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Existence theory for a fractional q-integral

equations

Hamid Reza Sahebi and Manochehr Kazemi

Abstract. The paper focuses on establishing sufficient conditions for the existence
of the solutions for a functional equation involving q-fractional integrals, particularly
in Banach spaces. In this method, the technique of measures of noncompactness and
Petryshyn’s fixed point theorem Banach space is used. We provide some examples
of equations, which confirm that our result is applicable to a wide class of integral
equations.
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1 Introduction

The existence of solutions for integral equations (IEs) is a major challenge in mathematical
research, leading to extensive investigation and development of various methodologies. Two
notable frameworks for addressing solution existence are Schauder’s theorem and Darbo’s Fixed
Point Theorem (F.P.T). A key concept in these approaches is the measure of noncompactness
(M.N.C), which plays a foundational role in proving the existence results. The M.N.C is a highly
significant and practical concept in non-linear analysis. It originated from Kuratowski’s seminal
paper [22], providing powerful tools for solving a wide range of IEs and fractional differential
equations (FDEs).

In 1955, Darbo’s fundamental F.P.T in [9], introduced the concept of M.N.C, which has since
been widely employed by researchers to analyze the solvability of various types of IEs and DEs [1].
In fact, researchers have successfully generalized this theorem to address specific problem types
they encounter. In [6], via a measure of non-compactness concept, Banas obtained an existence
result nonlinear functional IEs (for more details, see [7, 29, 31]). Caballero et al. in [8] studied
the solvability of the functional IE as follows,

x(t) = f

(
t,

∫ t

0

v(t, s, x(s)) ds, x(α(t))

)
· g

(
t,

∫ a

0

x(t)u(t, s, x(s)) ds, x(β(t))

)
, (1.1)

for x ∈ C(Ia), Ia := [0, a]. They showed under the some conditions the functional IEs (1.1)
has at least one solution x ∈ C(Ia). In [10], authors with the help of generalized Darbo’s F.P.T
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established the existence of solution of a IE with generalized fractional integral of two variables.
Metwalli et al. in [24], studied the existence and the uniqueness of a.e. monotonic solutions of
following problem,

x(t) = h(t) +m(t) · g(t, x(t− τ)) +

∫
k(t, s)f(s, x(s− τ)) ds,

x(t) = ϕ(t), t ∈ [−τ, o). (1.2)

Mishra et al. in [25] obtained some results on the existence of solutions for a nonlinear Erdelyi-
Kober fractional quadratic IE with deviating arguments. The solutions of system of functional IEs
in the setting of M.N.C investigated [26]. In [33], authors investigated existence of solutions in
Banach algebra the nonlinear functional IE comprising of Hadamard fractional operators under
certain relevant assumptions in conjunction with F.P. theory. Using the techniques of Darbo’s
F.P.T associated with M.N.C, authors established the existence results for functional stochastic
IEs in Banach Algebra [11]. Srivastava et al. [34] established the existence of the solution of a
functional IE of two variables, which is of the form of the product of two operators in the Banach
algebra C(Ia × Ia).

The existence of solution of q-integral equations (q-IEs) have been analyzed by several re-
searchers [2, 4, 5, 23, 30, 32]. In [17], the authors discussed the q-IE,

x(t) = F

(
t, x(a(t)),

x(b(t))

Γq(α)

∫ t

0

(t− qs)(α−1)u(s, x(s)) dqs

)
, t ∈ I1, (1.3)

where α > 1, q ∈ (0, 1). With a generalized version of Darbo’s theorem, they have established a
sufficient conditions for the existence of at least one solution to (1.3). In [3], the author examined
quadratic IE as follows,

y(t) = y(t) +
(Ay)(t)

Γq(β)

∫ t

0

k(t, s)(t− qs)(β−1)(By)(s) dqs, t ∈ I1, (1.4)

where β > 0, q ∈ (0, 1) and A,B : C(I1) → C(I1). Recently, Kazemi and Ezzati [19] utilized
Petryshyn’s F.P.T for the existence of solutions of nonlinear functional IEs. They showed that
Petryshyn’s theorem is much more useful than Darbo’s theorem. In fact, it dose not require to
confirm the used operator of maps a closed convex subset onto itself [20].

