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Abstract. Metallic structures, introduced by V. de Spinadel in 2002, opened a new

avenue in differential geometry. Building upon this concept, C. E. Hreţcanu and M.

Crâs,măreanu laid the foundation for metallic Riemannian manifolds in 2013. The

field’s rich potential and diverse applications have since attracted significant research

efforts, leading to a wealth of valuable insights. This review delves into the latest

advances in metallic Riemannian geometry, a rapidly progressing area within the

broader field of differential geometry.
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1 Introduction

In the realm of differential geometry, Riemannian manifolds have become a focal point of research
in recent years. These curved spaces take centre stage when imbued with an intriguing structure
inspired by the concept of metallic means. Spinadel [64] introduced this notion in 2002, gener-
alizing the well-known golden ratio and encompassing a broader family of proportions like the
silver, bronze, and copper mean. This extension allows mathematicians to explore the geometric
properties of Riemannian manifolds with a richer and more nuanced perspective. Goldberg and
Yano defined a broader category called polynomial structures [41]. Within this category, there’s
a specific type called a metallic structure. This metallic structure can be seen as a more general
version of a special kind of polynomial structure, known as a golden structure. Within the field of
differential geometry, the concept of a metallic structure applied to differentiable manifolds finds
its origins in the work of Hreţcanu and Crâs,măreanu [48]. Their research extended the previously
established theory of golden structures. Ozkan and Yılmaz in [60] explored metallic structures
using almost product structures. Building on the concept of metallic Riemannian structures,
Gezer and Karaman [37] dive into their integrability conditions and curvature properties. Their
analysis hinges on the application of a specifically chosen operator. Blaga and Hreţcanu (2018) in-
troduced the notion of metallic conjugate connections within the framework of metallic structures

Received date: July 3, 2024; Published online: December 12, 2024.
2010 Mathematics Subject Classification. 53C15, 53C25, 53C40, 53C42, 53C50, 11B39, 53B05,
53B20, 53B25, 53C20, 53C35, 53C75.
Corresponding author: Bang-Yen Chen.

1

http://dx.doi.org/10.5556/j.tkjm.56.2025.5405


2 B.-Y. Chen, M. A. Choudhary and A. Perween

[10]. These connections represent a generalization of golden conjugate connections. Researchers
have explored various forms of metallic structures (see [11, 12]).

Submanifolds occupy a particularly fascinating niche within the field of differential geome-
try. The fact that a submanifold of a Riemannian manifold is always a Riemannian one is widely
recognized. The incorporation of a metallic structure on an ambient Riemannian manifold serves
as a significant tool for deriving the geometric properties of its submanifolds. This approach has
become a powerful technique in the investigation of submanifold geometry within Riemannian
contexts. Employing a methodology similar to that used in the context of golden Riemannian
manifolds, Hreţcanu and Crâs,măreanu laid the groundwork for studying the differential geom-
etry of metallic Riemannian manifolds in [48], particularly invariant submanifolds, which were
characterized here. Blaga and Hreţcanu in [9] investigated a specific type of submanifold within
metallic Riemannian manifolds called an invariant submanifold and proved that Nijenhuis tensor
of the tensor field of the induced structure is identically zero on an invariant submanifold of
locally decomposable metallic Riemannian manifolds, maintaining the property of the ambient
manifold’s locally decomposability. This submanifold was further extended to slant, semi-slant,
hemi-slant, and bi-slant submanifolds, respectively, in metallic and golden Riemannian manifolds
[9, 44, 43] by the same authors. Furthermore, in metallic Riemannian manifolds, the study of
totally umbilical semi-invariant submanifolds was carried out in [40].

The warped products can be thought of as a natural extension of cartesian products. Begin-
ning with the research of Nash, this idea entered the field of mathematics. Nash established an
embedding theorem, according to which any Riemannian manifold can be isometrically embed-
ded into a Euclidean space. Moreover, Nash’s theorem demonstrates that every warped product
M̄1×f M̄2 can be embedded in a Euclidean space as a Riemannian submanifold [58]. First, Bishop
and Neill [8] created the idea of the warped product in Riemannian manifolds, which led to the
creation of a broad class of complete manifolds with negative curvature. A surface of revolution
gave rise to the idea of the warped product. From the definition of the warped product, Nolker
[59] developed the idea of multiple warped products. A bi-warped product is a specific instance of
a multiply-warped product. In addition to differential geometry, the warped product is a crucial
concept in mathematical physics, specifically in general relativity. Warped products include the
Robertson-Walker model, the Kruscal model, the Schwarzschild solution, and the static model.
The warped products can be used to express a large number of accurate solutions to modified
field equations and Einstein field equations. Inspired by all this, the study of warped product
submanifolds in metallic Riemannian manifolds is carried out in [46] by Blaga and Hreţcanu.
Furthermore, the same authors have studied warped product pointwise bi-slant submanifolds as
well as warped product pointwise semi-slant or hemi-slant submanifolds within metallic Rieman-
nian manifolds in [45]. The study of warped product lightlike submanifolds induced in metallic
semi-Riemannian manifolds is done by Shanker and Yadav in [63].

On the other hand, it is widely understood in Riemannian geometry that the metric induced
on a submanifold of a Riemannian manifold remains Riemannian. However, the induced metric
of the semi-Riemannian metric of the ambient manifold is not consistently non-degenerate in the
semi-Riemannian situation. The preceding instance yields a fascinating class of submanifolds
known as lightlike submanifolds. The methods used to study the geometry of submanifolds in
the Riemannian situation are inapplicable in the semi-Riemannian case due to the degeneracy
of the induced metric on lightlike submanifolds. As a result, the classical theory fails when at-
tempting to define any induced object on a lightlike submanifold. The primary challenge stems
from the nonzero intersection between the tangent bundle and the normal bundle of a lightlike
submanifold. To overcome the challenges encountered when researching lightlike submanifolds,
Duggal and Bejancu [31] devised a non-degenerate distribution known as the screen distribution
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to create a lightlike transversal vector bundle that does not intersect with its lightlike tangent
bundle. It is commonly recognized that numerous significant characterizations in lightlike geom-
etry can be obtained by selecting an appropriate screen distribution. This discovery sparked a
wave of research, with mathematicians delving into various lightlike submanifolds within diverse
manifold types. Their efforts yielded significant geometric insights and classifications. In 2018
Acet initiated the study of lightlike hypersurfaces in metallic semi-Riemannian manifolds [1].
The notion of lightlike submanifolds in metallic semi-Riemannian manifolds is introduced in [72].
Later different types of lightlike submanifolds induced in metallic semi-Riemannian manifolds are
studied (see [33, 2, 54] etc).

Furthermore, a central challenge in submanifold geometry is to establish an optimal inequal-
ity between the intrinsic and extrinsic invariants of a submanifold. In 1993, the first author
introduced a groundbreaking concept called Chen invariants (or δ-invariants) [18]. These invari-
ants provided a powerful tool for analyzing the relationship between a submanifold’s internal
properties (intrinsic) and its interaction with the larger space (extrinsic). Chen’s work achieved
this by establishing an optimal inequality. This breakthrough paved the way for a whole new area
of differential geometry, sparking extensive research into Chen invariants and related inequalities
for various submanifolds in diverse ambient spaces. Inspired by this, the second author with
Uddin in [25] has explored Chen-type Inequalities for slant submanifolds in metallic Riemannian
space forms. The Chen-Ricci inequality for isotropic submanifolds in locally metallic product
space forms was proven by Li et al. in [53]. Moreover, the Chen-type inequality in metallic-like
statistical manifolds was examined by Bahadir in [5].

In submanifold geometry, a paradigm shift occurred with the replacement of the classical
Gauss curvature by the Casorati curvature. This substitution provided the foundation for the
establishment of optimal inequalities for submanifolds in diverse ambient spaces, using the power
of Casorati curvatures [14]. Casorati favoured this curvature above the conventional Gauss cur-
vature as it more closely matches the perception of curvature because both principal curvatures
of a surface in E3 are zero if and only if the Casorati curvature vanishes. Numerous scholars
have employed the Casorati curvature technique extensively to generate optimal inequalities for
submanifolds in metallic Riemannian manifolds. In [22], Choudhary and Blaga examined sharp
inequalities using generalized normalized δ-Casorati curvatures in a metallic Riemannian space.

Wintgen is credited with discovering the Wintgen inequality [70]. This inequality is a signifi-
cant result in differential geometry because it relates the inherent properties (intrinsic invariants)
of a surface M2 in a 4-dimensional Euclidean space E2 to extrinsic invariants.

Given recent advances in metallic differential geometry, this paper provides an extensive
overview of the most important recent developments in the subject. The reader can explore the
most recent studies, examining how these results shed light on the complex connection between
metallic structures and multiple geometric features. With the help of this critical examination,
researchers should be able to grasp the fundamental concepts guiding the fascinating new devel-
opments in metallic differential geometry.

2 Preliminaries

2.1 Metallic Riemannian manifolds

Consider (M̄, g) as anm-dimensional Riemannian manifold. A (1, 1)-tensor field F on M̄ is called
a polynomial structure [41] if it satisfies the condition B(F ) = 0, where

B(X) := Xn + anX
n−1 + · · ·+ a2X + a1I,
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with any real numbers a1, a2, · · · , an, where I is the identity transformation on Γ(TM̄). One can
observe that

• F is an almost complex structure when B(X) = X2 + I,

• F is an almost product structure when B(X) = X2 − I.

Again, suppose that (M̄, g) is an m-dimensional Riemannian manifold. Then for any integer
p, q, the (1, 1)-tensor field φ on M̄ is called a metallic structure [48] if

φ2 = pφ+ qI,

where I denotes the identity operator on Γ(TM̄). It is commonly recognized that a Riemannian
metric g is termed φ-compatible if the following relation is satisfied

g(X,φY ) = g(φX, Y )

for any X,Y ∈ Γ(TM̄). A manifold M̄ that is equipped with a metallic structure φ and a φ-
compatible Riemannian metric g is called a metallic Riemannian manifold. Now, replacing X by
φX, we have

g(φX,φY ) = pg(X,φY ) + qg(X,Y ).

Specifically, when p = q = 1, a metallic Riemannian manifold is referred to as a golden Rieman-
nian manifold [26, 47].

A (1, 1)-tensor field F is referred to as an almost product structure [6] on a Riemannian
manifold (M̄, g) of dimension m if it meets the conditions F 2 = I and F ̸= ±I. Furthermore,
(M̄, g) is described as an almost product Riemannian manifold when the almost product structure
F satisfies ∀X,Y ∈ Γ(TM̄)

g(FX, Y ) = g(X,FY ).

Via any metallic structure φ on M̄ one obtains two almost product structures on M̄ [48]

F1 =
2

2σp,q − p
φ− p

2σp,q − p
I,

F2 = − 2

2σp,q − p
φ+

p

2σp,q − p
I.

(2.1)

Here σp,q =
p+

√
p2+4q

2 symbolize the metallic proportions or the members of the metallic means
family. Additionally, any almost product structure F on M̄ yields two metallic structures

φ1 =
p

2
I +

2σp,q − p

2
F,

φ2 =
p

2
I − 2σp,q − p

2
F.

(2.2)

Definition 1. We recall the following definition from [9].

(i) Assume that (M̄, g, φ) denotes a metallic Riemannian manifold and let ∇ be a linear
connection on M̄ . The linear connection∇ is referred to as a φ-connection if φ remains covariantly
constant with respect to ∇, meaning it satisfies ∇φ = 0.

(ii) A metallic Riemannian manifold (M̄, g, φ) is described as a locally metallic Riemannian
manifold if the Levi-Civita connection ∇̄ of g is a φ-connection.
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Example 1. With the canonical coordinates (ζ1, . . . , ζ7) and the natural Euclidean metric ⟨·, ·⟩,
let us consider the Euclidean 7-space E7. We then define the immersion f : M̄ → E7 by

f (t1, t2) := (sin t1 + 2, cos t1, 2 sin t2 + 1, 2 cos t2, t2, 2t1, 3) ,

where M̄ :=
{
(t1, t2) | t1, t2 ∈

(
0, π2

)}
. Then a local orthonormal frame on TM̄ is given by the

vector fields

ζ1 = cos t1
∂

∂ζ1
− sin t1

∂

∂ζ2
+ 2

∂

∂ζ6
,

ζ2 = 2 cos t2
∂

∂ζ3
− 2 sin t2

∂

∂ζ4
+

∂

∂ζ5
.

We consider the metallic structure φ : E7 → E7 :

φ

(
∂

∂ζi

)
= σ

∂

∂ζi
, i ∈ {1, 2, 5}; φ

(
∂

∂ζj

)
= σ̄

∂

∂ζj
, j ∈ {3, 4, 6, 7},

where σ := σp,q =
p+

√
p2+4q

2 is the metallic number, p, q are integers, and σ̄ = p − σ. Then(
E7, ⟨·, ·⟩, φ

)
is a metallic Riemannian manifold.

Let
(
M̄ =Mp (cp)×Mq (cq) , F

)
be a locally Riemannian product manifold, where Mp and

Mq have constant sectional curvatures cp and cq, respectively. Then, the Riemannian curvature
tensor R of M̄ =Mp (cp)×Mq (cq) for X,Y and Z ∈ Γ(TM̄) is [71]

R(X,Y )Z =
1

4
(cp + cq) [g(Y,Z)X − g(X,Z)Y + g(FY,Z)FX

− g(FX,Z)FY ] +
1

4
(cp − cq) [g(FY,Z)X

− g(FX,Z)Y + g(Y, Z)FX − g(X,Z)FY ].

