approximated solu-
tion to Eq. (3.2). However, these solution has two free parameter x and λ. Now to get the better
approximation the optimization of λ is required. Once the optimized value of λ is obtained, it
will be substituted back and hence the better approximated solution is obtained.
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4 Parameter Uniform Convergence Analysis

For the derivation of the uniform convergence, we use the following lemmas:

Lemma 4.1. The extended cubic B-splines Q−1(x, λ), Q0(x, λ), ..., QN−1(x, λ), QN (x, λ) defined
in Eq. (3.11) satisfies the following inequality

N+1∑
i=−1

|Qi(x, λ)| ≤
7

4
, x ∈ [0, l] (4.1)

Proof. For the proof of Lemma (4.1) and Eq. (4.1), refer to a series of papers[9, 10].

Let Y (x) be the unique cubic spline interpolate from an approximate solution S(x, λ) of
Eq. (3.2) to the solution u(x, t) which is given by

Y (x) =

N+1∑
i=−1

γiQi(x, λ) (4.2)

Lemma 4.2. Let Y (x) ∈ C2([0, l]) given in Eq. (4.2) be the cubic spline interpolant associated
with a solution ũ(x). If ũ(x) ∈ C4([0, l]), it follows from the estimate of Hall[11] that the standard
cubic spline interpolation error estimate holds, for x ∈ [xi, xi+1] ∈ Ω∥∥∥D(n) (û(x)− Y (x))

∥∥∥ ≤ λn

∥∥∥u(4)(x)
∥∥∥h4−n

i , n = 0, 1, 2, 3, (4.3)

where λn are constant independent of hi and N .

Theorem 4.1. Let S(x, λ) be an extended cubic B-spline collocation approximation from the
space of extended B-splines Ξ3(Ω) to the solution of Eq. (3.2) and û(xi) is the analytical solution
to the problem. If g̃(x) ∈ C2([0, l]), then the parameter uniform error estimate satisfies the bound

sup
0<ε≤1

max
0≤i≤N

∥û(xi)− S(xi, λ)∥ ≤ CN−2. (4.4)

where C is a constant independent of ε and N .

Proof. To estimate the error |û(xi)− S(xi, λ)|, we use Lemma (2.4,4.2) and Eq. (4.3) as follows:∣∣∣L̃εû(xi)− L̃εY (xi)
∣∣∣ ≤

ε (|ϱ| |û′′(xi)− Y ′′(xi)|) + |p(xi)| |û(xi)− Y (xi)| ,

≤ ε
(
|ϱ|λ2

∣∣∣u(4)
∣∣∣h2

i

)
+ ∥p∥∞ λ0

∣∣∣u(4)
∣∣∣h4

i

≤
(
ε |ϱ|λ2h

2
i + ∥p∥∞ λ0h

4
i

) ∣∣∣u(4)
∣∣∣ ,

≤ C
((

ε |ϱ|λ2h
2
i + ∥p∥∞ λ0h

4
i

) (
1 + ε−2

[
e−xi

√
(a(0))/ε + e−(l−xi)

√
(a(l))/ε

]))
,

(4.5)

where ϱ = (1 + 1/∆t) and p(xi) =
(
ai/∆t+ bj+1

i

)
. Now depending on the magnitude of σ1 and

σ2 there arises the following cases:
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Case 1. Consider σ1 = l/4 and σ2 = 3l/4, and so,
l

4
< α−1

0 ε ln ε and 3l
4 > l−α−1

0 ε ln ε, h(1) =

h(2) = h(3) = lN−1. Since

h
(1)
i = xi − xi−1

= α−1ε

ln
1−

1− e
−
αl

4ε

 4(i− 1)

N

− ln

1−

1− e
−
αl

4ε

 4(i)

N

 ,

≤ α−1ε

1−

1− e
−
αl

4ε

 4(i− 1)

N
− 1

−

1−

1− e
−
αl

4ε

 4(i)

N
− 1

 ,

= α−1ε

−
1− e

−
αl

4ε

 4(i− 1)

N
+

1− e
−
αl

4ε

 4(i)

N

 ,

= α−1ε

1− e
−
αl

4ε

 4

N
≤ 4α−1εN−1 ≤ 4α−1N−1 ≤ CN−1.