Motivated and stimulated by the [19, 20], we introduced and analyze the existence result for
the following a class of functional q-IE with fractional order,

κ(t) = Ψ

(
t,κ(a(t)), π(t,κ(c(t))),

1

Γq(ς)

∫ r(t)

0

(r(t)− qs)(ς−1)p(t, s,κ(b(s))) dqs
)
, (1.5)

where 0 < q < 1, β > 0 and ς > 1.

The paper is structured as follows. In Section 2, we collect some definitions, lemmas and
theorems, which are essential to prove our main results. In Section 3, we introduce a new
functional q-IE for existence of a solution a Banach space. Then, we establish and prove a
existence theorem by utilized Petryshyn’s F.P.T . In Section 4, we also give some examples to
support our main theorem. Finally, in Section 5, concludes the paper.



Existence theory for a fractional q-integral equations 211

2 Auxiliary facts and notations

In this section,we review some definitions and theorems, by stating some auxiliary facts and
notations. Let

• X: Banach space,

• Nε: A ball of radius ε,

• N̄ε: Sphere in X with radius ε,

• C(Ia): All real functions continuous on Ia,

• B(X): Bounded set of X,

• Fix(T ): the set of fixed points of T inX.

In 1910, Jackson introduced the concept of quantum calculus in [16]. There are several appli-
cations of q-calculus in physical problems such as molecular problems [13], elementary particle
physics, and chemical physics [12, 15].Basic definitions and properties of quantum calculus can
be found in the book [18]. In follow, we recall some basic facts on quantum calculus and present
additional properties that will be used later.

For q ∈ (0, 1), we define [κ]q = 1−qκ

1−q ,κ ∈ R. The q-analogue of the power function (1− ϑ)k

with k ∈ {0, 1, 2, . . .} is,

(1− ϑ)(0) = 1, (1− ϑ)(k) =

k−1∏
i=0

(1− ϑqi), k ∈ N, ϑ ∈ R. (2.1)

Also, The q-integral of a function f defined on the interval Ia is given by,∫ ν

0

f(ζ) dqζ = ν(1− q)

∞∑
i=0

f(νqi)qi, ν ∈ Ia. (2.2)

For any m,n > 0, Bq(m,n) =
∫ 1

0
ζ(m−1)(1− qζ)(n−1) dqζ is called the q-beta function.

Lemma 2.1 ([28]). Let m,n > 0, and 0 < q < 1. Then we have∫ ν

0

(ν − qζ)(m−1)ζ(n) dqζ = νm+nBq(m,n+ 1). (2.3)

Definition 1 ([22]). Let T ⊂ B(X), then

ϕ(T) = inf{ε : there exist a finite number of sets of diameter ≤ ε that can cover T}, (2.4)

is said to be the Kuratowski M.N.C.

Definition 2 ([14]). Let T ⊂ B(X), then

ζ(T) = inf
{
ε > 0 : T has a finite ε− net in X

}
, (2.5)

is said to be the Hausdorff M.N.C.

Definition 3 ([14]). For T ⊂ B(X), the M.N.C ϕ and ζ fulfill ζ(T) ≤ ϕ(T) ≤ 2ζ(T).
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For h ∈ C(Ia) and ε ≥ 0 denoted by δε(h), the modulus of continuity of the function h, i.e.,

δε(h) = sup
{
|h(t)− h(t̂)| : |t− t̂| ≤ ε

}
. (2.6)

The uniformly continuous h on Ia implies that δε(h) → 0 as ε→ 0.

Theorem 2.1 ([21]). For T ⊂ B(X), the M.N.C in C(Ia) is denoted by,

T = lim sup
ε→0

δεt, t ∈ T. (2.7)

Theorem 2.2 ([27]). Let F,E ⊂ X then

1. ζ(F
⋃
E = max

{
ζ(F), ζ(E)

}
;

2. ζ(F+ E) ≤ ζ(F) + ζ(E);

3. ζ(ςF) = |ς|ζ(F), where ςF =
{
ςm : m ∈ F

}
;

4. ζ(F) ≤ ζ(E), for F ⊂ E;

5. ζ(c̄oF) = ζ(F);

Recall that 𭟋 ∈ C(X) is called a κ-set contraction if for K ⊂ B(X), 𭟋 is bounded and
ϕ(𭟋K) ≤ κϕ(K) for each 0 < κ < 1. Moreover, If ϕ(𭟋K) ≤ ϕ(K), 𭟋 is called condensing map.

