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Second-order noncanonical mixed type difference

equations of unstable type: new oscillation

criteria

P. Ganesan, G. Palani, John R. Graef, and E. Thandapani

Abstract. This paper is concerned with the oscillatory properties of the second-

order noncanonical difference equation with a deviating argument of the form

∆(an∆yn) = qnyσ(n).

The authors first transform the noncanonical equation into canonical form so that the

discrete Kneser theorem can be applied to classify the nonoscillatory solutions into

two types. Some new monotonic properties of the nonoscillatory solutions are then

obtained, and they are used to eliminate certain type of nonoscillatory solutions.

This leads to the development of new oscillation criteria for the equation. The

results obtained are new and complement those currently existing in the literature.

Examples to illustrate the importance of the main results are also presented.

Keywords. Second-order difference equation, noncanonical form, delay and advanced ar-
guments, oscillation

1 Introduction

Consider the second-order noncanonical difference equation with a deviating argument of the
form

∆(an∆yn) = qnyσ(n), n ∈ N(n0), (E)

where N(n0) = {n0, n0 + 1, . . . } and n0 is a nonnegative integer. We shall assume that

(H1) {an} and {qn} are sequences of positive real numbers;

(H2) {σ(n)} is an increasing sequence of integers such that σ(n) → ∞ as n → ∞.

By a solution of equation (E), we mean a real sequence {yn} defined and satisfying equation
(E) for n ∈ N(n0) and with sup{|ys| : s ≥ n} > 0 for n ∈ N(n0). Such a solution {yn} is called
oscillatory if for any n1 ∈ N(n0), there are integers n2, n3 ≥ n1 such that yn2

yn3
≤ 0, and
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is called nonoscillatory otherwise. The equation is said to be oscillatory if all its solutions are
oscillatory.

Equation (E) is in noncanonical form since we are assuming that

An =

∞∑
s=n

1

as
with An0

< ∞. (1.1)

The determination of oscillation criteria for difference equations of different forms and orders
continues to be an area of great interest in recent years; see, for example, the monographs [1, 2, 3],
the papers [4, 6, 10, 11, 12, 13, 14], and the references cited therein. In dynamical models,
deviation and oscillation scenarios are often formulated by means of external sources and/or
nonlinear diffusion, perturbing the natural evolution of related systems; see, for example, [7, 9].
The determination of oscillation criteria for difference equations of different forms has also been
an active area of research; see [5] and the references contained within.

While it is known that the equation

∆2yn−1 = qnyn

possesses positive decreasing and positive increasing solutions, the situation is quite different for
the equation with deviating arguments

∆2yn = qnyσ(n). (1.2)

For example, Lalli and Zhang [8] showed that if σ(n) = n− k, where k is a positive integer, the
condition

lim sup
n→∞

n−1∑
s=n−k

(s+ 1− k)qs > 1 (1.3)

eliminates positive decreasing solutions. However, (1.2) does not possess positive increasing
solution if σ(n) = n+m, where m is a positive integer, and

lim sup
n→∞

n+m−1∑
s=n

(n+m− s)qs > 1. (1.4)

A review of the literature reveals that there are very few results ensuring that (1.2) is
oscillatory, (see, for example [6, 8, 10, 12, 11, 14, 13]), but this type of equation has been well
studied in the literature in the case where {qn} is negative; see for example, the monographs
[1, 2, 3] and their numerous references. The aim of this paper is to obtain corresponding results
for the second-order noncanonical functional difference equation (E) that are new and complement
existing ones in the literature.

Our paper is organized as follows. First, in Section 2, we transform equation (E) into a
canonical type equation so that we can directly use the discrete Kneser theorem [2] to obtain
the structure of the nonoscillatory solutions. This is an essential step in obtaining our oscillation
criteria. Second, we obtain new monotonic properties of the nonoscillatory solutions of the
transformed equation (equation (Ec) below). Using these properties, we are then able to eliminate
the existence of positive decreasing solutions of (Ec) if it has a delay argument, and eliminate
the positive increasing solutions of (Ec) in case it has an advanced argument. In Section 3, we
combine the results to get oscillation of all solutions of equation (E) if it involves both delayed and
advanced arguments. Examples are presented in Section 4 to show the importance and novelty
of our main results. It should be noted that the research in this paper is partially inspired by the
recent results in a very nice paper by Bacuĺıková and Džurina [4] on differential equations.
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2 Preliminary Results

For the sake of convenience, we define

bn = anAnAn+1, Qn = An+1qnAσ(n), Bn =

n−1∑
s=n0

1

bs
,

and
zn =

yn
An

.