Now,
l

4
< α−1

0 ε ln ε ⇒ ε−1 ≤ 4α−1l−1 ln ε ≤ C ln ε. Using this and Eq. (4.5), we have∣∣∣L̃εû(xi)− L̃εY (xi)
∣∣∣ ≤ (ε |ϱ|λ2h

2
i + ∥p∥∞ λ0h

4
i

) ∣∣∣u(4)
∣∣∣ ,

≤ Cε−2
((
ε |ϱ|λ2N

−2 + ∥p∥∞ λ0N
−4
))

≤ CN−2
(
ε−1 + ε−2N−2

)
≤ CN−2

(
C ln ε+ (C ln ε)2N−2

)
≤ CN−2, since C ln ε+ (C ln ε)2N−2 ≤ C

(4.6)

Now for σ2 = 3l
4 , σ2 = l − σ1 = 3l

4 , xi ∈ [σ2, l], i = 3N/4 + 1, .., N , we have

h
(2)
i = xi − xi−1

= α−1ε

ln
1−

1− e
−
αl

4ε

 4
(
i− 1− 3N

4

)
N

− ln

1−

1− e
−
αl

4ε

 4
(
i− 3N

4

)
N

 ,

≤ α−1ε

1−

1− e
−
αl

4ε

 4
(
i− 1− 3N

4

)
N

− 1

−

1−

1− e
−
αl

4ε

 4
(
i− 3N

4

)
N

− 1

 ,

= α−1ε

−

1− e
−
αl

4ε

 4
(
i− 1− 3N

4

)
N

+

1− e
−
αl

4ε

 4
(
i− 3N

4

)
N

 ,

= α−1ε

 4

N

1− e
−
αl

4ε

 ≤ 4α−1εN−1 ≤ CN−1.

By using h
(2)
i ≤ CN−1 and Eq. (4.5), we have the following estimate:∣∣∣L̃εû(xi)− L̃εY (xi)

∣∣∣ ≤ CN−2. (4.7)
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Case 2. If Ωi lies in the boundary layer regions

1. If σ1 <
l

4
, xi ∈ [0, σ1], i = 1, ..., N/4, then the mesh spacing is given as:

hi = xi − xi−1 = −α−1ε ln

(
1− (1− ε)

4i

N

)
+ α−1ε ln

(
1− (1− ε)

4(i− 1)

N

)
,

If the mean value theorem[25] is applied to this, we have

hi = 4α−1(1− ε)N−1 ≤ C(1− ε)N−1.

Using the bound in the layer regions together with Eq. (4.5), we have∣∣∣L̃εû(xi)− L̃εY (xi)
∣∣∣ ≤ CN−2. (4.8)

2. If xi ∈ [σ1, σ2], xi = σ1 +

(
i− N

4

)
h(1), i =

N

4
+ 1, ...,

3N

4
, h(1) = 2σ2−σ1

N , then, the mesh

spacing is given as:

(a) If xi ∈ [σ1, σ2] and σ1 = −α−1ε ln ε <
l

4
, then

hi = xi − xi−1 = σ1 +

(
i− N

4

)
h(1) − σ1 −

(
i− 1− N

4

)
h(1) ≤ CN−1

(b) If xi ∈ [σ1, σ2] and σ1 =
l

4
, then

hi = xi − xi−1 = σ1 +

(
i− N

4

)
h(1) − σ1 −

(
i− 1− N

4

)
h(1) ≤ CN−1

Now combining this two cases with Eq. (4.5),we get∣∣∣L̃εû(xi)− L̃εY (xi)
∣∣∣ ≤ CN−2. (4.9)

3. If xi ∈ [σ2, l], xi = σ2−α−1ε ln

1−

1− e
−
αl

4ε

 4
(
i− 3N

4

)
N

 , i = 3N/4+1, ..., N , then

the mesh spacing is given as:

hi = xi − xi−1 = σ2 − α−1ε ln

1−

1− e
−
αl

4ε

 4
(
i− 3N

4

)
N

−

σ2 − α−1ε ln

1−

1− e
−
αl

4ε

 4
(
i− 1− 3N

4

)
N


If the mean value theorem[25] is applied in the above equation, we have

hi = α−1ε
4(1− ε)N−1

1− i14(1− ε)N−1
≤ 4α−1(1− ε)N−1 ≤ C(1− ε)N−1.