Let us recall that Petryshyn’s F.P.T,

Theorem 2.3 ([27]). Let 𭟋 : Nε → X be a condensing mapping and satisfying the following
boundary condition,

if 𭟋(x) = κx, for some x ∈ N̄ε, with κ ≤ 1. (2.8)

Then FixNε(𭟋) ̸= ∅.

In order to prove the main results, we first establish the following lemma.

Lemma 2.2. The following inequality is hold∣∣∣∣ ∫ r(t)

0

(r(t)− qs)(ς−1)p(t, s,κ(b(s))) dqs

−
∫ r(t̂)

0

(r(t̂)− qs)(ς−1)p(t̂, s,κ(b(s))) dqs
∣∣∣∣

≤ δ̂τ (u)D
ςBq(ς, 1) + 2LBq(ς, 1)δτ (w)

ς , (2.9)

where

δτ (r) = sup
{
|r(t)− r(t̂)| : t, t̂ ∈ Ia, |t− t̂| ≤ τ

}
,

L = sup
{
|p(t, s, z)| : t ∈ Ia, s ∈ [0, D], z ∈ [−ε, ε]

}
,

δ̂τ (u) = sup
{
|p(t, x, y)− p(t̂, x, y)| : |t− t̂| ≤ τ, x ∈ [0, D], y ∈ [−ε, ε]

}
. (2.10)
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Proof. We have∣∣∣∣ ∫ r(t)

0

(r(t)− qs)(ς−1)p(t, s,κ(b(s))) dqs

−
∫ r(t̂)

0

(r(t̂)− qs)(ς−1)p(t̂, s,κ(b(s))) dqs
∣∣∣∣

≤
∣∣∣∣ ∫ r(t)

0

(r(t)− qs)(ς−1)p(t, s,κ(b(s))) dqs

−
∫ r(t)

0

(r(t)− qs)(ς−1)p(t̂, s,κ(b(s))) dqs
∣∣∣∣

+

∣∣∣∣ ∫ r(t)

0

(r(t)− qs)(ς−1)p(t̂, s,κ(b(s))) dqs

−
∫ r(t̂)

0

(r(t)− qs)(ς−1)p(t̂, s,κ(b(s))) dqs
∣∣∣∣

+

∣∣∣∣ ∫ r(t̂)

0

(r(t)− qs)(ς−1)p(t̂, s,κ(b(s))) dqs

−
∫ r(t̂)

0

(r(t̂)− qs)(ς−1)p(t̂, s,κ(b(s))) dqs
∣∣∣∣

≤
∫ r(t)

0

(r(t)− qs)(ς−1)
∣∣∣p(t, s,κ(b(s)))− p(t̂, s,κ(b(s))) dqs

∣∣∣
+

∫ r(t)

r(t̂)

(r(t)− qs)(ς−1)
∣∣∣p(t̂, s,κ(b(s)))∣∣∣dqs

+

∫ r(t̂)

0

[(r(t̂)− qs)(ς−1) − (r(t)− qs)(ς−1)]
∣∣∣p(t̂, s,κ(b(s)))∣∣∣ dqs

≤ δ̂τ (u)

∫ r(t)

0

(r(t)− qs)(ς−1) dqs

+ L

∫ r(t̂)

0

(r(t̂)− qs)(ς−1) − (r(t)− qs)(ς−1) dqs

+

∫ r(t)

r(t̂)

(r(t)− qs)(ς−1) dqs

= δ̂τ (u)r(t)
ςBq(ς, 1) + LBq(ς, 1)

[
r(t̂)ς − r(t)ς + 2(r(t)− r(t̂))ς

]
≤ δ̂τ (u)r(t)

ςBq(ς, 1) + 2LBq(ς, 1)(r(t)− r(t̂))ς

≤ δ̂τ (u)D
ςBq(ς,+1) + 2LBq(ς, 1)δ(r, τ)

ς . (2.11)

3 A Existence Theorem

In this section, we will study the existence of q-IE (1.5) under the following assumptions,
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S1) κ ∈ C(Ia), Ψ ∈ C(Ia ×R⊯), π ∈ C(Ia ×R), p ∈ C(Ia × [0, D]×R), c : Ia → Ia, b : R+ → Ia,
r : Ia → R+ are continuous and for each t ∈ Ia and r(t) ≤ D;