(2.3)

In view of (2.1) and (2.3), one can get [23]

R(X,Y )Z =
1

4
(cp + cq) [g(Y,Z)X − g(X,Z)Y ]

+
1

4
(cp + cq)

{
4

(2σp,q − p)
2 [g(φY,Z)φX − g(φX,Z)φY ]

+
p2

(2σp,q − p)
2 [g(Y,Z)X − g(X,Z)Y ]

+
2p

(2σp,q − p)
2 [g(φX,Z)Y + g(X,Z)φY

− g(φY,Z)X − g(Y,Z)φX]

}

± 1

2
(c1 − c2)

{
1

2σp,q − p
[g(Y,Z)φX − g(X,Z)φY ]

+
1

2σp,q − p
[g(φY,Z)X − g(φX,Z)Y ]

+
p

2σp,q − p
[g(X,Z)Y − g(Y,Z)X]

}
.

(2.4)
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2.2 Metallic semi-Riemannian manifolds

The positive solution of
x2 − px− q = 0,

is called a member of the metallic means family [64], where p, q are fixed positive integers. These
numbers denoted by:

σp,q =
p+

√
p2 + 4q

2

are known (p, q)-metallic numbers.

A polynomial structure on a semi-Riemannian manifold M̄ is called metallic if it is deter-
mined by φ such that

φ2 = pφ+ qI.

If a semi-Riemannian metric g satisfies the equation

g(X,φY ) = g(φX, Y ),

which yields
g(φX,φY ) = pg(X,φY ) + qg(X,Y ),

then g is called φ-compatible.

Definition 2. [1] A semi-Riemannian manifold (M̄, g) equipped with φ such that the semi-
Riemannian metric g is φ-compatible is named a metallic semi-Riemannian manifold and (g, φ)
is called a metallic semi-Riemannian structure on M̄ .

2.3 Metallic-like statistical manifolds

Takano proposed generalized almost complex and almost contact statistical manifolds, referring
to them as Kähler-like statistical manifolds and Sasaki-like statistical manifolds [65]. Motivated
by this research, Bahadır in [5] elucidated metallic-like statistical manifolds, a generalized form
of metallic manifolds as follows.

Definition 3. Consider a locally metallic semi-Riemannian manifold (M̄, g, φ) equipped with a
tensor field φ∗ of type (1, 1), satisfying

g(φX, Y ) = g(X,φ∗Y )

for any vector fields X,Y . From the above equation one can easily derive

(φ)∗X = pφ∗X + qX,

g(φX,φ∗Y ) = pg(φX, Y ) + qg(X,Y ).

Then (M̄, g, φ) is called metallic-like statistical manifold.

According to the above two equations, the tensor fields φ + φ∗ and φ − φ∗ are symmetric
and skew-symmetric concerning g, respectively.

Proposition 2.1. [5] (M̄, g, φ) is a metallic-like statistical manifold if and only if so is (M̄, g, φ∗).

If one chooses φ = φ∗ in a metallic-like statistical manifold, then we have a metallic semi-
Riemannian manifold.
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Example 2. [5] Consider the semi-Euclidean space E3
1 with standard coordinate system (ζ1, ζ2, ζ3)

and the semi-Riemannian metric g with the signature (−,+,+). Let φ be a (1, 1)-tensor field on
E3
1 defined by

φ(ζ1, ζ2, ζ3) =
1

2

(
pζ1 + (2σ − p)ζ2, pζ2 + (2σ − p)ζ1, (p− σ)ζ3

)
for any vector field (ζ1, ζ2, ζ3) ∈ E3

1 where σ := σp,q =
p+

√
p2+4q

2 are members of the metallic
means family. Then we have φ2 = pφ+qI. Also, we can easily see that the structure is compatible
with the metric. This implies that φ is a metallic structure on E3

1. Now define a (1, 1)-tensor
field φ∗ on E3

1 by

φ∗(ζ1, ζ2, ζ3) =
1

2
(pζ1 + (p− 2σ)ζ2, pζ2 + (p− 2σ)ζ1, (p− σ)ζ3) .

Thus, we find φ∗2 = pφ∗ + qI. Furthermore, we also have g(φX, Y ) = g(X,φ∗Y ). Consequently,
(E3

1, g, φ) is a metallic-like statistical manifold.

2.4 Almost-complex metallic manifolds

Consider the following:

x2 − ax+
3

2
b = 0,

where a and b are the real numbers that satisfy −
√
6b < a <

√
6b and b ≥ 0. The positive

solution of the equation has complex roots given as:

Ca,b =
a+

√
a2 − 6b

2
, (2.5)

which is named as complex metallic means family in [67]. In particular, if a = 1 and b = 1,

then the complex metallic means family Ca,b = a+
√
a2−6b
2 reduces to the complex golden mean:

C1,1 = 1+
√
5i

2 , i2 = −1.

In [67], using the complex mean given in (2.5), the authors defined a new type of structure
on a Riemannian manifold. Let M̄ be a Riemannian manifold. An almost complex metallic
structure is a (1, 1)-tensor field, φM̄ on M̄ , which satisfies the relation

φ2
M̄ − aφM̄ +

3

2
bI = 0, (2.6)

where I is the identity (1, 1)-tensor field on M̄ . In this case, M̄ is referred to as an almost complex
metallic manifold equipped with an almost complex structure φM̄ .

Note that if we take a = m and b = 2
3 in (2.6), we obtain an almost poly-Norden structure.

Example 3. [66] Consider the 4-tuples real space R4. Let φM̄ : R4 → R4 be a map given by

φM̄ (ζ1, ζ2, ω1, ω2) =
(
Ca,bζ1, Ca,bζ2, (a− Ca,b)ω1, (a− Ca,b)ω2

)
,

where Ca,b = a+
√
a2−6b
2 . One can easily see that φM̄ satisfies φ2

M̄
− aφM̄ + 3

2bI = 0. Thus,
(R4, φM̄ ) is an example of almost complex metallic manifolds.
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If (M̄, g) is a semi-Riemannian manifold equipped with an almost complex metallic structure
such that the metric g is φM̄ -compatible,

g(φM̄X,φM̄Y ) = ag(φM̄X,Y )− 3

2
bg(X,Y )

equivalent to
g(φM̄X,Y ) = g(X,φM̄Y )

for everyX,Y ∈ Γ(TM̄).Hence, (M̄, φM̄ , g) is called an almost-complex metallic semi-Riemannian
(briefly ACMSR) manifold.

Remark 1. Inspired by Meta-Golden-Chi ratio, the authors in [34] developed the concept of
Meta-Metallic manifolds via the Meta-Metallic-Chi ratio and Metallic manifolds. They also
provided an example, explored the specific characteristics of the Meta-Metallic structure, and
derived the conditions necessary for the integrability of the almost Meta-Metallic structure, as
well as obtained its relationship with the curvature tensor.

3 Submanifolds immersed of metallic Riemannian
manifolds

3.1 Invariant submanifolds in metallic Riemannian manifolds

A submanifold M of M̄ is called invariant if φ(TxM) ⊂ TxM for all x ∈ M . Hence we get
φ(TxM

⊥) ⊂ TxM
⊥ for any x ∈M , since we have g(X,φU) = g(φX,U) = 0 for any X ∈ Γ(TM)

and any U ∈ Γ(TM⊥) [9].

Many researchers have studied invariant submanifolds in metallic Riemannian manifolds. In
[9], Blaga and Hreţcanu studied the properties of invariant isometrically immersed submanifolds
in these manifolds, with a particular emphasis on the induced Σ-structure.

Proposition 3.1. [9] Given a locally metallic Riemannian manifold (M̄, φ, g), with M an iso-
metrically immersed invariant submanifold, then for every X,Y ∈ Γ(TM) we have:

∇φ = 0,
r∑

α=1

hα(X,φY )ξα =

r∑
α=1

hα(X,Y )φξα =

r∑
α=1

hα(φX, Y )ξα,

hα(φX,φY ) = phα(X,φY ) + qhα(X,Y ) for any 1 ≤ α ≤ r,

where the (symmetric) second fundamental tensors corresponding to ξα are hα, 1 ≤ α ≤ r, and
ξα is an orthonormal basis for the normal space. i.e., h(X,Y ) =

∑r
α=1 hα(X,Y )ξα, for X,Y ∈

Γ(TM).

Proposition 3.2. [9] A locally metallic Riemannian manifold (M̄, φ, g) of dimension n+ r has
an isometrically immersed invariant n-dimensional submanifold of codimension r, denoted by M
and Σ := (T, g, ηα = 0, ξ′α = 0, (aαβ))1≤α,β≤r is the induced structure in M , where T is the
tangent bundle in M, ξ′α is a vector field on M ,ηα is a 1-form in M and (aαβ))1≤α,β≤r is a r× r
matrix of smooth real function on M . Then

TSξα = SξαT,

the Nijenhuis tensor field of T disappears identically inM for any 1 ≤ α ≤ r.(i.e., NT (X,Y ) = 0,
for any X,Y ∈ Γ(TM)).
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Proposition 3.3. [9] Consider M as an isometrically immersed invariant n-dimensional sub-
manifold of codimension r of the locally metallic (n + r)-dimensional Riemannian manifold
(M̄, φ, g) and Σ := (T, g, ηα = 0, ξ′α = 0, (aαβ))1≤α,β≤r is the induced structure on M . Then
the components N (2),N (3) and N (4) vanish identically on M . Moreover, if NT = 0, then N (1)

vanishes, too, on M . This specifically occurs if the normal connection ∇⊥ on the normal bundle
vanishes in identical way i.e., λαβ = 0, for every 1 ≤ α, β ≤ r, where λαβ = −λβα is 1-form on
M corresponding to the normal connection ∇⊥.

Remark 2. In [38], Gök has examined invariant submanifolds within metallic Riemannian man-
ifolds and has derived results indicating that an isometrically immersed submanifold of a metallic
Riemannian manifold is a totally geodesic invariant submanifold.

Gök and Kılıç have investigated totally umbilical semi-invariant submanifolds in locally
decomposable metallic Riemannian manifolds, as reported in [40], presenting the following con-
clusions.

Proposition 3.4. [40] Let M be a totally umbilical proper semi-invariant submanifold within a
locally decomposable metallic Riemannian manifold (M̄, g, φ). The following statements hold:

(i) The invariant distribution Dθ is integrable.

(ii) The anti-invariant distribution D⊥ is integrable.

Proposition 3.5. [40] For any totally umbilical proper semi-invariant submanifoldM of a locally
decomposable metallic Riemannian manifold (M̄, g, φ), the covariant derivative of the endomor-
phism T is zero.

Theorem 3.1. [40] Consider M as a totally umbilical proper semi-invariant submanifold of a
locally decomposable metallic Riemannian manifold (M̄, g, φ). If dim M̄ = dimM+dimD⊥, then
M is a totally geodesic submanifold.

Theorem 3.2. [40] If M is a totally umbilical proper semi-invariant submanifold with a non-zero
mean curvature vector H in a locally decomposable metallic Riemannian manifold (M̄, g, φ), and
if dimDθ ≥ 2, then M is an extrinsic sphere.

Theorem 3.3. [40] In a locally decomposable metallic Riemannian manifold (M̄, g, φ) with pos-
itive or negative curvature, there are no totally umbilical proper semi-invariant submanifolds.

3.2 Anti-invariant submanifolds of metallic Riemannian manifolds

For any x ∈M , a submanifold M of M̄ is said to be anti-invariant if φ(TxM) ⊂ TxM
⊥.

Proposition 3.6. [9] Given a locally metallic Riemannian manifold (M̄, φ, g) and an isometri-
cally immersed anti-invariant submanifold M , then for every X,Y ∈ Γ(TM)

r∑
α=1

hα(X,Y )tξα = −
r∑

α=1

g(φY, ξα)SξαX,

r∑
α=1

hα(X,Y )nξα =

r∑
α=1

g(φY, ξα)∇⊥
Xξα +

r∑
α=1

X(g(φY, ξα))− φ(∇XY ),

where t : Γ(TM⊥) → Γ(TM), tU = (φU)T and n : Γ(TM⊥) → Γ(TM⊥), nU = (φU)⊥.
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Proposition 3.7. [9] For a (n+r)-dimensional locally metallic Riemannian manifold (M̄, φ, g),
let M be an isometrically immersed anti-invariant n-dimensional submanifold with codimension
r and Σ := (T, g, ηα = 0, ξ′α = 0, (aαβ))1≤α,β≤r is the induced structure on M . Then the com-
ponents N (2) and N (3) vanish identically on M . Furthermore, if ξ′α are parallel for a linear
symmetric connection, for any 1 ≤ α ≤ r, then N (1) and N (4) also vanish on M .

3.3 Slant submanifolds of metallic Riemannian manifolds

A submanifold M is called slant if the angle θ(Xx) between φ(Xx) and TxM is independent of
the choice of the point x ∈M and the non-zero tangent vector X at x. Here, θ =: θ(Xx) is called
the slant angle. Slant submanifolds include invariant and anti-invariant submanifolds, where the
slant angles are θ = 0 and θ = π

2 , respectively. A slant immersion that is neither invariant nor
anti-invariant is called a proper slant [9].

Blaga and Hreţcanu [9] investigated the characteristics of slant isometrically immersed sub-
manifolds in metallic manifolds, particularly focusing on the induced Σ-structure.