Now, using this and the estimate in Eq. (4.5), we get∣∣∣L̃εû(xi)− L̃εY (xi)
∣∣∣ ≤ CN−2. (4.10)
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Finally, on combining Eq. (4.5) and Eq. (4.6)- (4.10), the estimates holds for all cases:∣∣∣L̃εû(xi)− L̃εY (xi)
∣∣∣ ≤ CN−2. (4.11)

Hence, by combining Eq. (4.6- 4.11), we obtain:∣∣∣L̃εS(xi)− L̃εY (xi)
∣∣∣ = ∣∣∣g(xi, tj+1)− L̃εY (xi)

∣∣∣
=
∣∣∣L̃εû(xi)− L̃εY (xi)

∣∣∣ ≤ CN−2 |ln ε| ≤ CN−2.
(4.12)

We know that L̃εU(xi) = g̃(xi), 0 ≤ i ≤ N with given BCs leads to the linear system Mγ = H.

Assume that L̃εY (xi) = g(xi), 0 ≤ i ≤ N with BCs Y (0, tj+1) = Y (l, tj+1) = 0 leads to the linear
system Mγ = H. It follows that:

M (γ − γ) =
(
H −H

)
, (4.13)

where γ − γ = (γ0 − γ0, γ1 − γ1, ..., γN − γN )
T
and

H −H = (g̃(x0)− g(x0), g̃(x1)− g(x1), ..., g̃(xN )− g(xN ))
T
.

Since M (γ − γ) =
(
H −H

)
implies that L̃εS(xi)− L̃εY (xi), from Eq. (4.12), we have that∥∥H −H

∥∥ ≤ CN−2 |ln ε| (4.14)

It can be seen that for λ > −2 and reasonable large N the matrix M is strictly diagonally
dominant and thus nonsingular. From the estimate in Lemma (3.2), we get∥∥M−1

∥∥ ≤ C (4.15)

Combining this bounds in Eq. (4.13)- (4.15), we obtain

∥γ − γ∥ ≤ CN−2 |ln ε| . (4.16)

Let z = (z0, z1, ..., zN )
T
, where zi = γi − γi. Now, from Eq. (4.13), we have

z = M−1
(
H −H

)
. (4.17)

Using Eq. (4.14) and Eq. (4.15) in Eq. (4.17), we have the following estimate:

∥z∥ ≤ CN−2 |ln ε| ≤ CN−2. (4.18)

Also the boundary conditions given in Eq. (3.17) and Eq. (3.18) is also bounded by CN−2 |ln ε|.
Therefore, we are enabled to estimate |S(x, λ), Y (x)| as

|S(x, λ)− Y (x)| =
N+1∑
i=−1

(γi − γi)Qi(x, λ) (4.19)

Using Eq. (4.16-4.19) and lemma (4.1), we have

max
0≤i≤N

|S(xi, λ)− Y (xi)| ≤ CN−2. (4.20)

Hence, we arrive at Theorem (4.1) and Eq. (4.4), which completes the proof.
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Theorem 4.2. Let S(xi, λ) be the extended B-spline collocation approximation to the solution
u(x, t) of Eq. (4.17) at (j + 1)th time level. Then, the parameter-uniform error estimates of the
fully discrete scheme is given by

|u(xi)− S(xi, λ)| ≤ C
(
∆t+N−2

)
, 0 ≤ i ≤ N (4.21)

where C is a constant independent of mesh parameters and ε. The results in Eq. (4.21) are
directly derived from Eq. (4.20) and Lemma (3.1).