S2) There exist nonnegative constant k1, k2, k3 and k4 with k1 + k2k4 ≤ 1 s.t.

|Ψ(t, t1, t2, t3)−Ψ(t, t̂1, t̂2, t̂3)| ≤ k1|t1 − t̂1|+ k2|t2 − t̂2|+ k3|t3 − t̂3|, (3.1)

and |π(x, y)− π(x, ŷ)| ≤ k4|y − ŷ|;

S3) For ε ≥ 0, the operator Ψ satisfies the following condition,

sup

{
|Ψ(t, x, y, z)| : t ∈ Ia, x, y ∈ [−ε, ε],

− Dς

Γq(ς)
L Bq(ς, 1) ≤ z ≤ Dς

Γq(ς)
L Bq(ς, 1)

}
≤ ε, (3.2)

where L = sup
{
|p(t, s, z)| : t ∈ Ia, s ∈ [0, D], z ∈ [−ε, ε]

}
.

Theorem 3.1. Under the assumption (S1)-(S3), the functional q-IE (1.5) has at least one solu-
tion in C(Ia).

Proof. Let 
𭟋 : Nε → X,

(𭟋κ)(t) = Ψ

(
t,κ(a(t)), π(t,κ(c(t))),

1

Γq(ς)

∫ r(t)

0

(r(t)− qs)(ς−1)p(t, s,κ(b(s))) dqs
)
.

(3.3)

We divided the proof into several steps.
Step 1. The operator 𭟋 is continuous on the ball Nε. Consider τ > 0 and any κ, κ̂ ∈ Nε s.t.
∥κ − κ̂∥ < τ . We have,

|(𭟋κ)(t)− (𭟋κ̂)(t)| =
∣∣∣∣Ψ(

t,κ(a(t)), π(t,κ(c(t))),

1

Γq(ς)

∫ r(t)

0

(r(t)− qs)(ς−1)p(t, s,κ(b(s))) dqs
)

−Ψ

(
t, κ̂(a(t)), π(t, κ̂(c(t))),

1

Γq(ς)

∫ r(t)

0

(r(t)− qs)(ς−1)p(t, s, κ̂(b(s))) dqs
)∣∣∣∣

≤
∣∣∣∣Ψ(

t,κ(a(t)), π(t,κ(c(t))),

1

Γq(ς)

∫ r(t)

0

(r(t)− qs)(ς−1)p(t, s,κ(b(s))) dqs
)

−Ψ

(
t, κ̂(a(t)), π(t,κ(c(t))),

1

Γq(ς)

∫ r(t)

0

(r(t)− qs)(ς−1)p(t, s,κ(b(s))) dqs
)∣∣∣∣
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+

∣∣∣∣Ψ(
t, κ̂(a(t)), π(t,κ(c(t))),

1

Γq(ς)

∫ r(t)

0

(r(t)− qs)(ς−1)p(t, s,κ(b(s))) dqs
)

−Ψ

(
t, κ̂(a(t)), π(t, κ̂(c(t))),

1

Γq(ς)

∫ r(t)

0

(r(t)− qs)(ς−1)p(t, s,κ(b(s))) dqs
)∣∣∣∣

+

∣∣∣∣Ψ(
t, κ̂(a(t)), π(t, κ̂(c(t))),

1

Γq(ς)

∫ r(t)

0

(r(t)− qs)(ς−1)p(t, s,κ(b(s))) dqs
)

−Ψ

(
t, κ̂(a(t)), π(t, κ̂(c(t))),

1

Γq(ς)

∫ r(t)

0

(r(t)− qs)(ς−1)p(t, s, κ̂(b(s))) dqs
)∣∣∣∣

≤ k1

∣∣∣κ(a(t))− κ̂(a(t))
∣∣∣+ k2

∣∣∣g(t,κ(c(t)))− g(t, κ̂(c(t)))
∣∣∣

+
k3

Γq(ς)

∫ r(t)

0

(r(t)− qs)(ς−1)
∣∣∣p(t, s,κ(b(s)))− p(t, s, κ̂(b(s)))

