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Antimagic graph constructions with triangle and

three-path unions

H. V. Chen and S. S. Tay

Abstract. Let G = (V,E) be a graph with p edges and let f be a bijective function

from E(G) to {1, 2, . . . , p}. For any vertex v, let ϕf (v) denote the sum of f(e) at all
edges e incident to v. If ϕf (v) ̸= ϕf (u) holds for any two distinct vertices u and v,

then f is called an antimagic labeling of G. A graph G is considered antimagic if
it admits such a labeling. In this study, we investigate the antimagic properties of

graph unions, particularly focusing on structures composed of multiple triangles and

3-paths. We employ Skolem sequences and extended Skolem sequences to construct
antimagic labelling for these graph unions. Specifically, we demonstrate that for any

integer n ≥ 9, the graph formed by the disjoint union of m copies of the triangle C3

and n copies of the path P3 is antimagic for m ≥ ⌈n
3 ⌉.

Keywords. Antimagic labelling, skolem sequences, extended Skolem sequences

1 Introduction

Graphs are a fundamental structure in mathematics and computer science, often used to model
and analyze various systems and networks. One intriguing aspect of graph theory is the study of
graph labellings, where elements of a graph, such as vertices or edges, are assigned labels subject
to certain conditions. Among these, antimagic labellings have garnered significant interest due
to their unique properties and applications.

The graphs considered in this paper are not necessarily connected, unless otherwise indicated.
Let G = (V,E) be a graph with p = |E(G)| edges and q = |V (G)| vertices. An antimagic labelling
of a graph G with p edges and q vertices is a one-to-one correspondence f between the E(G) to
the label set {1, 2, . . . , p} such that ϕf (u) ̸= ϕf (v), for any two distinct vertices of u, v ∈ V (G),
where ϕf (v) is defined as the sum of the labels of the edges that are incident to a vertex v in G.
A graph is antimagic if it admits an antimagic labelling.

Antimagic labelling, a concept introduced by Hartsfield and Ringel [9], involves assigning
distinct integers to the edges of a graph in such a way that the sums of these integers at each
vertex are unique. This labelling is termed “antimagic” because it ensures that no two vertices
share the same sum of incident edge labels. In their foundational work, Hartsfield and Ringel [9]
demonstrated that several basic graph types, including paths, cycles, and complete graphs Kn for
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n ≥ 3, exhibit antimagic properties. They conjectured that this property holds for all connected
graphs, except for the simple case of K2. While this conjecture remains unproven in its entirety,
significant strides have been made towards its verification. Alon and his colleagues in 2004 [1]
provided evidence that the conjecture is valid for graphs with high edge density, reinforcing the
belief that most connected graphs are indeed antimagic.

In 1990, Hartsfield and Ringel [9] also suggested that, except for K2, every tree can be
labelled in an antimagic manner. This conjecture has seen partial validation, particularly for
trees with specific structures. For instance, Kaplan, Lev, and Roditty (2009) [10] showed that
trees with no more than one vertex of degree 2 are antimagic. Furthermore, the research by
Deng and Li (2019) [8] on caterpillar trees—trees where all vertices are within one edge of a
central path—demonstrated that caterpillars with a maximum degree of 3 possess the antimagic
property.

In the recent years, numerous researchers are currently concentrating on antimagic labelling
for a wide range of graph structures ([8], [10], [13]). The significance of antimagic labellings lies
not only in theoretical interest but also in potential applications in network theory, where distinct
sums at vertices can represent unique signatures or frequencies in communication networks [3].
In the context of finite groups, the associated graphs often exhibit natural antimagic labellings
[11]. These types of graphs have important connections to automata theory, and understanding
their properties can yield valuable insights.

Our approach builds on this line of research by applying Skolem sequences and extended
Skolem sequences, which have been effectively used in combinatorial design and graph labelling
problems. Skolem sequences were first introduced by Skolem [12] and have since been utilized
in various contexts to solve problems involving difference sets and graph embeddings. Extended
Skolem sequences [4], a generalization of the original sequences, further expand the possibilities
for constructing labellings in more complex graph structures. In this paper, we shall focus on
the graphs for unions of graphs with many triangles and three-paths. In particular, we shall give
constructions of the antimagic labelling for unions of graphs with many triangles and three-paths
using the skolem and extended skolem sequences.

2 Some constructions of anti-magic labellings

In [6], every k regular graph has been shown to be antimagic for k ≥ 2. As a specific case, the
triangle C3 is proven to be antimagic, as shown in the Figure 1.