Proposition 3.8. [9] Let M be an isometrically immersed submanifold of the metallic Rieman-
nian manifold (M̄, φ, g). If M is slant with the slant angle θ, then we have:

g(TX, TY ) = cos2 θ[pg(X,φY ) + qg(X,Y )]

and

g(NX,NY ) = sin2 θ[pg(X,φY ) + qg(X,Y )]

for any X,Y ∈ Γ(TM). Where TX ∈ Γ(TM) and NX ∈ Γ(TM⊥) are tangential and normal
parts of φX,φV respectively, for any V ∈ Γ(TM⊥).

Proposition 3.9. [9] Let M be an isometrically immersed submanifold of the metallic Rieman-
nian manifold (M̄, φ, g). If M is slant with the slant angle θ, then:

(∇XT
2)Y = p cos2 θ(∇XT )Y

for any X,Y ∈ Γ(TM).

Corollary 3.4. [9] If M is an isometrically immersed slant submanifold of the metallic Rieman-
nian manifold (M̄, φ, g) with the slant angle θ, then ∇2T = 0 if and only if M is anti-invariant
or (M,T, g) is locally metallic Riemannian manifold.

Hreţcanu and Blaga have also introduced the following theorem in [44] for slant submanifold
in metallic Riemannian manifold.

Theorem 3.5. Let M be a submanifold in the Riemannian manifold (M̄, g) endowed with an
almost product structure F on M̄ and let φ be the induced metallic structure by F on (M̄, g). If
M is a slant submanifold in the almost product Riemannian manifold (M̄, g, F ) with the slant

angle Θ and F ̸= −I (I is the identity on Γ(TM)) and φ =
((2σp,q−p)

2) F +(p2I), then M is a slant

submanifold in the metallic Riemannian manifold (M̄, g, φ) with slant angle θ given by

sin θ =
2σp,q − p

2σp,q
sinΘ.
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3.4 Bi-slant submanifolds of metallic Riemannian manifolds

Let M be an immersed submanifold in a metallic Riemannian manifold (M̄, g, φ). Then M is
called bi-slant if there exist two orthogonal differentiable distributionsDθ andD⊥ onM such that
TM = Dθ ⊕D⊥ and Dθ, D⊥ are slant distributions with the slant angles θ1 and θ2, respectively
[44].

The following result is obtained by the authors of [44] for bi-slant submanifolds in metallic
Riemannian manifolds.

Proposition 3.10. If M is a bi-slant submanifold in a metallic Riemannian manifold (M̄, g, φ),
with the slant angles θ1 = θ2 = θ and g(φX, Y ) = 0 for any X ∈ Γ(Dθ) and Y ∈ Γ(D⊥), then
M is a slant submanifold in the metallic Riemannian manifold (M̄, g, φ) with the slant angle θ.

3.5 Semi-slant submanifolds of metallic Riemannian manifolds

An immersed submanifold M in a metallic Riemannian manifold (M̄, g, φ) is termed semi-slant
if the orthogonal distributions Dθ and D⊥ on M satisfy the following conditions:

(i) TM = Dθ ⊕D⊥;

(ii) φDθ = Dθ;

(iii) D⊥ is slant with θ ̸= 0.

Moreover, if dim(Dθ) dim(D⊥) ̸= 0, then M is a proper semi-slant submanifold [44].

Hreţcanu and Blaga in [44] have discussed some properties of semi-slant submanifolds in
metallic Riemannian manifolds.

Proposition 3.11. [44] If M is a semi-slant submanifold of the metallic Riemannian manifold
(M̄, g, φ) with slant angle θ corresponding to the distribution D⊥, then we obtain

g(TP⊥X,TP⊥Y ) = cos2 θ[pg(TP⊥X,P⊥Y ) + qg(P⊥X,P⊥Y )],

g(NX,NY ) = sin2 θ[pg(TP⊥X,P⊥Y ) + qg(P⊥X,P⊥Y )]

for any X,Y ∈ Γ(TM), where P⊥ is the orthogonal projection on D⊥ and TX ∈ Γ(TM)
and NX ∈ Γ(TM⊥) are the tangential and normal parts of φX,φV respectively, for any V ∈
Γ(TM⊥).

Proposition 3.12. [44] Let M be a semi-slant submanifold of the metallic Riemannian manifold
(M̄, g, φ) with the slant angle θ of the distribution D⊥. Then

(TP⊥)2 = cos2 θ(pTP⊥ + qI),

where I is the identity on Γ(D⊥) and

∇((TP⊥)2) = p cos2 θ∇(TP⊥).

Remark 3. Examples of semi-slant submanifolds of the metallic manifold are provided in [44] and
the authors have obtained integrability conditions for the distributions involved in the semi-slant
submanifolds of Riemannian manifolds endowed with a metallic structure.
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3.6 Hemi-slant submanifolds of metallic Riemannian manifolds

An immersed submanifold M within metallic Riemannian manifold (M̄, g, φ) is termed as hemi-
slant if orthogonal distributions Dθ and D⊥ on M satisfy the following conditions:

(i) TM = Dθ ⊕D⊥;

(ii) Dθ is slant with θ ∈ [0, π2 ];

(iii) D⊥ is anti-invariant distribution, i.e. φ(D⊥) ⊆ Γ(TM⊥).

Moreover, if dim(Dθ) dim(D⊥) ̸= 0 and θ ∈ (0, π2 ), then M is a proper hemi-slant submanifold
[43].

Theorem 3.6. [43] If M is a hemi-slant submanifold within metallic Riemannian manifold
(M̄, g, φ) then for any X,Y ∈ Γ(TM) we have:

g(TP θX,TP θY ) = cos2 θ {pg(TP θX,P θY ) + qg(P θX,P θY )},

g(NX,NY ) = sin2 θ {pg(TP θX,P θY ) + qg(P θX,P θY )},

where P θ is the orthogonal projection on Dθ, TX ∈ Γ(TM) and NX ∈ Γ(TM⊥) are the tangen-
tial and normal parts of φX,φV respectively, for any V ∈ Γ(TM⊥).

Theorem 3.7. [43] Consider a hemi-slant submanifold M in a metallic Riemannian manifold
(M̄, g, φ) with slant angle θ of the distribution Dθ. Then:

(TP θ)2 = cos2 θ (pTP θ + qI),

where I is the identity on Γ(Dθ) and

∇((TP θ)2) = p cos2 θ∇(TP θ).

Theorem 3.8. [43] Consider M to be an immersed submanifold within metallic Riemannian
manifold (M̄, g, φ). Then M is a hemi-slant submanifold in M̄ if and only if there exists a
constant c ∈ [0, 1] such that D = {X ∈ Γ(TM)|T 2X = c(pTX + qX)} is a distribution and
TY = 0 for any Y perpendicular to D,Y ∈ Γ(TM), where p, q are integers.

Remark 4. Examples of hemi-slant submanifolds in metallic Riemannian manifold, the condi-
tions for the integrability of the distributions of a hemi-slant submanifold in a metallic Riemannian
manifold and conditions for these submanifolds to be mixed totally geodesic are discussed in [43].

The notion of quasi-hemi-slant submanifolds of metallic Riemannian manifolds is studied by
Karmakar and Bhattacharyya [49].

Definition 4. [49] A quasi hemi-slant submanifoldM of a metallic Riemannian manifold (M̄, g, φ)
is a submanifold that admits three orthogonal complementary distributions D,Dθ, D⊥ such that

(i) TM = D ⊕Dθ ⊕D⊥;

(ii) D is invariant, that is, φD = D;

(iii) Dθ is slant with θ, and hence θ is called the slant angle;

(iv) D⊥ is anti-invariant, i.e., φD⊥ ⊆ T⊥M .

In the above case, θ is called the quasi hemi-slant angle of M , and M is called proper if
D ̸= {0}, Dθ ̸= {0}, D⊥ ̸= {0}, and θ ̸= 0, π2 .
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Theorem 3.9. [49] If M is a quasi hemi-slant submanifold of a metallic Riemannian manifold
(M̄, g, φ) with the quasi hemi-slant angle θ, then for all X,Y ∈ Γ(TM) we have

g(TP θX,TP θY ) = cos2 θ[pg(φP θX,P θY ) + qg(P θX,P θY )],

g(NX,NY ) = − sin2 θ[pg(φP θX,P θY ) + qg(P θX,P θY )]

− [pg(φP⊥X,P⊥Y ) + qg(P⊥X,P⊥Y )],

where P θ and P⊥ are the projections of X ∈ Γ(TM) on the distributions Dθ and D⊥, respectively.

Theorem 3.10. [49] If M is a quasi hemi-slant submanifold of a metallic Riemannian manifold
(M̄, g, φ) with the quasi hemi-slant angle θ, then

T 2P θ = cos2 θ [pφP θ + qP θ].

Corollary 3.11. [49] If M is a quasi hemi-slant submanifold of a metallic Riemannian manifold
(M̄, g, φ) with the quasi hemi-slant angle θ, then

T 2P θ = cos2 θ [φ+ I]P θ,

where I is the identity mapping on Γ(Dθ).

Remark 5. Karmakar and Bhattacharyya have established the integrability conditions and cer-
tain properties for distributions associated with quasi hemi-slant submanifolds, including an
example within a metallic Riemannian manifold, as detailed in [49].

3.7 Pointwise slant submanifolds of metallic Riemannian manifolds

The pointwise slant submanifolds in metallic Riemannian manifolds are studied in [45] by Hreţcanu
and Blaga as follows.

Definition 5. A submanifold M of a metallic Riemannian manifold (M̄, g, φ) is referred to as
pointwise slant if the angle θx(X) between φX and TxM (known as the Wirtinger angle) remains
the same irrespective of the chosen tangent vector X ∈ TxM \ {0}, although it may varies with
x ∈ M . The Wirtinger angle is a real-valued function θ (referred to as the Wirtinger function),
given by

cos θx =
∥TX∥
∥φX∥

,

for any x ∈M and any X ∈ TxM \ {0}.
A pointwise slant submanifold of a metallic Riemannian manifold is called a slant submanifold

if its Wirtinger function θ is globally constant.

Proposition 3.13. [45] If M is an isometrically immersed submanifold in the metallic Rie-
mannian manifold (M̄, g, φ), then M is a pointwise slant submanifold if and only if we have
T 2 = (cos2 θ)(pT + qI) for some real-valued function θ.

Proposition 3.14. [45] Let M be an isometrically immersed submanifold in the metallic Rie-
mannian manifold (M̄, g, φ). If M is a pointwise slant submanifold with the Wirtinger angle θ,
then we have:

g(NX,NY ) = (sin2 θ)[pg(TX, Y ) + qg(X,Y )]

tNX = (sin2 θ)(pTX + qX),

for any X,Y ∈ Γ(TM), where tV := (φV )T is the tangential component of φV with V ∈
Γ(TM⊥).
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Remark 6. In [45], the study of pointwise bi-slant submanifolds within metallic Riemannian
manifolds is conducted, yielding interesting findings.

Remark 7. The study of the geometry of submanifolds of co-dimension 2 of locally metallic
Riemannian manifolds is done in [3]. Moreover, the study of some characterizations of any
submanifold of a locally decomposable metallic Riemannian manifold in the case that the co-
dimension of the submanifold is greater than or equal to the rank of the set of tangent vector
fields of the induced structure on it by the metallic Riemannian structure of the ambient manifold
is carried out in [39] by Gök.

4 Submanifolds immersed in almost-complex metallic
manifolds

In [66], authors have explored the geometric properties of submanifolds within an almost-complex
metallic manifold and identified various types of submanifolds, including invariant, anti-invariant,
and slant submanifolds.

Proposition 4.1. [66] Let M be an n-dim submanifold of an (n + s)-dim ACMSR manifold.
Then, for any X,Y, Z ∈ Γ(TM) and second fundamental form h, we have

g((∇Xh)Y,Z) = g(Y, (∇Xh)Z).

Theorem 4.1. [66] Let M be an n-dim submanifold of an (n+ s)-dim ACMSR manifold. If h is
parallel concerning the Levi-Civita connection and vector fields Vi(1 ≤ i ≤ s) on M are linearly
independent, then M is totally geodesic.

Theorem 4.2. [66] Let M be an n-dim submanifold of an (n+ s)-dim ACMSR manifold. M is
slant if and only if we have

h2 = cos2 θ

(
ah− 3

2
bI

)
.

5 Warped product submanifolds of metallic Riemannian
manifolds

Let (M̄1, g1) and (M̄2, g2) be two Riemannian manifolds of dimensions n1 > 0 and n2 > 0,
respectively. We denote by P1 and P2 the projection maps from the product manifold M̄1 × M̄2

onto M̄1 and M̄2, respectively. Let ϕ̄ := ϕ ◦ P1 be the lift to M̄1 × M̄2 of a smooth function ϕ
on M̄1. Here, M̄1 is called the base and M̄2 is the fiber of M̄1 × M̄2. The unique element X̄
of Γ(T (M̄1 × M̄2)) that is P1-related to X ∈ Γ(TM̄1) and to the zero vector field on M̄2 will
be called the horizontal lift of X. Similarly, the unique element V̄ of Γ(T (M̄1 × M̄2)) that is
P2-related to V ∈ Γ(TM̄2) and to the zero vector field on M̄1 will be called the vertical lift of V .
We denote by L(M̄1) the set of all horizontal lifts of vector fields on M̄1 and by L(M̄2) the set of
all vertical lifts of vector fields on M̄2.