∣∣∣dqs
≤ k1

∣∣∣κ(a(t))− κ̂(a(t))
∣∣∣+ k2k4

∣∣∣κ(c(t))− κ̂(c(t))
∣∣∣

+
k3

Γq(ς)
δτ (u)r(t)

(ς)Bq(ς, 1)

≤ (k1 + k2k4)∥κ − κ̂∥+ k3
Γq(ς)

δτ (u)D
ςBq(ς, 1), (3.4)

where

δτ (u) = sup
{
|p(t, x, y)− p(t, x, ŷ)| : t ∈ Ia, x ∈ [0, D],

y, ŷ ∈ [−ε, ε], |y − ŷ| ≤ ε
}
. (3.5)

The uniformly continuity of p(·, ·, ·) on the subset Ia× [0, D]×R implies that δτ (u) → 0 as τ → 0.
This shows that the operator 𭟋 is continuous on Nε.

Step 2. The densifying condition operator 𭟋. Let Eτ be a bounded subset in X and t, t̂ ∈ Ia
such that t ≤ t̂ and t− t̂ ≤ τ for τ > 0, Lemma 2.2 implies that,

|(𭟋κ)(t)− (𭟋κ)(t̂)| =
∣∣∣∣Ψ(

t,κ(a(t)), π(t,κ(c(t))),

1

Γq(ς)

∫ r(t)

0

(r(t)− qs)(ς−1)p(t, s,κ(b(s))) dqs
)

−Ψ

(
t̂, f(t̂,κ(a(t̂))), π(t,κ(c(t̂))),

1

Γq(ς)

∫ r(t̂)

0

(r(t̂)− qs)(ς−1)p(t̂, s,κ(b(s))) dqs
)∣∣∣∣
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≤
∣∣∣∣Ψ(

t,κ(a(t)), π(t,κ(c(t))),

1

Γq(ς)

∫ r(t)

0

(r(t)− qs)(ς−1)p(t, s,κ(b(s))) dqs
)

−Ψ

(
t,κ(a(t)), π(t,κ(c(t))),

1

Γq(ς)

∫ r(t̂)

0

(r(t̂)− qs)(ς−1)p(t̂, s,κ(b(s))) dqs
)∣∣∣∣

+

∣∣∣∣Ψ(
t,κ(a(t)), π(t,κ(c(t))),

1

Γq(ς)

∫ r(t̂)

0

(r(t̂)− qs)(ς−1)p(t̂, s,κ(b(s))) dqs
)

−Ψ

(
t,κ(a(t)), π(t̂,κ(c(t̂))),

1

Γq(ς)

∫ r(t̂)

0

(r(t̂)− qs)(ς−1)p(t̂, s,κ(b(s))) dqs
)∣∣∣∣

+

∣∣∣∣Ψ(
t,κ(a(t̂))), π(t̂,κ(c(t̂))),

1

Γq(ς)

∫ r(t̂)

0

(r(t̂)− qs)(ς−1)p(t̂, s,κ(b(s))) dqs
)∣∣∣∣

−Ψ

(
t,κ(a(t̂))), π(t̂,κ(c(t̂))),

1

Γq(ς)

∫ r(t̂)

0

(r(t̂)− qs)(ς−1)p(t̂, s,κ(b(s))) dqs
)∣∣∣∣

+

∣∣∣∣Ψ(
t, f(t̂,κ(a(t̂))), π(t̂,κ(c(t̂))),

1

Γq(ς)

∫ r(t̂)

0

(r(t̂)− qs)(ς−1)p(t̂, s,κ(b(s))) dqs
)

−Ψ

(
t̂, f(t̂,κ(a(t̂))), π(t̂,κ(c(t̂))),

1

Γq(ς)

∫ r(t̂)

0

(r(t̂)− qs)(ς−1)p(t̂, s,κ(b(s))) dqs
)∣∣∣∣

≤ k3
Γq(ς)

∣∣∣∣∣
∫ r(t)

0

(r(t)− qs)(ς−1)p(t, s,κ(b(s))) dqs

−
∫ r(t̂)