We begin with the following theorem.

Theorem 2.1. The noncanonical operator Dyn = ∆(an∆yn) can be written in the equivalent
canonical form as

Dyn =
1

An+1
∆

(
anAnAn+1∆

(
yn
An

))
. (2.1)

Proof. A direct computation shows that

∆

(
anAnAn+1∆

(
yn
An

))
= ∆(Anan∆yn + yn) = An+1∆(an∆yn).

Furthermore,

∞∑
n=n0

1

anAnAn+1
=

∞∑
n=n0

∆

(
1

An

)
= lim

n→∞

1

An
− 1

An0

= ∞.

Hence, the right hand side of (2.1) is in canonical form, and this completes the proof of the
theorem.

From the above theorem, the following observations and results are immediate. The non-
canonical equation (E) can be rewritten in equivalent canonical form as

∆

(
anAnAn+1∆

(
yn
An

))
= An+1qnyσ(n).

Theorem 2.2. The noncanonical difference equation (E) possesses a solution {yn} if and only
if the canonical equation

∆(bn∆zn) = Qnzσ(n) (Ec)

has the solution {zn} =

{
yn
An

}
.

Corollary 2.3. The noncanonical difference equation (E) has an eventually positive solution if
and only if the canonical equation (Ec) has an eventually positive solution.

Corollary 2.3 simplifies the investigation of the noncanonical equation (E) since for (Ec), we
use the discrete Kneser’s theorem (see [6, Theorem 1.8.11]) that any eventually positive solution
of (Ec) satisfies one of the following conditions:

S0 : bn∆zn < 0, ∆(bn∆zn) > 0,
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S2 : bn∆zn > 0, ∆(bn∆zn) > 0

for n ≥ n1 ∈ N(n0).

If we let S denote the set of all positive solutions of (Ec), then it has the decomposition

S = S0 ∪ S2.

Next, we have some useful auxiliary results regarding the monotonic properties of nonoscil-
latory solutions of (Ec).

Lemma 2.1. Let σ(n) = n− k, where k is a positive integer, and assume that {zn} is a positive
solution of (Ec) belongs to S0. If there exists a constant δ ∈ (0, 1) such that

Bn

(
n+k∑
s=n

Qs

)
≥ δ, for n ≥ n0, (2.2)

then {Bnzn} is decreasing.

Proof. Assume that {zn} is a positive solution of (Ec) belonging to the class S0. Since bn∆zn < 0,
zn is decreasing. Therefore, a summation of (Ec) from n− k to n gives

−bn−k∆zn−k ≥ zn−k

(
n∑

s=n−k

Qs

)
,

that is,

−Bnbn∆zn ≥ zn+1Bn

(
n+k∑
s=n

Qs

)
≥ δzn+1

by (2.2). This implies

∆(Bδ
nzn) = zn+1∆Bδ

n +Bδ
n∆zn ≤ Bδ−1

n

bn
(δzn+1 +Bnbn∆zn) ≤ 0,

from which we conclude that the sequence {Bδ
nzn} is decreasing. This completes the proof.

Theorem 2.4. Let σ(n) = n− k, where k is a positive integer, and assume that (2.2) holds. If

lim sup
n→∞

Bδ
n−k

n∑
s=n−k

1

bs

(
n∑

t=s

Qt

Bδ
t−k

)
> 1, (2.3)

then S0 = ∅.

Proof. Assume, to the contrary, that (Ec) has an eventually positive solution {zn} belonging to
the class S0. Summing (Ec) from j to n and applying the monotonicity of {Bδ

nzn} gives

−bj∆zj ≥ Bδ
n−kzn−k

n∑
s=j

Qs

Bδ
s−k

.

Summing again form j to n, we obtain

zj ≥ Bδ
n−kzn−k

n∑
s=j

1

bs

(
n∑

t=s

Qt

Bδ
t−k

)
.
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Taking j = n− k gives

zn−k ≥ Bδ
n−kzn−k

n∑
s=n−k

1

bs

(
n∑

t=s

Qt

Bδ
t−k

)
,

which contradicts (2.3), and so S0 is empty. This proves the theorem.

Next, we investigate the monotonic properties of possible positive increasing solutions of
(Ec).