For f : M̄1 → (0,∞) a smooth function on M1, we consider the Riemannian metric g on
M̄ := M̄1 × M̄2 :

g := P ∗
1 g1 + (f ◦ P1)

2P ∗
2 g2. (5.1)

Definition 6. [8, 20] The product manifold of M̄1 and M̄2 together with the Riemannian metric
g defined by (5.1) is called the warped product of M̄1 and M̄2 by the warping function f .
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Hreţcanu and Blaga investigate the presence of proper warped product submanifolds within
metallic Riemannian manifolds in [46].

Definition 7. [46] IfM :=M1×fM2 is a warped product submanifold in a metallic Riemannian
manifold (M̄, g, φ) such that one of the components Mi (i ∈ 1, 2) is an invariant submanifold
(respectively, anti-invariant submanifold) in M̄ and the other one is a slant submanifold in M̄ ,
with the slant angle θ ∈ [0, π2 ], then one can call the submanifold M warped product semi-slant
(respectively, hemi-slant) submanifold in the metallic Riemannian manifold (M̄, g, φ).

Theorem 5.1. [46] Let M := MT ×f M⊥ be a warped product semi-invariant submanifold in a
locally metallic Riemannian manifold (M̄, g, φ) (i.e. MT is invariant andM⊥ is an anti-invariant
submanifold in M̄). Then M := MT ×f M⊥ is a non-proper warped product submanifold in M̄
(i.e., the warping function f is constant on the connected components of MT ).

Remark 8. Very recently, L. S. Alqahtani and E. M. Al-Husainy established in [4] a Chen-type
inequality, involving ∥h∥2 and ln f , for a CR-warped product M⊥ ×f MT in a locally metallic
Riemannian manifold.

Theorem 5.2. [46] Let M := MT ×f Mθ be a warped product semi-slant submanifold in a
locally metallic Riemannian manifold (M̄, g, φ) (i.e., MT is invariant and Mθ is a proper slant
submanifold in M̄ , with the slant angle θ ∈ (0, π2 ). Then M :=MT ×f Mθ is a non proper warped
product submanifold in M̄ (i.e. the warping function f is constant on the connected components
of MT ).

Remark 9. The discussion on semi-invariant, semi-slant, and hemi-slant warped product sub-
manifolds within metallic Riemannian manifolds can be found in [46], where the authors present
various examples of these submanifolds in Euclidean spaces.

Hreţcanu and Blaga, in their work [45], have explored warped product pointwise bi-slant
submanifolds as well as warped product pointwise semi-slant or hemi-slant submanifolds within
metallic Riemannian manifolds, deriving several significant results:

Theorem 5.3. [45] If M :=MT ×f Mθ is a warped product pointwise semi-slant submanifold in
a locally metallic Riemannian manifold (M̄, g, φ) with the pointwise slant angle θx ∈ (0, π2 ), for
x ∈Mθ, then the warping function f is constant on the connected components of MT .

Theorem 5.4. [45] If M := M⊥ ×f Mθ (or M := Mθ ×f M⊥) is a warped product pointwise
hemi-slant submanifold in a locally metallic Riemannian manifold (M̄, g, φ) with the pointwise
slant angle θx ∈ (0, π2 ), for x ∈ Mθ, then the warping function f is constant on the connected
components of M⊥ if and only if we have

ANZX = ANXZ,

where A is the shape operator. For any X ∈ Γ(TM⊥) and Z ∈ Γ(TMθ) (or X ∈ Γ(TMθ) and
Z ∈ Γ(TM⊥), respectively).

Bi-warped product submanifolds in some structures of metallic Riemannian manifold are
studied in [7] by Bhunia et al.

Definition 8. [20, 21] Let M̄0, M̄1 and M̄2 be three Riemannian manifolds and M̄ = M̄0×M̄1×
M̄2 be their cartesian product. Pi : M̄ → M̄i is the canonical projection of M̄ onto M̄i , where
i ∈ {0, 1, 2}. Let P ∗

i : TM̄ → TM̄i be the tangent map of Pi : M̄ → M̄i, where Γ(TM̄) is the Lie
algebra of the vector fields of M̄ .
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If f1 and f2 are two positive real-valued functions on M̄0, then

g(X,Y ) = g(P0 ∗X,P0 ∗ Y ) + (f1 ◦ P1)2g(P1 ∗X,P1 ∗ Y )

+ (f2 ◦ P2)2g(P2 ∗X,P2 ∗ Y ).

X, Y ∈ Γ(TM̄) defines a Riemannian metric on M̄ . This is called the bi-warped product metric.

The product manifold M̄ = M̄0 × M̄1 × M̄2 furnished by the metric g is called a bi-warped
product manifold and it is denoted by M̄0 ×f1 M̄1 ×f2 M̄2. The functions f1 and f2 are called
warping functions.

Remark 10. Examples and some results of bi-warped product submanifolds in some structures
of metallic Riemannian manifold are given in [7].

6 Lightlike submanifolds of metallic Riemannian
manifolds

The main distinction between the theory of lightlike submanifolds and semi-Riemannian subman-
ifolds stems from the fact that, in the former, a portion of the normal vector bundle TM⊥ is
contained within the tangent bundle TM of the submanifold M of a semi-Riemannian manifold
M̄ , whereas in the latter, TM ∩ TM⊥ = {0}. Consequently, the fundamental issue in light-
like submanifolds is to substitute the intersecting part with a vector subbundle whose sections
are never tangent to M . To create a non-intersecting lightlike transversal vector bundle of the
tangent bundle, Duggal and Bejancu employed an extrinsic method, while Kupeli utilized an
intrinsic method [52]. Since then, numerous researchers have explored the geometry of lightlike
hypersurfaces and lightlike submanifolds.

It is a well-established fact that the non-degenerate metric g of a (m+n)-dimensional semi-
Riemann manifold M̄ is not necessarily induced as a non-degenerate metric on an m-dimensional
submanifoldM of M̄ . When the induced metric g is degenerate onM and the rank of (Rad(TM))
(where Rad(TM) is subbundle of null vectors within the tangent bundle TM) is r, where 1 ≤
r ≤ m, the pair (M, g) is referred as a lightlike submanifold [72].

6.1 Lightlike hypersurfaces of metallic semi-Riemannian manifolds

The lightlike hypersurfaces of metallic semi-Riemannian manifolds are introduced by Acet in [1]
and the following results have been introduced:

Let M be a lightlike hypersurface of a metallic semi-Riemannian manifold (M̄, g, φ). For
every X ∈ Γ(TM) and N ∈ Γ(ltr(TM)), (where (ltr(TM)) is the lightlike transversal bundle of
TM),

φX = φ′X + η(X)N, φN = ξ + λ(E)N,

where φ′X, ξ ∈ Γ(TM) and η, λ are the 1-forms given by

η(X) = g(X,φE), λ(X) = g(X,φN),

where φ′ is a (1, 1)-tensor field on M and E is a non-zero section of Rad(TM) [1].

Lemma 6.1. [1] Let M be a lightlike hypersurface of a locally metallic semi-Riemannian mani-
fold. Then the structure φ′ is a metallic structure on M .
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6.1.1 Invariant hypersurface of metallic semi-Riemannian manifolds

Definition 9. [1] Let M be a lightlike hypersurface of a locally metallic semi-Riemannian man-
ifold. In that case M is called invariant hypersurface of M̄ if

φ(Rad(TM)) = (Rad(TM)), φ(ltr(TM)) = (ltr(TM)).

Theorem 6.1. [1] Let M be an invariant lightlike hypersurface of a locally metallic semi-
Riemannian manifold. Then

(i) h(X,φY ) = h(φX, Y ) = φh(X,Y ),

(ii) h(φX,φY ) = ph(X,φY ) + qh(X,Y ).

6.1.2 Screen semi-invariant hypersurfaces of metallic semi-Riemannian
manifolds

Definition 10. [1] Let M be a lightlike hypersurface of a locally metallic semi-Riemannian
manifold (M̄, g, φ). If

φ(Rad(TM)) ⊂ S(TM) and φ(ltr(TM)) ⊂ S(TM)

hold, where S(TM) is the screen distribution of the tangent bundle, then M is called a screen
semi-invariant hypersurface of M̄ .

Theorem 6.2. [1] Assume that M is a screen semi-invariant lightlike hypersurface of a locally
metallic semi-Riemannian manifold. Then lightlike vector field ψ is parallel on M if and only if
we have

(i) M is totally geodesic on M̄,

(ii) γ = 0. (γ represents the transversal vector field associated with the screen distribution of
the hypersurface M .)

Theorem 6.3. [1] Let M be a screen semi-invariant lightlike hypersurface of a locally metallic
semi-Riemannian manifold. Then lightlike vector field Ω is parallel on M iff M and S(TM) is
totally geodesic on M̄ .

Remark 11. Results regarding mixed geodesic lightlike hypersurface in metallic semi-Riemannian
manifold are discussed in [1]. Some results on screen semi-invariant lightlike hypersurface of a
metallic semi-Riemannian manifold are obtained in [72] by Perktaş et al.

Remark 12. The proof of geodesic and minimal conditions for hypersurfaces of metallic Rieman-
nian manifolds is discussed in [24]. Choudhary et al. in [24] investigated k-almost Newton-Ricci
solitons (k-ANRS) embedded in a metallic Riemannian manifold M̄ having the potential func-
tion ψ and have explained some applications of metallic Riemannian manifold admitting k-almost
Newton-Ricci solitons.

6.2 Invariant lightlike submanifolds of metallic semi-Riemannian
manifolds

The invariant lightlike submanifold in metallic Riemannian manifold is studied in [72] by Perktaş
et al.
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Definition 11. [72] Let (M̄, g, φ) be a metallic semi-Riemannian manifold and (M, g) be a
lightlike submanifold of M̄ . Then M is called an invariant lightlike submanifold of M̄ if the
following two conditions are satisfied:

φ(S(TM)) = S(TM) and φ(Rad(TM)) = Rad(TM).

Corollary 6.4. [72] Let (M̄, g, φ) be a metallic semi-Riemannian manifold and (M, g) be an
invariant lightlike submanifold of M̄ . Then the lightlike transversal distribution ltr(TM) is in-
variant under φ.

Theorem 6.5. [72] Let M be an invariant lightlike submanifold of a metallic semi-Riemannian
manifold M̄ . Then, the radical distribution Rad(TM) is integrable if and only if we have either

A∗
φXY = A∗

φYX A∗
XY = A∗

YX

or
A∗

φXY −A∗
φYX = p(A∗

XY = A∗
YX)

for any X,Y ∈ Γ(Rad(TM)) and any Z ∈ Γ(S(TM)), where A∗ denotes the shape operator of
the distributions (S(TN)) and Rad(TN).

Theorem 6.6. [72] Let M be an invariant lightlike submanifold of a metallic semi-Riemannian
manifold M̄ . Then, the induced connection ∇ on M is a metric connection if and only if we have

A∗
φξU = pA∗

ξU

for any U ∈ Γ(TM) and any ξ ∈ Γ(Rad(TM)).

Remark 13. Results concerning totally geodesic foliation of an invariant lightlike submanifold
of a metallic semi-Riemannian manifold are discussed in [72].

The study of the geometry of the semi-invariant lightlike submanifold of a metallic semi-
Riemannian manifold is conducted in [51] by Kaur et al. and some conditions for the integrability
of distributions are discussed.

Definition 12. [51] Let M be a lightlike submanifold of a metallic semi-Riemannian manifold
(M̄, g, φ). Then, M is a semi-invariant lightlike submanifold, if the following three conditions are
satisfied:

φ(Rad(TM)) ⊆ S(TM), φ(ltr(TM)) ⊆ S(TM) and φS(TM⊥) ⊆ S(TM).

Theorem 6.7. [51] LetM be a semi-invariant lightlike submanifold of a metallic semi-Riemannian
manifold (M̄, g, φ). Then D is integrable if and only if

hl(φX,φY ) = phl(φX, Y ) + qhl(X,Y ),

hs(φX,φY ) = phs(φX, Y ) + qhs(X,Y )

hold for X,Y ∈ Γ(D), where hl and hs denote the second fundamental forms associated with the
lightlike and screen distributions of submanifold M , respectively.

Theorem 6.8. [51] LetM be a semi-invariant lightlike submanifold of a metallic semi-Riemannian
manifold (M̄, g, φ). If Dθ is integrable, then leaves of Dθ have a metallic structure.
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Remark 14. Moreover, the authors in [51] have investigated totally geodesic and mixed geodesic
distributions of semi-invariant lightlike submanifolds.

The structure of invariant and screen semi-invariant lightlike submanifolds of a metallic
semi-Riemannian manifold with a quarter symmetric non-metric connection is introduced in [50].

Theorem 6.9. [50] For an invariant lightlike submanifold M of a metallic semi-Riemannian
manifold M̄ with a quarter symmetric non-metric connection D̄, the radical distribution is inte-
grable if and only if we have

A∗
φUV − pA∗

UV = A∗
φV U − pA∗

V U,

for any U, V ∈ Γ(Rad(TM)) and Z ∈ Γ(S(TM)).

Theorem 6.10. [50] Let M be an invariant lightlike submanifold of a metallic semi-Riemannian
manifold M̄ with a quarter symmetric non-metric connection D̄. Then the screen distribution is
integrable if and only if

A∗(V, φU) + pA∗(U, V ) = A∗(U,φV ) + pA∗(V,U)

holds for any U, V ∈ Γ(S(TM)) and any N ∈ Γ(ltr(TM)).