Figure 1: Antimagic labelling C3.

Let G be a graph composed of disjoint triangles m, denoted as G = mC3 where m ≥ 1.
For each triangle j, let the edges be labelled with tj1 , tj2 , tj3 for j = 1, 2, . . . ,m. The labels of
the vertices in this triangle are determined by the sums of the edges incident to each vertex.
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Specifically, the vertex labels ϕ(vj1), ϕ(vj2), ϕ(vj2) for the triangle j are given by the set

{tj1 + tj2 , tj2 + tj3 , tj3 + tj1}

as shown in Figure 2.

Figure 2: The labels of the vertices and edges of the jth triangle where j = 1, 2, . . . ,m.

In the following, we denote the edge labels of the j-th triangle by (tj1 , tj2 , tj3), j = 1, 2, . . . ,m.
We show that there exists a unique way to assign the edge labels such that each vertex has a
distinct sum for mC3, m ≥ 1.

Proposition 2.1. Let G = mC3 where m ≥ 1. Then G is antimagic.

Proof. G consists of 3m edges and the edge labels are {1, 2, . . . , 3m}. Let

(tj1 , tj2 , tj3) = (3j − 2, 3j − 1, 3j)

for j = 1, 2, . . . ,m. Note that the sum of the edge labels incident to the vertices vj1 , vj2 , vj3 is
{ϕ(vj1), ϕ(vj2), ϕ(vj3)} = {6j − 3, 6j − 2, 6j − 1}, for j = 1, 2, . . . ,m. Since |V (G)| = 3m, each
vertex in G receives a unique sum, thereby confirming that G is antimagic.

Let G = tP3 where t ≥ 1. We denote the edge labels of the k-th path P3 by (pk1
, pk2

).
Let {ϕ(vk1), ϕ(vk2), ϕ(vk3)} = {pk1 , pk2 , pk1 + pk2} be the vertex labels of the k-th path P3, for
k = 1, 2, . . . , t as illustarted in Figure 3:

Figure 3: The labels of the vertices and edges of the kth P3 where k = 1, 2, . . . , t.

It is clear that P3 is antimagic as illustrated in the Figure 4. However, as demonstrated in
[5], the graph consisting of two disjoint path 2P3 is not antimagic.

Proposition 2.2. Let G = tP3 where t ≥ 2 is a positive integer. Then G is not antimagic.

Proof. G consists of 2t edges and the edge labels are {1, 2, . . . , 2t}. Let pk1 , pk2 ∈ {1, 2, . . . , 2t},
for k = 1, 2, . . . , t. If G = tP3 is antimagic, then pk1

+ pk2
> 2t for all k. Consider labelling a

3-path with (1, 2t). The resulting sum is 2t+1 which is greater than 2t. Now, if we try to label a
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Figure 4: Antimagic labelling P3.

second 3-path with any of the pairs from (2, 3), (2, 4), . . . , (2, 2t− 1), we find that these pairs fail
to provide the distinct sums required for an antimagic labelling. Hence, under these conditions,
G = tP3 cannot be considered antimagic.

Next, we shall focus on the G = C3 ∪ P3. By calculating all the combinations, we notice
that there are two antimagic labellings for C3 ∪ P3 as given in the Figure 5.

Figure 5: All antimagic labellings of G = C3 ∪ P3.

Let G = mC3 ∪ tP3 for positive integers m, t ≥ 0. Let f be the antimagic labelling of G.
By definition of f , f : E(G) → {1, 2, . . . , 3m+ 2t} is bijective such that ϕ(u) ̸= ϕ(v) for any two
distinct vertices u, v ∈ G. It is clear that 1 ≤ ϕ(u) ≤ 6m+ 4t− 1 for all vertices u ∈ V (G).

Proposition 2.3. If G = mC3 ∪ P3 where m is an integer and m ≥ 1, then G is antimagic.

Proof. We first label the only 3-path by (1, 2) and label the j-th triangle by

(tj1 , tj2 , tj3) = (j + 2,m+ j + 2, 2m+ j + 2)

for j = 1, 2, . . . ,m. Hence,

ϕ(V ) = {1, 2, 3} ∪ {m+ 2j + 4, 2m+ 2j + 4, 3m+ 2j + 4|j = 1, 2, . . . ,m}

and |ϕ(V )| = 3m+ 3. Thus, G is antimagic.

Figure 6 showed an example of antimagic labelling of graph G = 5C3 ∪ P3, using the con-
structions given in Proposition 2.3.