Lemma 2.2. Let σ(n) = n + l with l a positive integer, and assume that {zn} is a positive
solution of (Ec) that belongs to the class S2. If there exists a constant α ∈ (0, 1) such that

Bn

(
n−1∑

s=n−l

Qs

)
≥ α, for n ≥ n0, (2.4)

then

{
zn
Bα

n

}
is increasing.

Proof. Assume that {zn} is a positive solution of (Ec) belonging to S2. Then bn∆zn > 0, and
zn is increasing. Summing (Ec) from n to n+ l − 1 and then using the monotonicity of {Bnzn}
from Lemma 2.1, we obtain

bn+l∆zn+l ≥ zn+l

(
n+l−1∑
s=n

Qs

)
and hence in view of (2.4)

Bnbn∆zn ≥ znBn

[
n−1∑

s=n−l

Qs

]
≥ αzn.

Therefore,

∆

(
zn
Bα

n

)
=

Bα
n∆zn − zn∆Bα

n

Bα
nB

α
n+1

≥ Bnbnzn − αzn
bnBnBα

n+1

≥ 0.

We see that

{
zn
Bα

n

}
is increasing and this finishes the proof.

Theorem 2.5. Let σ(n) = n+ l, l be a positive integer, and (2.4) hold. If

lim sup
n→∞

1

Bα
n+l

n+l−1∑
s=n

1

bs

(
s∑

t=n

QtB
α
t+l

)
> 1, (2.5)

then S2 = ∅.

Proof. Assume, to the contrary, that (Ec) has a positive solution {zn} belonging to S2. Summing

(Ec) from n to j − 1 and then using the fact that

{
zn
Bα

n

}
is increasing gives

bj∆zj ≥
zn+l

Bα
n+l

j−1∑
s=n

QsB
α
s+l.
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Summing again from n to j − 1,

zj ≥
zn+l

Bα
n+l

j−1∑
s=n

1

bs

(
s−1∑
t=n

QtB
α
t+l

)
.

Letting j = n+ l,

zn+l ≥
zn+l

Bα
n+l

n+l−1∑
s=n

1

bs

(
s−1∑
t=n

QtB
α
t+l

)
,

which clearly contradicts condition (2.5). Therefore, the class S2 is empty, and this proves the
theorem.

Next, we present a new monotonic property for the first differences of nonoscillatory solutions
of (Ec). This will lead to another result similar to those given in Theorems 2.4 and 2.5.

Lemma 2.3. Let σ(n) = n− k, where k is a positive integer and let {zn} be a positive solution
of (Ec) that belongs to (S0). If there exists a constant γ ∈ (0, 1) such that

Qn[Bn+1 −Bn−k]Bnbn ≥ γ, for n ≥ n0, (2.6)

then {−Bγ
nbn∆zn} is decreasing.

Proof. Assume that {zn} is a positive solution of (Ec) in S0. Since −bn∆zn is positive and
decreasing,

zn−k ≥
n∑

s=n−k

−∆zs ≥ −∆znbn

n∑
s=n−k

1

bs
≥ −∆zn+1bn+1(Bn+1 −Bn−k). (2.7)

Using (2.7) in (Ec), we obtain

∆(bn∆zn) ≥ Qn(−∆zn+1bn+1)(Bn+1 −Bn−k),

which in view of (2.6) implies

∆(bn∆zn)Bnbn ≥ γ(−∆zn+1bn+1). (2.8)

Applying the discrete Mean-Value theorem, we have

∆(−Bγ
nbn∆zn) ≤

Bγ−1
n

bn
[−bn+1∆zn+1 −∆(bn∆zn)Bnbn] ≤ 0

by (2.8). Hence, {−Bγ
nbn∆zn} is decreasing and this proves the lemma.

As indicated above, here is another result ensuring that the class S2 is empty.