5 Numerical Results and Discussions

Computations are done for reasonable value of the free parameter λ = −0.55, 0, 0.9 ∈ [−8, 1] and
λ = 0.9 ∈ [−8, 1] gives minimum error. Since the exact solution for the test example is unknown,
we use the double mesh principle to calculate absolute errors. For each ε, we can determine the
maximum point wise errors using the formula as

EN,M
ε = max

0≤i,j≤N,M

∣∣UN,M (xi, tj)− U2N,2M (x2i, t2j)
∣∣ ,

where UN,M (xi, tj) is numerical solution at N,M mesh points whereas U2N,2M (x2i, t2j) is nu-
merical solution at 2N, 2M mesh points. The rate of convergence is calculated as:

RN,M
ϵ = log2

(
EN,M

ε

E2N,2M
ε

)
Example 1. Consider the test problem for Eq. (1.1)- (1.3(see[24])

x(1− x2)
∂u

∂t
− ε

∂3u

∂t∂x2
− ε

∂2u

∂x2
+ t sin(πx)u(x, t) + t2u(x, t− r) =

e−t cos(t)sin(πx), (x, t) ∈ (0, l)× (0, r],

u(x, t) = φ(x, t) = e−t sin(2πx), (x, t) ∈ Ω × [−r, 0],

u(0, t) = u(l, t) = 0, t ∈ (0, T ],

where l = 1, r = 1 and T = 2. Here we take the value of α = 1.25 for all step sizes.

The computed maximum point-wise errors EN,M
ε are given in Tables 2,3 and 4 for free parameter

λ = 0.9, λ = −0.55 and λ = 0 respectively. From the results, it is clear that the proposed method
gives an ε−uniform convergence. Table 5 displays the comparison of computational results using
classical cubic B-spline method for λ = 0 and extended B-spline method for λ = 0.9 and λ =
−0.55. Additionally, Table 5 provides numerical results for ε = 2−14 and N = 64, 128, 256 that
are compared to those provided in [24]. This comparison shows that the extended cubic-B-spline
method on Bakhvalov mesh yields a more accurate solution when compared to studies found in
[24]. Both the particular selections of the extension parameter λ gives numerical results, but
the value of λ = 0.9 gives better results than λ = −0.55 and λ = 0. As we observe from all
tables that, extended cubic B-spline have an advantage over the classical B-splines as for some
optimized value of λ, the solution obtained by the extended B-splines is better than the solution
obtained by classical B-splines. The suitable choice of the extension paramter λ minimizes the
error. From the results in Tables 2,3 and 4, one can conclude that the computed maximum
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Table 2: Maximum point-wise errors EN,M
ε for various ε and λ = 0.9

ε M = 16 M = 32 M = 64 M = 128 M = 256
↓ N = 16 N = 32 N = 64 N = 128 N = 256

2−2 2.4035e− 02 2.2315e− 02 1.5618e− 02 9.1187e− 03 4.8984e− 03
2−4 2.8288e− 02 2.3133e− 02 1.5364e− 02 9.0625e− 03 4.9617e− 03
2−6 3.4503e− 02 2.5983e− 02 1.6272e− 02 9.2397e− 03 4.9361e− 03
2−8 3.5760e− 02 2.6203e− 02 1.6417e− 02 9.2191e− 03 4.9076e− 03
2−10 3.6040e− 02 2.6376e− 02 1.6454e− 02 9.2113e− 03 4.9009e− 03
2−12 3.6247e− 02 2.6480e− 02 1.6466e− 02 9.2050e− 03 4.8980e− 03
2−14 3.6285e− 02 2.6522e− 02 1.6470e− 02 9.1994e− 03 4.8954e− 03
2−16 3.6293e− 02 2.6558e− 02 1.6472e− 02 9.1954e− 03 4.8935e− 03
2−18 3.6293e− 02 2.6566e− 02 1.6475e− 02 9.1941e− 03 4.8923e− 03
2−20 3.6292e− 02 2.6568e− 02 1.6477e− 02 9.1932e− 03 4.8915e− 03
2−22 3.6292e− 02 2.6568e− 02 1.6477e− 02 9.1932e− 03 4.8915e− 03