0

s(r(t̂)− qs)(ς−1)p(t̂, s,κ(b(s))) dqs
∣∣∣∣

+ k2

∣∣∣g(t,κ(c(t))− π(t,κ(c(t̂))
∣∣∣+ k2

∣∣∣g(t,κ(c(t))− π(t̂,κ(c(t̂)))
∣∣∣

+ k1

∣∣∣κ(a(t))− κ(a(t̂))
∣∣∣+ k1

∣∣∣κ(a(t))− f(t̂,κ(a(t̂)))
∣∣∣+ δ(Ψ, τ)
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≤ k3δ̂τ (u)

Γq(ς)
DςBq(ς, 1) +

2k3L

Γq(ς)
Bq(ς, 1)δτ (w)

ς + k1

∣∣∣κ(a(t))− κ(a(t̂)
∣∣∣

+ k2k4

∣∣∣κ(c(t))− κ(c(t̂))
∣∣∣k1δτ (π) + k2δτ (f) + δτ (Ψ), (3.6)

where

δτ (Ψ) = sup
{
|Ψ(t, x, y, z)−Ψ(t̂, x, y, z)| : |t− t̂| ≤ τ,

x, y ∈ [−ε, ε], z ∈ [−DL,DL]
}
,

δτ (r) = sup
{
|r(t)− r(t̂)| : t, t̂ ∈ Ia, |t− t̂| ≤ τ

}
,

δτ (π) = sup
{
|π(t, x)− π(t̂, x)| : |t− t̂| ≤ τ, x ∈ [−ε, ε]

}
,

δ̂τ (u) = sup
{
|p(t, x, y)− p(t̂, x, y)| : |t− t̂| ≤ τ, x ∈ [0, D], y ∈ [−ε, ε]

}
. (3.7)

So

δ(𭟋κ, τ) ≤ k3δ̂τ (u)

Γq(ς)
DςBq(ς, 1) +

2k3L

Γq(ς)
Bq(ς, 1)δτ (r)

ς

+ k1δ(κ, δτ (a(t))) + k2k4δ(κ, δτ (c(t))). (3.8)

Now, by taking limit of (3.8) equation as τ → 0 would give easily following inequality

δ(𭟋κ, τ) ≤ (k1 + k2k4)δ(κ, τ), (3.9)

which this provide ζ(𭟋Eτ ) ≤ (k1 + k2k4)ζ(Eτ ). Therefore, Ψ is condensing map.

Step 3. The boundary condition. Suppose that z ∈ N̄ε. If ∥𭟋z∥ = k∥z∥ = kε, the condition
(S3) implies that∣∣∣∣(𭟋z)(t)∣∣∣∣ = ∣∣∣∣Ψ(

t,κ(a(t)), π(t,κ(c(t))),

1

Γq(ς)

∫ r(t)

0

(r(t)− qs)(ς−1)p(t, s,κ(b(s))) dqs
)∣∣∣∣ ≤ ε, ∀t ∈ Ia. (3.10)

Hence ∥𭟋z∥ ≤ ε, i.e., k ≤ 1. This complete the proof.

Corollary 3.2. Assume that the following conditions are holds,

(P1) κ ∈ C(Ia × Ia × R), g ∈ C(Ia × R), r ∈ C(Ia,R+), r(t) ≤ D, and there exist positive
constant li, i = 1, . . . , 5 s.t.

|Ψ(t, x, y)−Ψ(t, x̄, ȳ)| ≤ l1|x− x̄|+ l2|y − ȳ|, (3.11)

|Ψ(t, 0, 0)| ≤ l3, |π(t, x)− π(t, x̄)| ≤ l4|x− x̄|, and |π(t, 0)| ≤ l5;

(P2) p(t, s, x) ∈ C(Ia × Ia × R) and ∃c1, c2 > 0 s.t. |p(t, s, x)| ≤ c1 + c2|x|, ∀t, s ∈ Ia, x ∈ R;

(P3) l1 +
1

Γq(ς)
l2(l4 + l5)D

ςBq(ς, 1)(c1 + c2) < 1.