The results on the structure of screen semi-invariant lightlike submanifolds of a metallic
semi-Riemannian manifold with a quarter symmetric non-metric connection are the following.

Proposition 6.1. [50] Let M be a screen semi-invariant lightlike submanifold of a metallic
semi-Riemannian manifold. Then M is an invariant lightlike submanifold of M̄ if and only if
D⊥ = {0}, where D⊥ is orthogonal complementary distribution of Dθ.

Proposition 6.2. [50] If a screen semi-invariant lightlike submanifold of a metallic semi-Riemannian
manifold M̄ is isotropic or totally lightlike, then it is an invariant lightlike submanifold of M̄.

Theorem 6.11. [50] Let M be a screen semi-invariant lightlike submanifold of metallic semi-
Riemannian manifold M̄ with a quarter symmetric non-metric connection D̄. Then the necessary
and sufficient condition for Dθ to be integrable is that

hs(U,φV ) = hs(V, φU),

h∗(U,φV ) + ph∗(V,U) = h∗(V, φU) + ph∗(U, V )

for any U, V ∈ Γ(Dθ), Z ∈ Γ(D⊥) and N ∈ Γ(ltr(TM)).

Remark 15. [50] contains the results regarding totally geodesic foliations for invariant and screen
semi-invariant submanifolds.

6.3 Transversal lightlike submanifolds of metallic semi-Riemannian
manifolds

The study of the geometry of transversal lightlike submanifolds and radical transversal lightlike
submanifolds of metallic semi-Riemannian manifolds is proposed in [33]. The authors in [33]
explored the geometry of distributions and established the essential and adequate conditions for
the induced connections in these manifolds to qualify as metric connections. Furthermore, they
provided a characterization of transversal lightlike submanifolds of metallic semi-Riemannian
manifolds.

Results on radical transversal lightlike submanifolds of a metallic semi-Riemannian manifold
are as follows:
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Definition 13. [33] Let (M, g, S(TM), S(TM⊥)) be a lightlike submanifold of a metallic semi-
Riemannian manifold (M̄, g, φ). Then M is called a radical transversal lightlike submanifold if
the following two conditions are satisfied:

φRad(TM) = ltr(TM) and φ(S(TM)) = S(TM).

Proposition 6.3. [33] Let M̄ be a metallic semi-Riemannian manifold. In this case, there is no
1-radical transversal lightlike submanifold of M̄ .

Theorem 6.12. [33] Let M be a radical transversal lightlike submanifold of a metallic semi-
Riemannian manifold M̄ . In this case, S(TM⊥) is invariant under φ.

Theorem 6.13. [33] Let M be a radical transversal lightlike submanifold of a locally metallic
semi-Riemannian manifold. Then the induced connection ∇ on M is a metric connection if and
only if there is no component of AφξW in Γ(S(TM)) for any W ∈ Γ(TM) and ξ ∈ Γ(Rad(TM)).

Theorem 6.14. [33] Let M be a radical transversal lightlike submanifold of a locally metallic
semi-Riemannian manifold M̄ . In this case, the screen distribution is integrable if and only if we
have hl(U, SW ) = hl(W,SU) for any W,U ∈ Γ(S(TM)).

Definition 14. [33] Let (M, g, S(TM), S(TM⊥)) be a lightlike submanifold of a metallic semi-
Riemannian manifold (M̄, g, φ). Then M is called a transversal lightlike submanifold if the fol-
lowing two conditions are satisfied:

φRad(TM) = ltr(TM) and φ(S(TM)) ⊆ S(TM⊥).

The following results on transversal lightlike submanifolds of metallic semi-Riemannian man-
ifolds are obtained in [33]:

Proposition 6.4. [33] Let M be a transversal lightlike submanifold of a locally metallic semi-
Riemannian manifold M̄ . In this case, the distribution µ is invariant according to φ, where µ
denotes the orthogonal complement subbundle to φ(S(TM)) in S(TM⊥).

Proposition 6.5. [33] There does not exist a 1-lightlike transversal lightlike submanifold of a
locally metallic semi-Riemannian manifold.

Corollary 6.15. [33] Let M be a transversal lightlike submanifold of a locally metallic semi-
Riemannian manifold M̄ . Then:

(i) dim(Rad(TM)) ≥ 2.

(ii) The transversal lightlike submanifold of 3-dimensional is 2-lightlike.

Theorem 6.16. [33] Let M be a transversal lightlike submanifold of a locally metallic semi-
Riemannian manifold M̄ . Then the radical distribution is integrable if and only if

Ds(U,LW ) = Ds(W,LU),

for U,W ∈ Γ(Rad(TM)), where Ds denotes the screen distribution and L represents the structure
endomorphism associated with the metallic structure.

Remark 16. The conditions of a totally geodesic foliation of such submanifolds and necessary
and sufficient conditions for the induced connection on these manifolds to be a metric connection
in metallic semi-Riemannian manifold are obtained in [33].



Advances in metallic Riemannian geometry 21

In [35], Erdoğan et al. presented the concept of screen transversal lightlike submanifolds
within metallic semi-Riemannian manifolds, along with its subclasses: screen transversal anti-
invariant, radical screen transversal, and isotropic screen transversal lightlike submanifolds.

Definition 15. [35] Let M be a lightlike submanifold of a metallic semi-Riemannian manifold
(M̄, g, φ). If φRad(TM) ⊂ S(TM⊥) holds, then M is called a screen transversal lightlike sub-
manifold of a metallic semi-Riemannian manifold.

Definition 16. [35] Let M be a screen transversal lightlike submanifold of a metallic semi-
Riemannian manifold (M̄, g, φ).

(i) If φS(TM) ⊂ S(TM⊥), then M is called a screen transversal anti-invariant lightlike
submanifold of (M̄, g, φ).

(ii) If φS(TM) = S(TM), then we say that M is a radical screen transversal lightlike
submanifoldof (M̄, g, φ).

Proposition 6.6. [35] Let M be a screen transversal anti-invariant lightlike submanifold of a
metallic semi-Riemannian manifold (M̄, g, φ). Then the distribution D is invariant for φ.

Proposition 6.7. [35] Let M be a screen transversal anti-invariant lightlike submanifold of a
metallic semi-Riemannian manifold (M̄, g, φ). Then there do not exist co-isotropic and totally
screen transversal types of such lightlike submanifolds.

Proposition 6.8. [35] Let M be a radical screen transversal lightlike submanifold of a locally
metallic semi-Riemannian manifold (M̄, g, φ). Then the distribution D is invariant concerning
φ.

Remark 17. The structure of distributions relevant to defining these submanifolds and the
criteria for the induced connection to qualify as a metric connection are investigated in [35].
Additionally, the necessary and sufficient condition for an isotropic screen transversal lightlike
submanifold to be totally geodesic is examined in [35].

Remark 18. In [62], Shankar and Yadav have examined the geometry of totally umbilical screen-
transversal lightlike submanifolds. They investigated two categories: totally umbilical radical
screen-transversal lightlike submanifolds and totally umbilical screen-transversal anti-invariant
lightlike submanifolds. The authors derived the necessary and sufficient conditions for the in-
tegrability of the distributions and for the induced connection to be a Levi-Civita or metric
connection on these lightlike submanifolds.

6.4 Half-lightlike submanifolds of metallic semi-Riemannian manifolds

A lightlike submanifold of co-dimension 2 of a semi-Riemannian manifold is called a half-lightlike
submanifold if the mapping defining the radical distribution has rank 1 [30, 32]. Screen conformal
half-lightlike submanifolds of semi-Riemannian manifolds are presented in [32].

The study of half-lightlike submanifolds of a semi-Riemannian manifold endowed with a
metallic structure is done by Acet et al. in [2].

Definition 17. [2] Assume that M is called a half-lightlike submanifold of a metallic semi-
Riemannian manifold (M̄, g, φ). If we have

φ(Rad(TM)) ⊂ S(TM), φ(ltr(TM)) ⊂ S(TM), and φ(S(TM⊥)) ⊂ S(TM),

then M is called a screen semi-invariant half-lightlike submanifold of M̄ .
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Theorem 6.17. [43] Assume thatM is a half-lightlike submanifold of a metallic semi-Riemannian
manifold (M̄, g, φ). Then ϕ is a metallic structure on Dθ.

Theorem 6.18. [2] Assume thatM is a half-lightlike submanifold of a metallic semi-Riemannian
manifold (M̄, g, φ). If the distribution D⊥ is parallel then D⊥ is totally geodesic on M .

6.5 Slant lightlike submanifolds of metallic semi-Riemannian manifolds

Lone and Harry have introduced in [54] the notion of screen slant lightlike submanifolds of metallic
semi-Riemannian manifolds and obtained the following results:

Definition 18. [54] LetM be a 2q-lightlike submanifold (where q is an integer indicating the di-
mension of the radical bundle of the lightlike submanifoldM within the metallic semi-Riemannian
manifold) of metallic semi-Riemannian manifold M̄ of index 2q < dim(M). Then we say that M
is a screen slant lightlike submanifold of M̄ if the following two conditions are satisfied:

(i) Rad(TM) is invariant with respect to φ, i.e., φ(Rad(TM)) = Rad(TM).

(ii) S(TM) is slant with θ(̸= 0), i.e. for each x ∈M and each non-zero vectorX ∈ Γ(S(TM)),
the angle θ between φX1 and the vector subspace S(TM) is a non-zero constant, which is
independent of the choice of x ∈M and X1 ∈ Γ(S(TM)).

Furthermore, the constant angle θ is called the slant angle of distribution S(TM). A screen
lightlike submanifold is said to be proper if it is neither invariant (θ = 0) nor screen real (θ = π

2 ).

Theorem 6.19. [54] Let M be a 2q-lightlike submanifold of a metallic semi-Riemannian mani-
fold. Then M is a screen slant lightlike submanifold of M̄ if and only if

(i) ltr(TM) is invariant with respect to φ,

(ii) there exists a constant c ∈ [0, 1) such that P 2X1 = c(pPX1 + qX1), for any X1 ∈
Γ(S(TM)) and PX1 is tangential part of φX1. Moreover, in this case c = cos2 θ and θ is the
slant angle of S(TM).

Remark 19. The necessary and sufficient conditions for the induced connection to be a metric
connection are studied in [54]. Moreover, investigation of some equivalent conditions for integra-
bility of such submanifolds is obtained in [54].

6.6 Warped product lightlike submanifolds of metallic semi-Riemannian
manifolds

The investigation of whether the screen real lightlike submanifolds of metallic semi-Riemannian
manifolds are warped product lightlike submanifolds or not is done by Shanker and Yadav in
[63].

Theorem 6.20. [63] Let M = M1 ×f M2 be a warped product lightlike submanifold. Then, for
any ξ ∈ Γ(Rad(TM)) and U ∈ Γ(S(TM)), we have ∇ξU ∈ Γ(S(TM)).

Theorem 6.21. Let (M, g, S(TM)) be an irrotational screen-real r-lightlike submanifold of a
metallic semi-Riemannian manifold, then the induced connection is a metric connection.

Theorem 6.22. [63] There does not exist any class of irrotational screen-real r-lightlike subman-
ifolds that can be written in the form of warped product lightlike submanifolds.

Remark 20. Some results on a screen-real lightlike submanifold of a metallic semi-Riemannian
manifold are also obtained in [63].
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7 Inequalities in metallic Riemannian manifolds

7.1 Inequalities involving δ-Casorati curvature in metallic Riemannian
manifolds

The Casorati curvature for surfaces in a Euclidean 3-space E3 was introduced by Casorati in
1890 [14]. The Casorati curvature was used in [14] in place of the conventional Gauss curvature.
The Casorati curvature C of a submanifold in a Riemannian manifold is defined generally as the
normalized squared norm of the second fundamental form. Decu et al. developed normalized
Casorati curvatures δC(n − 1) and δ̂C(n − 1) in 2007 (see [28]) in keeping with the spirit of
δ-invariants. They extended normalized Casorati curvatures in 2008 to generalized normalized
δ-Casorati curvatures δC(r;n− 1) and δ̂C(r;n− 1) in [29]. These concepts laid the groundwork
for the study of optimal inequalities for submanifolds in various ambient spaces using Casorati
curvatures.

Let us assume that (M̄, g) is an m-dimensional Riemannian manifold and let (M, g) be an
n-dimensional Riemannian submanifold isometrically immersed into M̄ . Let us denote by ∇̄ the
Levi-Civita connection on M̄ and by ∇ the covariant differentiation induced on M . Let h be the
second fundamental form of M and let ∇⊥ be the connection in the normal bundle. The Gauss
and Weingarten formulas are given respectively by

∇̄XY = ∇XY + h(X,Y ), ∇̄Xξ = −AξX +∇⊥
Xξ

for all X,Y ∈ Γ(TM) and ξ ∈ Γ
(
TM⊥), where Aξ denotes the shape operator ofM with respect

to ξ. We also have the following relation between Aξ and h

g (AξX,Y ) = g(h(X,Y ), ξ),

for all X,Y ∈ Γ(TM) and ξ ∈ Γ
(
TM⊥). The Gauss equation is [17]

R̄(X,Y, Z,W ) = R(X,Y, Z,W )− g(h(X,W ), h(Y,Z)) + g(h(X,Z), h(Y,W )),

for all X,Y, Z,W ∈ Γ(TM). Let us denote by {E1, . . . , En} a local orthonormal tangent frame
of the tangent bundle TM of M and by {En+1, . . . , Em} a local orthonormal normal frame of
the normal bundle TM⊥ of M in M̄ . Then the scalar curvature τ is expressed as

τ =
∑

1≤i<j≤n

R (Ei, Ej , Ej , Ei) .