EN,M
ε 3.6293e− 02 2.6568e− 02 1.6478e− 02 9.2397e− 03 4.9617e− 03

RN,M
ε 0.45 0.69 0.84 0.90 −

Table 3: Maximum point-wise errors EN,M
ε for various ε and λ = −0.55

ε M = 16 M = 32 M = 64 M = 128 M = 256
↓ N = 16 N = 32 N = 64 N = 128 N = 256

2−2 2.9680e− 02 2.7742e− 02 1.8708e− 02 1.0798e− 02 5.8076e− 03
2−4 3.4549e− 02 2.8235e− 02 1.8596e− 02 1.0841e− 02 5.8979e− 03
2−6 3.8429e− 02 2.9805e− 02 1.8916e− 02 1.0845e− 02 5.8318e− 03
2−8 3.9130e− 02 2.9968e− 02 1.9044e− 02 1.0847e− 02 5.8170e− 03
2−10 3.9476e− 02 3.0032e− 02 1.9086e− 02 1.0845e− 02 5.8091e− 03
2−12 3.9618e− 02 3.0053e− 02 1.9106e− 02 1.0841e− 02 5.8036e− 03
2−14 3.9643e− 02 3.0093e− 02 1.9113e− 02 1.0838e− 02 5.7994e− 03
2−16 3.9643e− 02 3.0105e− 02 1.9114e− 02 1.0836e− 02 5.7965e− 03
2−18 3.9637e− 02 3.0108e− 02 1.9125e− 02 1.0835e− 02 5.7948e− 03
2−20 3.9631e− 02 3.0107e− 02 1.9128e− 02 1.0835e− 02 5.7943e− 03
2−22 3.9631e− 02 3.0107e− 02 1.9128e− 02 1.0835e− 02 5.7943e− 03

EN,M
ε 3.9643e− 02 3.0108e− 02 1.9128e− 02 1.0847e− 02 5.8979e− 03

RN,M
ε 0.40 0.66 0.82 0.88 −

point-wise error decreases as N increases for each value of ε. To see the effect of delay and
extension paramter λ in the boundary regions, graphs are plotted on the solution profiles for
λ ∈ [−8, 1]. Figures 1(a) and 1(b) depicts the numerical simulation of solution profile at
N = M = 128, ε = 2−8, λ = −0.55 and N = M = 128, ε = 2−8, λ = 0.9 respectively, which
indicates parabolic boundary layers at x = 0 and x = 1. Figures 2(a) and 2(b) are the
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Table 4: Maximum point-wise errors EN,M
ε for various ε and λ = 0

ε M = 16 M = 32 M = 64 M = 128 M = 256
↓ N = 16 N = 32 N = 64 N = 128 N = 256

2−2 2.7202e− 02 2.5288e− 02 1.7421e− 02 1.0097e− 02 5.4264e− 03
2−4 3.1892e− 02 2.6085e− 02 1.7243e− 02 1.0092e− 02 5.5085e− 03
2−6 3.6842e− 02 2.8227e− 02 1.7818e− 02 1.0174e− 02 5.4512e− 03
2−8 3.7795e− 02 2.8423e− 02 1.7954e− 02 1.0168e− 02 5.4356e− 03
2−10 3.8103e− 02 2.8473e− 02 1.7999e− 02 1.0163e− 02 5.4269e− 03
2−12 3.8283e− 02 2.8503e− 02 1.8014e− 02 1.0158e− 02 5.4208e− 03
2−14 3.8321e− 02 2.8548e− 02 1.8020e− 02 1.0153e− 02 5.4167e− 03
2−16 3.8319e− 02 2.8582e− 02 1.8021e− 02 1.0151e− 02 5.4135e− 03
2−18 3.8319e− 02 2.8590e− 02 1.8029e− 02 1.0150e− 02 5.4114e− 03
2−20 3.8315e− 02 2.8592e− 02 1.8031e− 02 1.0149e− 02 5.4107e− 03
2−22 3.8315e− 02 2.8592e− 02 1.8031e− 02 1.0150e− 02 5.4107e− 03

EN,M
ε 3.8321e− 02 2.8592e− 02 1.8031e− 02 1.0174e− 02 5.5085e− 03

RN,M
ε 0.43 0.67 0.83 0.89 −

Table 5: Comparison of maximum point-wise errors with results in[24].