Then

κ(t) = Ψ

(
t,κ(a(t)),

π(t,κ(c(t)))
Γq(ς)

∫ r(t)

0

(t− qs)(ς−1)p(t, s,κ(b(s))) dqs
)
, (3.12)

has at least one solution in C(Ia).
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Proof. One can easily check, (P1) implied that (S2) in Theorem 3.1. Now, we prove (S3) holds.
Let ε > 0, ∥κ∥ ≤ ε. We obtain,

|κ(t)| =
∣∣∣∣Ψ(

t,κ(a(t)),

π(t,κ(c(t)))
Γq(ς)

∫ r(t)

0

(t− qs)(ς−1)p(t, s,κ(b(s))) dqs
)∣∣∣∣

≤
∣∣∣∣Ψ(

t,κ(a(t)),

π(t,κ(c(t)))
Γq(ς)

∫ r(t)

0

(t− qs)(ς−1)p(t, s,κ(b(s))) dqs
)

−Ψ(t, 0, 0)

∣∣∣∣+ ∣∣Ψ(t, 0, 0)
∣∣

≤ l1∥κ(a(t))∥

+ l2

∣∣∣∣π(t,κ(c(t)))Γq(ς)

∫ r(t)

0

(t− qs)(ς−1)p(t, s,κ(b(s))) dqs
∣∣∣∣+ l3

≤ l1∥κ(a(t))∥+ l2

(
|π(t,κ(c(t)))− π(t, 0)|

+ |π(t, 0)|
) 1

Γq(ς)

∣∣∣∣ ∫ r(t)

0

(t− qs)(ς−1)p(t, s,κ(b(s))) dqs
∣∣∣∣

≤ l1∥κ(a(t))∥+ l2

(
l4∥κ(c(t))∥

+ l5

) 1

Γq(ς)
r(t)ςBq(ς, 1)

(
c1 + c2∥κ(c(t))∥

)
. (3.13)

Hence, ε in (S3) is real number that satisfies

l1ε+
1

Γq(ς)
l2(l4ε+ l5)D

ςBq(ς, 1)(c1 + c2ε) ≤ ε. (3.14)

Now, we define the continuous function Σ : [0, 1] → R as follows,

Σ(ε) = l1ε+
1

Γq(ς)
l2(l4ε+ l5)D

ς+Bq(ς, 1)(c1 + c2ε)− ε. (3.15)

The property (P3) implies that Σ(0)Σ(1) < 0, then ∃ε ∈ (0, 1) s.t. Σ(ε) = 0.

Remark 1. Jleli et al. [17] introduced a functional q-IE (1.3) that include the assumptions (A1)-
(A9). They proved the functional q-IE has at least one solution in C([0, 1]). By utilization of
suggestion technique in Theorem 3.1 and Corollary 3.2, one can achieve the desired result with
the least conditions compared to Jleli article.

Corollary 3.3. Let

1) κ ∈ C(Ia,R), φ ∈ C(Ia × R2), f, π ∈ C(Ia × R), p ∈ C(Ia × [0, D] × R), and c : Ia → Ia,
b : R+ → Ia, r : Ia → R+ are continuous and for each t ∈ Ia, r(t) ≤ D;

2) There exist nonnegative constant k1, k2, k3 and k4 with k1k3 + k4 ≤ 1 s.t.,

|φ(t, t1, t2)−Ψ(t, t̂1, t̂2)| ≤ k1|t1 − t̂1|+ k2|t2 − t̂2|, (3.16)

|π(x, y)− π(x, ŷ)| ≤ k3|y − ŷ|, and |f(s, y)− f(s, ȳ)| ≤ k4|y − ȳ|;
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3) For ε ≥ 0, the operator Ψ satisfies the following condition,

sup

{
|φ(t, y, z)| : t ∈ Ia, y ∈ [−ε, ε],

− Dς

Γq(ς)
L Bq(ς, 1) ≤ z ≤ Dς

Γq(ς)
L Bq(ς, 1)

}
≤ ε, (3.17)

where L = sup{|p(t, s, z)| : t ∈ Ia, s ∈ [0, D], z ∈ [−ε, ε]}.

Then

κ(t) = f(t,κ(a(t))) + φ

(
t, π(t,κ(c(t))),

1

Γq(ς)

∫ r(t)

0

(r(t)− qs)(ς−1)p(t, s,κ(b(s))) dqs
)
, (3.18)

has at least one solution in C(Ib).

4 Examples

In this section, based on the explained approach, we incline to present some examples by using
Maple software to grantee Theorem 3.1.