Theorem 2.6. Let σ(n) = n− k with k a positive integer and let (2.6) hold. If

lim sup
n→∞

Bγ
n−k

n∑
s=n−k

Qs

(
B1−γ

n−k+1 −B1−γ
s−k

)
> 1− γ, (2.9)

then the class S0 is empty.
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Proof. Let {zn} be a positive solution of (Ec) that belongs to (S0). By Lemma 2.3, −Bγ
nbn∆zn

is positive and decreasing, so

zs−k ≥
n−k∑

t=s−k

−∆zt
Bγ

t bt
Bγ

t bt

≥ −∆zn−kB
γ
n−kbn−k

n−k∑
t=s−k

1

Bγ
t bt

≥ −∆zn−kB
γ
n−kbn−k

n−k∑
t=s−k

1

Bγ
t+1bt

≥ −∆zn−kB
γ
n−kbn−k

(B1−γ
n−k+1 −B1−γ

s−k )

1− γ
. (2.10)

Summing (Ec) from n− k to n and then using (2.10), we see that

−bn−k∆zn−k ≥
n∑

s=n−k

Qszs−k ≥ −∆zn−k

bn−kB
γ
n−k

1− γ

n∑
s=n−k

Qs

(
B1−γ

n−k+1 −B1−γ
s−k

)
,

which contradicts (2.9) and proves that S0 is empty.

Lemma 2.4. Let σ(n) = n+ l, l be a positive integer, and let {zn} be a positive solution of (Ec)
belonging to S2. If there exists a constant d ∈ (0, 1) such that

Qn(Bn+1−l −Bn+1)Bnbn ≥ d, for n ≥ n0, (2.11)

then

{
bn∆zn
Bd

n

}
is an increasing sequence.

Proof. Let {zn} be a positive solution of (Ec) in (S2). Since bn∆zn is positive and increasing, it
is not difficult to see that

zn+l ≥
n+l−1∑
s=n

∆zs ≥ bn∆zn

n+l−1∑
s=n

1

bs
= bn∆zn(Bn+l −Bn). (2.12)

Substituting (2.12) into (Ec) gives

∆(bn∆zn) ≥ Qnbn∆zn(Bn+l −Bn). (2.13)

In view of (2.11), we have

∆(bn∆zn)Bnbn ≥ dbn∆zn. (2.14)

Now

∆

(
bn∆zn
Bd

n

)
=

Bd
n∆(bn∆zn)− bn∆zn∆(Bd

n)

Bd
nB

d
n+1

.

By the discrete Mean Value Theorem, we have

∆
(
Bd

n

)
≤ dBd−1

n

1

bn
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and using this we see that

∆

(
bn∆zn
Bd

n

)
≥ 1

bnB
1+d
n

[Bnbn∆(bn∆zn)− dbn∆zn] ≥ 0

by (2.14). Hence, we conclude that

{
bn∆zn
Bd

n

}
is increasing. This completes the proof.

Our last result of this type gives conditions under which S2 = ∅.

Theorem 2.7. Let σ(n) = n+ l, l be a positive integer, and condition (2.11) hold. If

lim sup
n→∞

1

Bd
n+l

n+l−1∑
s=n

Qs

(
B1+d

s+l −B1+d
n+l

)
> 1 + d, (2.15)

then the class S2 is empty.

Proof. Let {zn} be a positive solution of (Ec) belonging to (S2). Since

{
bn∆zn
Bd

n

}
is increasing,

we have

zs+l ≥
s+l−1∑
t=n+l

∆zt
Bd

t bt
Bd

t bt
≥ ∆zn+lbn+l

Bd
n+l

s+l−1∑
t=n+l

Bd
t

bt
=

bn+l∆zn+l

Bd
n+l

(B1+d
s+l −B1+d

n+l )

1 + d
.

Summing (Ec) from n to n+ l − 1 and using the above estimate, we obtain

bn+l∆zn+l ≥
n+l−1∑
s=n

Qszs+l ≥
bn+l∆zn+l

(1 + d)Bd
n+l

n+l−1∑
s=n

Qs

(
Bd+1

s+l −Bd+1
n+l

)
,

which contradicts (2.15) and proves that S2 is empty.

3 Oscillation Theorems

In view of the results in Section 2, we might expect that all solutions will be oscillatory for
equations that contain both a delay and an advanced argument. In the following theorems we
show that this can in fact happen. We consider the equation

∆(an∆yn) = qnyn−k + pnyn+l, n ∈ N(n0), (3.1)

where {an} and {qn} satisfy condition (H1) and

(H3) {pn} is a positive real sequence and l and k are positive integers.

Using Theorem 2.1, we can transform the noncanonical equation (3.1) into a canonical type
equation

∆(bn∆zn) = Qnzn−k +Q∗
nzn+l, n ≥ N(n0) (3.2)

where {bn}, {Qn}, and {zn} are as defined earlier and

Q∗
n = An+1pnAn+l.
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Theorem 3.1. Let conditions (2.2) and (2.3) hold and assume there exists a constant β ∈ (0, 1)
such that

Bn

(
n−1∑

s=n−l

Q∗
s

)
≥ β, for n ∈ N(n0). (3.3)

If

lim sup
n→∞

1

Bβ
n+l

n+l−1∑
s=n

1

bs

(
s∑

t=n

Q∗
tB

β
t+1

)
> 1, (3.4)

then equation (3.1) is oscillatory.