(N,M) = 16 (N,M) = 32 (N,M) = 64 (N,M) = 128 (N,M) = 256

For λ = −0.55

EN,M
ε 3.9643e− 02 3.0108e− 02 1.9128e− 02 1.0847e− 02 5.8979e− 03

RN,M
ε 0.40 0.66 0.82 0.88 −

For λ = 0

EN,M
ε 3.8321e− 02 2.8592e− 02 1.8031e− 02 1.0174e− 02 5.4512e− 03

RN,M
ε 0.43 0.67 0.83 0.89 −

For λ = 0.9

EN,M
ε 3.6293e− 02 2.6568e− 02 1.6478e− 02 9.2397e− 03 5.5085e− 03

RN,M
ε 0.45 0.69 0.84 0.90 −

Present Method for ϵ = 2−14, N = 64, 128, 256

EN,M 1.6470e− 02 9.1994e− 03 4.8954e− 03

Results presented in [24] for ϵ = 2−14, N = 64, 128, 256

EN,M 2.1473e− 01 1.0858e− 01 2.9661e− 02

numerical simulations of the solution profile using line graph at N = M = 64, ε = 2−6, λ = 0.9
and with different time level for N = M = 64, ε = 2−6, λ = 0.9 respectively. We see that from
Figures 2(a) and 2(b), when ε → 0 strong boundary layer is formed near the neighbor hood
of x = 0 and x = 1. The maximum point-wise error values are plotted using Log-Log scale for
λ = −0.55, λ = 0 and λ = 0.9 in figure 3. Figure 4(a) depicts the numerical simulation profile for
N = M = 256, ε = 2−12, λ = 0 by using mesh plot. Figure 4(b) depicts the numerical simulation
profile for N = M = 256, ε = 2−12, λ = −0.55 using surface plot with highlights from a light
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(a) (b)

Figure 1: Numerical solution profiles for (a) N = 128,M = 128, ε = 2−8, λ = −0.55
and (b) N = 128,M = 128, ε = 2−8, λ = 0.9 respectively.

(a) (b)

Figure 2: The behavior of spatial vs numerical solution graph: The left is Line graph
and with different time level on the right at N = M = 64, ε = 2−6, λ = 0.9 respectively

source. As one can observe from Figure 4(a) and (b), strong boundary layer is formed at x = 0
and x = 1.

6 Conclusion

In this work, a parameter uniform numerical scheme has been developed to find approximate
solution of singularly perturbed delay Sobolev problems. The proposed method is based on
Implicit-Euler scheme for time derivative on uniform mesh and the extension of cubic B-spline
with a blending function of degree four in the spatial direction on Bakhvalov type mesh. With
flexibility of extensions, the approximations of the solution can be made more accurate by adjust-
ing the free parameter λ. The method is shown to be first-order accurate with respect to time and
second-order accurate with respect to spatial direction. A single example has been provided, and
the results are displayed using MATLAB software in tables and graphs to validate the theoretical
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Figure 3: Plot of maximum absolute errors in log-log for λ = 0, λ = −0.55 and λ = 0.9.

(a) (b)

Figure 4: Numerical solution profiles using mesh plot and using surface plot for (a)
N = 256 = M, ε = 2−12, λ = 0 and (b) N = 256 = M, ε = 2−12, λ = −0.55 respectively.

convergence results and show the applicability of the suggested method. The numerical example
confirms the theoretical analyses. The developed method can be used as an alternative method
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for similar and related Sobolev problems.
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