Example 1. Consider the following nonlinear q-IE,

κ(t) =
1

2
e−t2 sin

κ(t)
2

+
e−

√
tt2

4 + 4t2
ln(1 + |κ(t)|)

+
1

Γ1/2

(
3
2

) ∫ √
t

0

(√
t− 1

2
s

)1/2 κ(s)
2 + s2

dqs, t ∈ I1. (4.1)

The assumptions (S1) and (S2) of Theorem 3.1 are satisfied. Now, we check that (S3) also holds.
Suppose that ∥κ(t)∥ ≤ ε, then,

|κ(t)| =
∣∣∣∣12e−t2 sin

κ(t)
2

+
e−

√
tt2

4 + 4t2
ln(1 + |κ(t)|)

+
1

Γ1/2

(
3
2

) ∫ √
t

0

(√
t− 1

2
s

)1/2 κ(s)
2 + s2

dqs

∣∣∣∣
≤ 1

2
+

1

4
ε+

1

2Γ1/2

(
3
2

)B1/2

(
3

2
, 1

)
ε ≤ ε. (4.2)

Hence, (S3) holds if, ε ≥ 1.51496. This implies that the equation has at least one solution in
C(I1).

Example 2. Consider the following nonlinear q-IE,

κ(t) =
1

4

(
te−t + t3κ(t)

)
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+
1

Γ1/4

(
5
2

) ∫ t2

0

(
t2 − 1

4
s

)3/2 (
1

2
κ(s2) + se−2t sin(t)

2 + | cos(t)|

)
dqs. (4.3)

One can see that, the assumptions (S1) and (S2) of Theorem 3.1 are satisfied. Now, we check
that (S3) also holds. Suppose that ∥κ(t)∥ ≤ ε, then,

|κ(t)| =
∣∣∣∣14 (

te−t + t3κ(t)
)

+
1

Γ1/4

(
5
2

) ∫ t2

0

(
t2 − 1

4
s

)3/2 (
1

2
κ(s2) + se−2t sin(t)

2 + | cos(t)|

)
dqs

∣∣∣∣
≤ 1

4
(ε+ 1) +

1

Γ1/4

(
5
2

)B1/4

(
5

2
, 1

)(
1

2
ε+

1

2

)
≤ ε. (4.4)

Thus, (S3) holds if, ε ≥ 1.50045. This implies that the equation has at least one solution in
C(I1).

Example 3. Consider the following nonlinear q-IE,

κ(t) =
e−2t

3
+

ln(1 + |κ(
√
t)|)

4 + t2
+

|κ(
√
t)|)

1 + |κ(
√
t)|)

+
1

Γ1/4

(
5
2

) ∫ t2

0

(
t2 − 1

4
s

)3/2
√

1 + κ(
√
t)

1 + st
dqs, t ∈ [0, 1]. (4.5)

The assumptions (S1) and (S2) of Theorem 3.1 are satisfied. Now, we check that (S3) also holds.
Suppose that ∥κ(t)∥ ≤ ε, then,

|κ(t)| =
∣∣∣∣e−2t

3
+

ln(1 + |κ(
√
t)|

4 + t2
+

|κ(
√
t)|)

1 + |κ(
√
t)|

+
1

Γ1/4

(
5
2

) ∫ t2

0

(
t2 − 1

4
s

)3/2
√

1 + κ(
√
t)

1 + st
dqs

∣∣∣∣
≤ 1

3
+

1

4
ε+

1

3
+

1

Γ1/4

(
5
2

)B1/4

(
5

2
, 1

)√
1 + ε ≤ ε. (4.6)

Hence, (S3) holds if, ε ≥ 2.67961. This implies that the equation has at least one solution in
C(I1).

Remark 2. Since there is no constants c1 and c2 satisfying the inequalities (Sublinear condition),
|p(t, s, x)| ≤ c1 + c2|x|, for all t, s ∈ Ia and x ∈ R, the results in [17] and [3] are inapplicable to
the q-IE 4.5.

5 Conclusion

Because many problems of q-IEs are unsolvable, it is important to ensure that a solution exists
in these equations. Therefore, many researchers have published papers in this field and have
explained their methods with the results obtained. Accordingly in this paper, the authors pre-
sented a new method based on the technique of M.N.C and Petryshyn’s F.P.T. The advantages
of the proposed method compared to other similar methods are that it has fewer conditions, and
there is no need to verify the involved operator maps a closed convex subset onto itself.
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