The normalized scalar curvature ρ and the mean curvature H of M are defined by

ρ =
2τ

n(n− 1)
and H =

n∑
i=1

1

n
h (Ei, Ei) .

For our convenience, we put hrij = g (h (Ei, Ej) , Er), where i, j = {1, . . . , n} and r =
{n + 1, . . . ,m} so that the squared norms of the mean curvature vector H and of the second
fundamental form h can be written as

∥H∥2 =
1

n2

m∑
r=n+1

(
n∑

i=1

hrii

)2

, ∥h∥2 =

m∑
r=n+1

n∑
i,j=1

(
hrij
)2
.

We recall that the Casorati curvature C of M is given by C = 1
n∥h∥

2.
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Let {E1, . . . , Et} be an orthonormal basis of the t-dimensional subspace L of TM with t ≥ 2.
Then the scalar curvature of L is

τ(L) =
∑

1≤i<j≤t

R (Ei, Ej , Ej , Ei)

and the Casorati curvature of L is given by

C(L) = 1

t

m∑
r=n+1

t∑
i,j=1

(
hrij
)2
.

The normalized δ-Casorati curvatures δC(n − 1) and δ̂C(n − 1) are defined respectively by
(see [29])

[δC(n− 1)]p =
1

2
Cp +

n+ 1

2n
inf {C(L) | L : a hyperplane of TpM}

and [
δ̂C(n− 1)

]
p
= 2Cp −

2n− 1

2n
sup {C(L) | L : a hyperplane of TpM} .

And the generalized normalized δ-Casorati curvatures δC(r;n − 1) and δ̂C(r;n − 1) of the sub-
manifold Mn are defined for any positive real number r ̸= n(n− 1) as

[δC(r;n− 1)]p = rCp +
(n−1)(n+r)

(
n2−n−r

)
rn

inf {C(L) | L : a hyperplane of TpM}

if 0 < r < n(n− 1), and

[
δ̂C(r;n− 1)

]
p
= rCp +

(n−1)(n+r)
(
n2−n−r

)
rn

sup {C(L) | L : a hyperplane of TpM}

for r > n(n− 1).

In [22], Choudhary and Blaga examined sharp inequalities for a slant submanifold using
generalized normalized δ-Casorati curvatures in metallic Riemannian space forms (M̄ =Mp(cp)×
Mq(cq), g, φ) and drawn the following findings:

Theorem 7.1. [22] Consider an n-dimensional slant submanifold M of an m-dimensional locally
metallic product space form (M̄ =Mp(cp)×Mq(cq), g, φ). Then

(i) The generalized normalized δ-Casorati curvature δC(r;n− 1) satisfies

ρ ≤δC(r;n− 1)

n(n− 1)
+

1

2(p2 + 4q)
(cp + cq)

{
p2 + 2q

+
2

n(n− 1)

[
tr2 φ− (p · trT + nq) cos2 θ

]
− 2p

n
trφ

}
+

1

2
√
(p2 + 4q)

(cp − cq)

(
2

n
trφ− p

) (7.1)

for any real number 0 < r < n(n− 1);
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(ii) The generalized normalized δ-Casorati curvature δ̂C(r;n− 1) satisfies

ρ ≤ δ̂C(r;n− 1)

n(n− 1)
+

1

2(p2 + 4q)
(cp + cq)

{
p2 + 2q

+
2

n(n− 1)

[
tr2 φ− (p · trT + nq) cos2 θ

]
− 2p

n
trφ

}

+
1

2
√
(p2 + 4q)

(cp − cq)

(
2

n
trφ− p

)
(7.2)

for any real number r > n(n− 1).

In addition, the equalities in (7.1) and (7.2) hold if and only if the submanifold M is in-
variantly quasi-umbilical with trivial normal connection in M̄ , such that the shape operators
Ar, r ∈ n+ 1, ...,m with respect to some orthonormal tangent frame {E1, ..., En} and orthonor-
mal normal frame {En + 1, ..., Em} take the following forms:

An+1 =



b 0 0 . . . 0 0
0 b 0 . . . 0 0
0 0 b . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . b 0

0 0 0 . . . 0 n(n−1)
r b


, An+2 = · · · = Am = 0. (7.3)

For normalized δ-Casorati curvature;

Theorem 7.2. [22] Consider an n-dimensional slant submanifold M of an m-dimensional locally
metallic product space form (M̄ =Mp(cp)×Mq(cq), g, φ). Then

(i) The normalized δ-Casorati curvature δC(n− 1) satisfies

ρ ≤ δC(n− 1) +
1

2(p2 + 4q)
(cp + cq)

{
p2 + 2q

+
2

n(n− 1)

[
tr2 φ− (p · trT + nq) cos2 θ

]
− 2p

n
trφ

}

+
1

2
√
(p2 + 4q)

(cp − cq)

(
2

n
trφ− p

)
.

(7.4)

(ii) The normalized δ-Casorati curvature δ̂C(n− 1) satisfies

ρ ≤ δ̂C(n− 1) +
1

2(p2 + 4q)
(cp + cq)

{
p2 + 2q

+
2

n(n− 1)

[
tr2 φ− (p · trT + nq) cos2 θ

]
− 2p

n
trφ

}

+
1

2
√
(p2 + 4q)

(cp − cq)

(
2

n
trφ− p

)
,

(7.5)
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for any real number r > n(n− 1).

Moreover, the equalities hold in (7.4) and (7.5) if and only if M is an invariantly quasi-
umbilical submanifold with trivial normal connection in M̄ such that with some orthonormal
tangent frame {E1, ..., En} of the tangent bundle TM of M and orthonormal normal frame
{En+1, ..., Em} of the normal bundle TM⊥ of M in M̄ , the shape operators Ar satisfy

An+1 =



b 0 0 . . . 0 0
0 b 0 . . . 0 0
0 0 b . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . b 0
0 0 0 . . . 0 2b


, An+2 = · · · = Am = 0. (7.6)

Remark 21. The sharp inequality for invariant and anti-invariant submanifolds in metallic
Riemannian space forms was also established by Choudhary and Blaga in [22], where they further
characterized the submanifolds for which the equality holds.

7.2 Chen-type inequality in metallic Riemannian manifolds

A fundamental problem in submanifold theory is to establish simple relationships between intrin-
sic and extrinsic invariants of a submanifold. In this respect, B.-Y. Chen introduced in 1993 a new
intrinsic invariant denoted δ(2), initiating a new theory known as the theory of Chen invariants
[18]. The mathematical description of this invariant is δ(2) = τ − infK, where K signifies the
sectional curvature and τ is the scalar curvature. Chen proved the subsequent inequality using
this invariant:

δ(2) ≤ n− 2

2

√
n(n− 1)∥H∥2 + (n+ 1)c, (7.7)

for any submanifold M in a real space form with constant sectional curvature c (with n =
dimM ≥ 3), where ∥H∥2 denotes the squared mean curvature of M . This inequality is referred
to as the first Chen inequality.

Inspired by this, many mathematicians considered Chen-type inequalities in metallic Rie-
mannian manifolds. In [25], Choudhary and Uddin obtained the following results on Chen-type
Inequalities for slant submanifolds in metallic Riemannian space forms.

Theorem 7.3. [25] Let M be any proper θ-slant submanifold that is isometrically immersed in
(M̄ =Mp(cp)×Mq(cq), g, φ). Then the following inequality follows:

δM ≤ (n− 2)

2

[
4

(n− 1)

n2

4
∥H∥2 + 1

2(p2 + 4q)
(cp + cq){(p2 + 2q)(n+ 1)− 2p tr(φ)}

]
+

1

2(p2 + 4q)
(cp + cq)

[
(p tr(T )− 4q) cos2 θ − tr2(φ)

]
+

1

4
√
p2 + 4q

(cp − cq)(n− 2) [2 tr(φ)− pn+ p] .

Corollary 7.4. [25] For a φ-invariant submanifold Mn immersed in M̄ , the following inequality
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holds true:

δM ≤ (n− 2)

2

[
4

(n− 1)

n2

4
∥H∥2 + 1

2(p2 + 4q)
(cp + cq){(p2 + 2q)(n+ 1)− 2p tr(φ)}

]
+

1

2(p2 + 4q)
(cp + cq)

[
(p tr(T ) + 4q)− tr2(φ)

]
+

1

4
√
p2 + 4q

(cp − cq)(n− 2) [2 tr(φ)− pn− p] .

Corollary 7.5. [25] A φ-anti-invariant submanifold Mn immersed in M̄ satisfies the following
inequality.

δM ≤ (n− 2)

2

[
4

(n− 1)

n2

4
∥H∥2 + 1

2(p2 + 4q)
(cp + cq){(p2 + 2q)(n+ 1)− 2p tr(φ)}

− tr2(φ)

]
+

1

4
√
p2 + 4q

(cp − cq)(n− 2) [2 tr(φ)− pn− p] .

Remark 22. In reference [25], Choudhary and Uddin further demonstrated instances of inequali-
ties for the Ricci curvature tensor in θ-slant, φ-invariant, and φ-anti-invariant submanifolds within
metallic Riemannian space forms.

7.3 Wintgen inequality in metallic Riemannian manifolds

In 1979, P. Wintgen [70] established a fundamental inequality for the surface M2 within the
Euclidean 4-space E4, commonly known as the Wintgen inequality, which incorporates both
intrinsic and extrinsic invariants. He demonstrated that the intrinsic Gaussian curvature K and
the extrinsic normal curvature K⊥ of M2 in E4 fulfill

K + |K⊥| ≤ ∥H∥2,

where ∥H∥2 represents the squared norm of the mean curvature H. Moreover, the surface M2

is termed the Wintgen ideal surface when it meets the equality condition, that is, the equality
is true if and only if the ellipse of the surface’s curvature in E4 forms a circle. This particular
inequality was further explored and expanded independently in [42] and [61] for surfaces with
arbitrary co-dimension n in the real space form M̄ (n+2)(c) as

K + |K⊥| ≤ ∥H∥2 + c.

Furthermore, B.-Y. Chen broadened the scope of the Wintgen inequality to include surfaces
in pseudo-Euclidean 4-spaces E4

2 with a neutral metric, as documented in [15, 19].

In 1999, a new conjecture related to the Wintgen inequality was proposed for general Rie-
mannian submanifolds within real space forms, which became known as the DDVV conjecture,
described in [27]. It was disclosed that for any submanifold Mn in a real space form M̄n+m(c),
the inequality

ρ+ ρ⊥ ≤ ∥H∥2 + c

holds, where ρ represents the normalized scalar curvature, and ρ⊥ indicates the normalized
normal scalar curvature of M . This inequality, also known as the generalized Wintgen inequality
or the conjecture of normal scalar curvature, was independently verified by Ge and Tang [36]
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and Lu [55]. Recent advancements in Wintgen inequalities for submanifolds within metallic
Riemannian manifolds have been made. Choudhary et al. [68] explored these extended Wintgen
inequalities specifically for slant submanifolds in metallic Riemannian space forms equipped with
semi-symmetric metric connections.

Theorem 7.6. [68] Assume Mn is a θ slant submanifold in a locally metallic space form (M̄ =
Mp(cp)×Mq(cq), g, φ) equipped with the semi-symmetric metric connection. Then we have

ρξ ≤∥H∥2 − 2ρ+ (cp + cq)
p

(p2 + 4q)

{
p2 + 2q

+
2

n(n− 1)
[tr2 φ− (p · trT + nq) cos2 θ]− 2p

n
trφ

}

+
1

n
√
p2 + 4q

(cp − cq)(2 trφ− np)− 2(n− 1) tr(α)

(7.8)

where α being (0, 2)-tensor. Moreover, the equality case of (7.8) holds identically if and only if,
for the orthonormal frame (E1, · · · , En, En+1, · · · , Em), the shape operator A satisfy

An+1 =



a d 0 . . . 0 0
d a 0 . . . 0 0
0 0 a . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . a 0
0 0 0 . . . 0 a


, An+2 =



b+ d 0 0 . . . 0 0
0 b− d 0 . . . 0 0
0 0 b . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . b 0
0 0 0 . . . 0 b


,

An+3 =



c 0 0 . . . 0 0
0 c 0 . . . 0 0
0 0 c . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . c 0
0 0 0 . . . 0 c


, An+4 = · · · = Am = 0,

where a, b, c, and d are smooth functions on M .

The repercussions of the Theorem 7.6 are also discussed by Choudhary et al. in [68].

Corollary 7.7. [68] Consider the submanifold Mn immersed in a locally metallic space form
(M̄ = Mp(cp) × Mq(cq), g, φ) equipped with SSMC. Then, inequality (7.8) takes the following
forms:

(i) If M is invariant

ρξ ≤∥H∥2 − 2ρ+ (cp + cq)
p

(p2 + 4q)

{
p2 + 2q

+
2

n(n− 1)
[tr2 φ− (p · trT + nq)]− 2p

n
trφ

}

+
1

n
√
p2 + 4q

(cp − cq)(2 trφ− np)− 2(n− 1) tr(α).