Proof. Let {yn} be an eventually positive solution of (3.1). Then by Theorem 2.2, {zn} is a
positive solution of (3.2) such that zn ∈ S0 or S2 for all n ∈ N(n1).

Suppose zn is in the class S0. It is not difficult to see that (3.2) implies

∆(bn∆zn) ≥ Qnzn−k.

As in the proof of Theorem 2.4, it can be shown that (2.3) guarantees that S0 = ∅.
Now assume that zn ∈ S2. From (3.2) we see that

∆(bn∆zn) ≥ Q∗
nzn+l.

Then, as we did in the proof of Theorem 2.5, we see that S2 = ∅. This shows that {zn} must be
oscillatory, and by the transformation {yn} = {Anzn}, it is not difficult to see that {yn} is also
oscillatory. This completes the proof of the theorem.

Theorem 3.2. Let conditions (2.6) and (2.9) hold and assume that there is a constant d0 ∈ (0, 1)
such that

BnQ
∗
n(Bn+l −Bn)bn ≥ d0, for n ≥ n0.

If

lim sup
n→∞

B−d0

n+l

n+l−1∑
s=n

Q∗
s

(
B1+d0

s+l −B1+d0

n+l

)
> 1 + d0,

then equation (3.1) is oscillatory.

Since the proof is similar to that of Theorem 3.1, we omit the details.

4 Examples

In this section we present some examples to illustrate the applicability of our main results.

Example 1. Consider the second-order noncanonical delay difference equation

∆ (n(n+ 1)∆yn) = a(n+ 1)(n− 2)yn−2, n ≥ 3, (4.1)

where a > 0 is a constant. Here an = n(n+ 1), qn = a(n+ 1)(n− 2), and σ(n) = n− 2. Simple
calculation shows that

An =
1

n
, bn = 1, Bn ≃ n, Qn = a,
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and the transformed equation is
∆2zn = azn−2, n ≥ 3,

which is clearly in canonical form. Choosing δ = 1
2 , and a = 0.17, we see that conditions (2.2)

and (2.3) hold. Therefore, by Theorem 2.4 the class S0 is empty. In other words every bounded
solution of (4.1) is oscillatory if a = 0.17.

Example 2. Consider the second-order noncanonical advanced difference equation

∆ (n(n+ 1)∆yn) = a(n+ 2)(n+ 1)yn+2, n ≥ 1, (4.2)

where a > 0 is a constant. Here we have an = n(n+ 1), qn = a(n+ 2)(n+ 1), and σ(n) = n+ 2.
Some simple computations show that

An =
1

n
, bn = 1, Bn ≃ n, Qn = a,

and the transformed equation is
∆2zn = azn+2, n ≥ 1,

which is clearly a canonical type equation. Choosing δ = 1
2 and a = 0.34, we see that conditions

(2.4) and (2.5) hold. Therefore, by Theorem 2.5, the class S2 is empty. In other words, every
unbounded solution of (4.2) is oscillatory if a = 0.34.

Example 3. Consider the second-order mixed type difference equation

∆ (n(n+ 1)∆yn) = a(n+ 1)(n− 2)yn−2 + d(n+ 1)(n+ 2)yn+2, n ≥ 3, (4.3)

where a > 0 and d > 0 are constants. The transformed equation is

∆2zn = azn−2 + dzn+2, n ≥ 3,

which is in canonical form. Choosing δ = β = 1
2 , a = 0.17, and d = 0.34, all conditions of

Theorem 3.1 hold. Thus, equation (4.3) is oscillatory if a = 0.17 and d = 0.34.

5 Conclusions

In this paper, by using a canonical transform method, we converted equation (E) into canonical
form. Then, we derived some new monotonic properties of nonoscillatory solutions of the trans-
formed equation. Next, we then used these properties and the summation averaging method to
eliminate certain types of nonoscillatory solutions. In this way we obtained oscillation results
for mixed type difference equations. The results established in this paper are new and comple-
ment existing results in the literature. Moreover, no currently known results apply to equations
(4.1)–(4.3) since these equations are in noncanonical form.
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