(7.9)
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(ii) If M is anti-invariant

ρξ ≤ ∥H∥2 − 2ρ+ (c1 + c2)
p

p2 + 4q

[
p2 + 2q +

2

n(n− 1)
trφ2 − 2p

n
trφ

]
− p√

p2 + 4q
(c1 − c2) +

1

n

1√
p2 + 4q

(c1 − c2) (2 trφ− np)− 2(n− 1) tr(α).
(7.10)

Moreover, the equality case in (7.9) and (7.10) holds identically if and only if, for the orthonormal
frame {E1, . . . , En, En+1, . . . , Em}, the shape operators A satisfy

An+1 =



a d 0 . . . 0 0
d a 0 . . . 0 0
0 0 a . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . a 0
0 0 0 . . . 0 a


, An+2 =



b+ d 0 0 . . . 0 0
0 b− d 0 . . . 0 0
0 0 b . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . b 0
0 0 0 . . . 0 b


,

An+3 =



c 0 0 . . . 0 0
0 c 0 . . . 0 0
0 0 c . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . c 0
0 0 0 . . . 0 c


, An+4 = · · · = Am = 0,

where a, b, c, d are smooth functions on M .

Corollary 7.8. [68] Let Mn be any submanifold of locally golden space form (M̄ = Mp(cp) ×
Mq(cq), g, φ) endowed with SSMC. Then we have:

(i) If M is θ-slant, then

ρξ ≤ ∥H∥2 − 2ρ+
1

5
(c1 + c2)

{
3 +

2

n(n− 1)

[
tr2 φ− (trT + n) cos2 θ

]
− 2

n
trφ

}
+

1√
5n

(c1 − c2) (2 trφ− n)− 2(n− 1) tr(α).

(ii) If M is invariant, then

ρξ ≤ ∥H∥2 − 2ρ+
1

5
(c1 + c2)

{
3 +

2

n(n− 1)

(
tr2 φ− trT − n

)
− 2

n
trφ

}
+

1√
5n

(c1 − c2) (2 trφ− n)− 2(n− 1) tr(α).

(iii) If M is anti-invariant, then

ρξ ≤ ∥H∥2 − 2ρ+
1

5
(c1 + c2)

[
3 +

2

n(n− 1)
tr2 φ− 2

n
trφ

]
+

1√
5n

(c1 − c2) (2 trφ− n)− 2(n− 1) tr(α).

Remark 23. In [23], Choudhary and Blaga discuss the generalized Wintgen inequalities for slant
submanifolds in the context of metallic Riemannian space forms as well as equality instances.
Moreover, the inequalities for invariant and anti-invariant submanifolds in the same ambient
space are similarly found as an application of Theorem 7.6.
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7.4 Chen–Ricci inequality in metallic Riemannian manifolds

The Chen-Ricci inequality is a widely recognized inequality in differential geometry that cor-
relates a submanifold’s Ricci curvature to both its mean curvature and the norm of its second
fundamental form.

A formula relating two geometric characteristics of a submanifold, M , which is embedded
in a space termed M̄(c) with a constant curvature c, was derived in 1996 by mathematician
Chen. The two characteristics are the squared mean curvature, represented by ∥H∥2, and the
Ricci curvature, represented by “Ric”. Then Chen’s inequality states that, for any unit vector X
tangent to the submanifold M of M̄(c), we have

Ric(X) ≤ (n− 1)c+
n2

2
∥H∥2, n = dimM ≥ 2.

B.-Y. Chen also derived in [16] a similar inequality for Lagrangian submanifolds of a complex space
form. Since its discovery, this inequality has garnered great interest from geometers worldwide.
The Chen–Ricci inequality for isotropic submanifolds in locally metallic product space forms was
proven by Li et al. in [53]. They also ascertained the circumstances in which the inequality turns
into equality.

Theorem 7.9. [53] Consider an n-dimensional isotropic submanifold M of an m-dimensional
locally metallic product space form (M̄ =Mp(cp)×Mq(cq), g, φ). Then we have:

(i) For every unit vector X ∈ TpM

Ric(X) ≤ n2

4
∥H∥2 + 1

4
(cp + cq)(n− 1)

(
1 +

p2

p2 + 4q

)
± 1

2
(cp − cq)(n− 1)

p√
p2 + 4q

.

(7.11)

(ii) If H(p) = 0, the equality case of (7.11) is satisfied by a unit tangent vector X at p if and
only if X ∈ Np, where Np is the relative null space of a Riemannian manifold at a point p in M.

(iii) If p is either a totally geodesic point or if n = 2 and p is a totally umbilical point, then
(7.11) equality case is true for all unit tangent vectors at p.

Corollary 7.10. [53] Let (M̄ = Mp(cp) × Mq(cq), g, φ) be an m-dimensional locally metallic
product space form and M is n-dimensional isotropic submanifold. Then

(i) For each unit vector X ∈ TpM , we have

Ric(X) ≤ n2

4
∥H∥2 + (n− 1)

[
3

10
(cp + cq)±

1√
5
(cp − cq)

]
. (7.12)

(ii) If H(p) = 0, the equality case of (7.12) is satisfied by a unit tangent vector X at p if and
only if X ∈ Np.

(iii) If p is either a totally geodesic point or if n = 2 and p is a totally umbilical point, then
(7.12) equality case is true for all unit tangent vectors at p.

Remark 24. Some inequality cases for the second fundamental form of a bi-warped product
submanifold in locally nearly metallic Riemannian manifold are discussed in [7].
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8 Inequality in metallic-Like statistical manifolds

8.1 Chen-type inequality in metallic-like statistical manifolds

In [5], Bahadir examined the first Chen inequality as well as a Chen’s inequality for the δ(2, 2)
invariant for statistical submanifolds in metallic-like statistical manifolds and obtained the fol-
lowing results.

Theorem 8.1. [5] Let (M̄ = Mp(cp) × Mq(cq), g, φ) be a metallic-like statistical manifold of
dimension m and M be an n-dimensional statistical submanifold of M̄ . Then we have

(τ −K(π))− (τ0 −K0(π)) ≥ 2K̂0(π)− 2τ̂0

+
1

4

(cp + cq)(n
2 − n)

p2 + 4q

{
1 + p2 +

4

n2 − n

[
tr2(φ)− ∥T ∥2 − 4p

n
tr(φ)

]
± 2
√
p2 + 4q (2 tr(φ)− np)

}
− 1

4
(cp + cq)−

cp + cq
4(p2 + 4q)

[
4Ψ(π)− 4Ω2(π) + p2

]
− 2p tr

(
φ |π

)
± 1

2

cq − cp√
p2 + 4q

[
tr
(
φ |π

)
− p
]
− n2(n− 2)

4(n− 1)

[
∥H∥2 + ∥H∗∥2

]
,

where π ∈ TpM is a plane section and Ψ(π) = g(φX,X)g(φY, Y ),Ω(π) = g2(φX, Y ) for any
orthonormal vectors X,Y spanning π and H∗ refers to a mean curvature vector adapted to the
statistical structure of the manifold. T X is the tangential component of φX and K̂0, τ̂0 are the
sectional curvature and scalar curvature according to the main statistical manifold, respectively.

Moreover, the equalities holds for any γ ∈ {n+ 1, . . . ,m} if and only if

hγ11 + hγ22 = hγ33 = · · · = hγnn,

h∗γ11 + h∗γ22 = h∗γ33 = · · · = h∗γnn,

hγij = h∗γij = 0, i ̸= j, (i, j) ̸= (1, 2), (2, 1), 1 ≤ i < j ≤ n,

where h∗ represents the second fundamental form associated with the dual connection or the
statistical analogue in the context of a statistical manifold.

Corollary 8.2. [5] Let Mn be a totally real statistical submanifold of a metallic-like statistical
manifold (M̄ =Mp(cp)×Mq(cq), g, φ). Then we have

(τ −K(π))− (τ0 −K0(π)) ≥ 2K̂0(π)− 2τ̂0

+
1

4

(cp + cq)
(
n2 − n

)
p2 + 4q

{
1 + p2 ∓ 2np

√
p2 + 4q

}
− 1

4
(cp + cq)−

cp + cq
4 (p2 + 4q)

p2 ± 1

2

cp − cq√
p2 + 4q

p− n2(n− 2)

4(n− 1)

[
∥H∥2 + ∥H∗∥2

]
.

Moreover, the equalities holds for any γ ∈ {n+ 1, . . . ,m} if and only if.

hγ11 + hγ22 = hγ33 = · · · = hγnn,

h∗γ11 + h∗γ22 = h∗γ33 = · · · = h∗γnn,

hγij = h∗γij = 0, i ̸= j, (i, j) ̸= (1, 2), (2, 1), 1 ≤ i < j ≤ n.
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Corollary 8.3. [5] Let Mn be a totally real statistical submanifold of a metallic-like statistical
manifold (M̄ =Mp(cp)×Mq(cq), g, φ). If there exists a point p ∈M and a plane π ⊂ TpM such
that

τ −K(π) < τ0 −K0(π) +
1

4

(cp + cq)
(
n2 − n

)
p2 + 4q

{
1 + p2 ∓ 2np

√
p2 + 4q

}
− 1

4
(cp + cq)−

cp + cq
4 (p2 + 4q)

p2 ± 1

2

cp − cq√
p2 + 4q

p+ 2
(
K̂0(π)− τ̂0

)
.

Then M is non-minimal, i.e., H ̸= 0 or H∗ ̸= 0.

8.1.1 δ(2, 2) Chen inequality in metallic-like statistical manifolds

Let p ∈ M , and let π1 and π2 be mutually orthogonal planes within TpM , spanned by {E1, E2}
and {E3, E4}, respectively. Additionally, consider {E1, E2, . . . , En} and {En+1, . . . , Em} as the
orthonormal basis of TpM and TpM

⊥, respectively.

The inequality, representing the δ(2, 2) Chen inequality for a statistical submanifold in a
metallic-like statistical manifold, is given by:

Theorem 8.4. [5] Let Mn be a statistical submanifold of a metallic-like statistical manifold
(M̄ =Mp(cp)×Mq(cq), g, φ). Then we have

(τ −K(π1)−K(π2))− (τ0 −K0(π1)−K0(π2))

≥ (cp + cq) (n
2 − n)

4(p2 + 4q)

[
1 + p2 +

4

n2 − n

{
tr2(φ)− ∥T ∥2 − 4p

n
tr(φ)

}
± 2
√
p2 + 4q(2tr(φ)− np)

]
− 1

2
(cp + cq)−

cp + cq
4(p2 + 4q)

[
4(Ψ(π1) + Ψ(π2))

− 4(Ω2(π1) + Ω2(π2)) + p2 − 2p(tr(φ|π1
) + tr(φ|π2

))
]

± 1

2

cq − cp√
p2 + 4q

[
tr(φ|π1

) + tr(φ|π2
)− 2p

]
− n2(n− 2)

4(n− 1)

[
∥H∥2 + ∥H∗∥2

]
− 2

[
τ̂0 − K̂0(π1 − K̂0(π2)

]
.

Moreover, the equalities holds for any γ ∈ {n+ 1, . . . ,m} if and only if

hγ11 + hγ22 = hγ33 + hγ44 = hγ55 · · · = hγnn,

h∗γ11 + h∗γ22 = h∗γ33 + h∗γ44 = h∗γ55 · · · = h∗γnn,

hγij = h∗γij = 0, i ̸= j, (i, j) ̸= (1, 2), (2, 1), (3, 4), (4, 3), 1 ≤ i < j ≤ n.

Corollary 8.5. [5] Let Mn be a statistical submanifold in a metallic-like statistical manifold M̄
of dimension m. Then we have

(τ−K(π1)−K(π2))− (τ0 −K0(π1)−K0(π2))

≥ 1

4

(cp + cq)(n
2 − n)

p2 + 4q

{
1 + p2 ∓ 2np

√
p2 + 4q

}
− 1

2
(cp + cq)−

cp + cq
4(p2 + 4q)

[
p2
]
± 1

2

cp − cq√
p2 + 4q

[2p]− n2(n− 2)

4(n− 1)

[
∥H∥2 + [∥H∗∥2

]
− 2
[
τ̂0 − K̂0 (π1)− K̂0 (π2)

]
.
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Moreover, the equality holds for any γ ∈ {n+ 1, . . . ,m} if and only if

hγ11 + hγ22 = hγ33 + hγ44 = hγ55 · · · = hγnn,

h∗γ11 + h∗γ22 = h∗γ33 + h∗γ44 = h∗γ55 · · · = h∗γnn,

hγij = h∗γij = 0, i ̸= j, (i, j) ̸= (1, 2), (2, 1), (3, 4), (4, 3), 1 ≤ i < j ≤ n.

Corollary 8.6. [5] A metallic-like statistical manifold M̄ of dimension m has a totally real
statistical submanifold denoted by Mn. Given a point p ∈ M and mutually orthogonal planes
π1, π2 ⊂ TpM , such that

τ −K (π1) −K (π2) < τ0 −K0 (π1)−K0 (π2)

+
1

4

(cp + cq)
(
n2 − n

)
p2 + 4q

{
1 + p2 ∓ 2np

√
p2 + 4q

}
− 1

2
(cp + cq)−

cp + cq
4 (p2 + 4q)

[
p2
]
± 1

2

cp − cq√
p2 + 4q

[2p]

− 2
[
τ̂0 − K̂0 (π1)− K̂0 (π2)

]
.

Then M is non-minimal, i.e., H ̸= 0 or H∗ ̸= 0.

9 Some more structures on metallic Riemannian
manifolds

9.1 Integrability of metallic Riemannian structures

Considering the relationship between metallic structures and almost-product structures, the Φ-
operator method from the theory of almost-product structures can be applied to metallic struc-
tures. An integrability condition and curvature properties for these structures utilizing a Φ
operator applied to pure tensor fields are presented in [37] by Gezer and Karaman.

It is well-established that a polynomial structure F is integrable if and only if a torsion-
free linear connection ∇ can be introduced such that the structure tensor F remains covariantly
constant [69]. Utilizing the Tachibana operator, the authors in [37] provided an alternative
condition for the integrability of a metallic Riemannian structure.

Theorem 9.1. [37] Consider a metallic Riemannian manifold M̄ with a metallic structure φ
and a Riemannian metric g. Then:

(i) The structure φ is integrable if Φφg = 0.

(ii) The condition Φφg = 0 is equivalent to ∇̄φ = 0, where ∇̄ denotes the Levi-Civita
connection of g.

Proposition 9.1. [37] Consider a metallic Riemannian manifold M̄ endowed with a metallic
structure φ and a Riemannian metric g. The manifold M̄ is locally decomposable as a metallic
Riemannian manifold if and only if ΦF±g = 0, where F± denote the almost product structures
related to φ.
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9.1.1 Twin metallic Riemannian metric

Consider a metallic Riemannian manifold M̄ with a metallic structure φ and a Riemannian metric
g. The twin metallic metric is defined as [37]:

G(X,Y ) = g(φX, Y )

for any vector fields X and Y on M̄ . It can be easily shown that G is pure concerning φ. When
the Φφ-operator is applied to the metric G, standard computations yield

(ΦφG)(X,Y, Z) = (Φφg)(X,φY,Z) + g(Nφ(X,Y ), Z).

Proposition 9.2. [37] Let M̄ be a metallic Riemannian manifold equipped with a metallic struc-
ture φ and a Riemannian metric g. Then Φφg = 0 is equivalent to ΦφG = 0 if Nφ = 0, where
Nφ is Nijenhuis tensor constructed from φ.

Theorem 9.2. [37] Let M̄ be a metallic Riemannian manifold equipped with a metallic structure
φ and a Riemannian metric g. The Riemannian curvature tensor field is a φ-tensor field.

Results on Riemannian curvature tensor fields of the locally decomposable metallic Rieman-
nian manifold are as follows:

Proposition 9.3. [37] Let M̄ be a metallic Riemannian manifold equipped with a metallic struc-
ture φ and a Riemannian metric g. The Riemannian curvature tensor field is a φ-tensor field.

Proposition 9.4. [37] Let M̄ be a metallic Riemannian manifold equipped with a metallic struc-
ture φ and a Riemannian metric g. The Riemannian curvature tensor field is a decomposable
tensor field.

Remark 25. Results on metallic structures with conformal metrics are also obtained in [37].

Manea conducted a study in [57] on the integrability condition of metallic structures utilizing
a Codazzi-type equation and a mixed twin metric associated with them.

Consider an n-dimensional Riemannian manifold (M̄, g). A (p, q)-metallic structure on M̄
is a polynomial structure of second degree given by a (1, 1)-tensor field φ which satisfies the
equation,

φ2 − pφ− qI = 0,

where I is the identity on the vector fields space Γ(TM̄) and p, q are fixed integers such that the
equation

x2 − px− q = 0

has a positive irrational root σp,q [57].

Motivated by the Codazzi-type equation, the subsequent requirement for the metallic struc-
ture’s integrability is as follows:

Proposition 9.5. [57] Let (M̄, g, φ) be a (p, q)-metallic manifold. The metallic structure φ is
integrable if it satisfies a Codazzi type equation,

(d∇̄φ)(X,Y ) := (∇̄Xφ)Y − (∇̄Y φ)X = 0,

for all X,Y ∈ Γ(TM̄), where d∇̄ is the exterior covariant derivative.
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Proposition 9.6. [57] For a Riemannian metallic manifold (M̄, g, φ) with the almost product F ,
any metallic structure induced by F on M̄ is integrable if and only if the initial metallic structure
is integrable.

Remark 26. The authors of [57] have studied the metallic structures in foliated manifolds and
proved that a Riemannian foliated manifold has a natural (p, q)-metallic structure and every leaf
of the foliation carries a metallic structure that is always integrable.

9.2 Metallic semi-Riemannian manifolds

The concept of a metallic Riemannian manifold can be extended to a metallic pseudo-Riemannian
manifold.

Definition 19. [11] Let (M̄, g) be a pseudo-Riemannian manifold and let φ be a g-symmetric
(1, 1)-tensor field on M̄ such that φ2 = pφ+ qI. Then the pair (φ, g) is referred to as a metallic
pseudo-Riemannian structure on M̄ and (M̄, φ, g) is known as a metallic pseudo-Riemannian
manifold.

Definition 20. [11] A linear connection ∇ on M̄ is termed a φ-connection if φ is covariantly
constant with respect to ∇, that is, ∇φ = 0.

Lemma 9.1. [11] If (M̄, φ, g) is a locally metallic pseudo-Riemannian manifold, then φ is inte-
grable.

Definition 21. [11] A trivial metallic structure is defined as φ := σI, where σ =
p±

√
p2+4q

2 and
p2 + 4q ≥ 0.

Definition 22. [11] A nearly locally metallic pseudo-Riemannian manifold (M̄, φ, g) is one where
the Levi-Civita connection ∇̄ with respect to g satisfies the condition

(∇̄Xφ)Y + (∇̄Y φ)X = 0

for any X,Y ∈ Γ(TM).

Proposition 9.7. [11] A nearly locally metallic pseudo-Riemannian manifold (M̄, φ, g), where
φ2 = pφ+ qI and p2 +4q > 0, is referred to as a locally metallic pseudo-Riemannian manifold if
and only if φ is integrable.

9.2.1 Metallic natural connection

Consider (M̄, φ, g) to be a metallic pseudo-Riemannian manifold where φ2 = pφ+qI and p2+4q ̸=
0. Let ∇̄ represent the Levi-Civita connection of g, and let ∇ be linear connection defined by
[11]:

∇ := ∇̄+
2

p2 + 4q
φ(∇̄φ)− p

p2 + 4q
(∇̄φ). (9.1)

Consequently, we have ∇φ = 0 and ∇g = 0. The linear connection ∇ defined by (9.1) is referred
to as the metallic natural connection of (M̄, g, φ). Torsion T∇ of the metallic natural connection
is expressed as:

T∇(X,Y ) =
1

p2 + 4q
{(2φ− pI)(∇̄XφY − ∇̄Y φX)− (pφ+ 2qI)[X,Y ]}

for any X,Y ∈ Γ(TM̄).
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Proposition 9.8. [11] Consider a metallic pseudo-Riemannian manifold (M̄, φ, g) where φ2 =
pφ+ qI and p2 + 4q ̸= 0. Torsion T∇ of the natural connection ∇ then satisfies the equation:

T∇(φX, Y ) + T∇(X,φY )− pT∇(X,Y ) = (2φ− pI)Nφ(X,Y ),

∀X,Y ∈ Γ(TM̄). Specifically, if φ is integrable, then

T∇(φX, Y ) + T∇(X,φY ) = pT∇(X,Y ).

9.2.2 Metallic Norden structures

Note that a Norden manifold (M̄, φ, g) is an almost complex manifold (M̄, φ) with a neutral
pseudo-Riemannian metric g such that g(φX, Y ) = g(X,φY ) for X,Y ∈ Γ(TM̄).

Proposition 9.9. [11] Given a Norden manifold (M̄, φ, g), for all real numbers a, b, φa,b :=
aφ+ bI are metallic pseudo-Riemannian structures on M̄ .

Proposition 9.10. [11] Assume that a ̸= 0. Then:

(i) φa,b is integrable if and only if φ is integrable,

(ii) φa,b is locally metallic if and only if φ is Kähler,

(iii) φa,b is nearly locally metallic if and only if φ is nearly Kähler.

On the other hand, we get the subsequent outcome:

Proposition 9.11. [11] Consider the metallic pseudo-Riemannian manifold (M̄, φ, g) where
φ2 = pφ+ qI and p2 + 4q < 0. Then

φ± = ±

(
2√

−p2 − 4q
φ− p√

−p2 − 4q
I

)

are Norden structures on M̄ and φ = aφ± + bI with a = ±
(
2/
√

−p2 − 4q
)−1

and b = −p
2 .

Definition 23. [11] Let (M̄, φ, g) be a metallic pseudo-Riemannian manifold such that φ2 =
pφ+ qI and p2 +4q < 0. Then φ is known as the metallic Norden structure on M̄ and (M̄, φ, g)
is defined as the metallic Norden manifold.

Remark 27. In [11], Blaga and Nannicini also discussed generalized metallic pseudo-Riemannian
structures, generalized metallic natural connection, and metallic pseudo-Riemannian structures
on tangent and cotangent bundles. Furthermore, Blaga and Nannicini have studied the harmonic
metallic structure in [12].

Remark 28. Some results on metallic-like structures and metallic-like maps are obtained in [56].

9.3 Curvature tensors of metallic semi-Riemannian manifolds

In [13], Blaga and Nannicini examine the properties of curvature tensors and the concept of
φ-sectional and φ-bisectional curvature of a metallic pseudo-Riemannian manifold (M̄, φ, g).

For non-degenerate plane sections, an analogue of the holomorphic sectional curvature will
be defined as follows on a metallic pseudo-Riemannian manifold (M̄, φ, g).
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Definition 24. [13] Consider X to be a nonzero tangent vector field and πX,φX to be the plane
generated by X and φX. If g(X,X)g(φX,φX)− [g(X,φX)]2 ̸= 0, then πX,φX is known as non
degenerate and the φ-sectional curvature is given as:

Kφ(X) :=
g(R(X,φX)X,φX)

g(X,X)g(φX,φX)− [g(X,φX)]2
,

where R is the Riemannian curvature tensor of g. If Kφ is a constant, then M̄ has constant
φ-sectional curvature denoted by

Kφ(X) = R(X,φX,X,φX),

for any X ∈ Γ(TM̄).

Proposition 9.12. [13] Assuming (M̄, φ, g) to be a locally metallic pseudo-Riemannian manifold,
it follows that Kφ(X) = 0 for any X ∈ Γ(TM̄), and the φ-sectional curvature of non-degenerate
plane sections is zero.

The φ-bisectional curvature for non-degenerate plane sections on a metallic pseudo-Riemannian
manifold (M,φ, g) is defined as follows:

Definition 25. [13] Let X and Y be two linearly independent tangent vector fields, and let
πX,φX and πY,φY be the planes generated by X and φX, and Y and φY , respectively. If πX,φX

and πY,φY are non-degenerate, then the φ-bisectional curvature is defined as:

Kφ(X,Y ) :=

g(R(X,φX)Y, φY )
√
(g(X,X)g(φX,φX)− g(X,φX)2)(g(Y, Y )g(φY, φY )− g(Y, φY )2)

(g(X,X)g(φX,φX)− g(X,φX)2)(g(Y, Y )g(φY, φY )− g(Y, φY )2)
.

If Kφ is a constant, then M̄ has constant φ-bisectional curvature given as:

Kφ(X,Y ) := R(X,φX, Y, φY )

for any X,Y ∈ Γ(TM̄).

Proposition 9.13. [13] Given a locally metallic pseudo-Riemannian manifold (M̄, φ, g), then
Kφ(X,Y ) = 0 for X,Y ∈ Γ(TM̄) and the φ-bisectional curvature of nondegenerate plane sections
vanishes.

Definition 26. [13] The metallic pseudo-Riemannian manifold (M̄, φ, g) is an RM manifold if
M has φ-invariant Riemannian curvature, i.e.

R(φX,φY, φZ, φW ) = R(X,Y, Z,W ),

for any X,Y, Z,W ∈ Γ(TM̄).

Theorem 9.3. [13] Consider a locally metallic pseudo-Riemannian manifold (M̄, φ, g) with φ2 =
pφ + qI that is an RM-manifold. If q[p2 − (q − 1)2] ̸= 0 and p ̸= 0, q ̸= −1, then its Riemann
curvature tensor vanishes.



38 B.-Y. Chen, M. A. Choudhary and A. Perween

References

[1] B. E. Acet, Lightlike hypersurfaces of metallic semi-Riemannian manifolds. Int. J. Geom.
Methods Mod. Phys. 15(12) (2018), Article No. 1850201, 16 pp.

[2] B. E. Acet, F. E. Erdogan, and S. Y. Perktas, Half-lightlike submanifolds of metallic semi-
Riemannian manifolds. Int. Electron. J. Geom. 15(2) (2022), 202–213.

[3] M. Ahmad and M. A.Qayyoom, Geometry of submanifolds of locally metallic Riemannian
manifolds. Ganita 71 (2021), 125–144.

[4] L. S. Alqahtani and E. M. Al-Husainy, Chen’s inequality for CR-warped products in locally
metallic Riemannian manifolds. Europ. J. Pure Appl. Math. 17 (2024), 2481–2491.

[5] O. Bahadır, Some inequalities for statistical submanifolds in metallic-like statistical mani-
folds. Turkish J. Math. Comput. Sci. 13 (2021), 348–358.

[6] O. Bahadır and S. Uddin, Slant Submanifolds of golden Riemannian manifolds. J. Math.
Exten. 13 (2019), 23–39.

[7] N. Bhunia, S. Pahan and A. Bhattacharyya, Biwarped product submanifolds in some struc-
tures of metallic Riemannian manifold. Afr. Mat. 33 (2022), Paper No. 96, 15 pp.

[8] R. L. Bishop and B. O’Neill, Manifolds of negative curvature. Trans. Amer. Math. Soc. 145
(1969), 1–49.
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