Proposition 2.4. Let m and t be positive integers. If G = mC3 ∪ tP3 is antimagic, then
G′ = G ∪ C3 is also antimagic.

Proof. If G is antimagic, then is a one-to-one correspondence f between the E(G) to the label
set {1, 2, . . . , 3m+ 2t} such that ϕf (u) ̸= ϕf (v), for any two distinct vertices of u, v ∈ V (G). We
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Figure 6: An antimagic labelling of G = 5C3 ∪ P3.

label the (m+ 1)-th triangle by (3m+ 2t+ 1, 3m+ 2t+ 2, 3m+ 2t+ 3) and the sum of the edge
labels incident to the (m+ 1)-th triangle yields

{ϕ(v(m+1)1), ϕ(v(m+1)2), ϕ(v(m+1)3)} = {6m+ 4t+ 3, 6m+ 4t+ 4, 6m+ 4t+ 5}

. Since each vertex in G′ receive a unique sum, the graph G′ is antimagic.

Consider a graph G = mC3 ∪ tP3 where m, t ≥ 1, consisting of m disjoint cycles C3 and t
disjoint paths P3. If G is antimagic, adding an additional path P3 to form G′ = G∪ P3 does not
necessarily preserve the antimagic property. For instance, in Figure 7, the graph G = C3 ∪ P3 is
antimagic. However, when we add another P3 to G and label its edges with 6 and 7, it is evident
that one of the vertices in this new P3 must be labelled 7. This creates a repetition of vertex
labels in the graph, thereby violating the antimagic property. Consequently, G′ = G ∪ P3 is not
antimagic in this case.

Figure 7: An antimagic labelling of G = C3 ∪ P3.

In Figure 8, we start with an antimagic graph G = C3 ∪ 2P2. When a new path P3 is added
on the left to form G′ = C3 ∪ 3P2, it becomes evident that G′ remains antimagic.

3 Skolem sequences and antimagic labelling

A Skolem sequence of order n [12] is a sequence S = (s1, s2, . . . , s2n) of 2n integers satisfying
the conditions for every k ∈ {1, 2, . . . , n} there exist exactly two elements si, sj ∈ S such that
si = sj = k and if si = sj = k with i < j, then j − i = k. Skolem sequences are also written as
collections of ordered pairs {(ai, bi) : 1 ≤ i ≤ n, bi − ai = i} with

⋃n
i=1{ai, bi} = {1, 2, . . . , 2n}.

Note that (ai, bi) can be written in the triples (i, ai + n, bi + n) for all i = 1, . . . , n.
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Figure 8: An antimagic labelling of G = C3 ∪ 3P3.

Consider a skolem sequence of order 4, given by S = (4, 2, 3, 2, 4, 3, 1, 1). This sequence can
be represented as a set of tuples: {(1, 11, 12), (2, 6, 8), (3, 7, 10), (4, 5, 9)}. Accordingly, the labels
of the four 3-paths are (1, 11), (2, 6), (3, 7), (4, 5) as shown in the Figure 9. Note that the largest

Figure 9: Labels of the edges of four P3.

edge label among the 3-paths is 11. Since the integers {1, 2, 3, 4, 5, 6, 7, 11} are used to label the
edges of three-paths, the remaining integers {8, 9, 10} are available to label the edges of triangle
C3. Consequently, the combined graph G = C3 ∪ 4P3 is antimagic as illustrated in Figure 10.

Figure 10: Antimagic labelling of C3 ∪ 4P3.

In the following theorem, we will detail the Skolem sequence for n = 4s and n = 4s+1 given
in [7]. Subsequently, we will show how to use this strategy to create an antimagic labelling for
graphs composed of unions of triangles and three-paths.

Theorem 3.1. A Skolem sequence of order n exists if and only if n ≡ 0, 1 (mod 4). When n = 1,
take (1, 1). When n = 4, take (1, 1, 3, 4, 2, 3, 2, 4). When n = 5, take (2, 4, 2, 3, 5, 4, 3, 1, 1, 5).
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When n > 5, use the construction

n = 4s :


(4s+ r − 1, 8s− r + 1), r = 1, 2, . . . , 2s;
(r, 4s− r − 1), r = 1, 2, . . . , s− 2;
(s+ r + 1, 3s− r), r = 1, 2, . . . , s− 2;
(s− 1, 3s), (s, s+ 1), (2s, 4s− 1), (2s+ 1, 6s).

n = 4s+ 1 :


(4s+ r + 1, 8s− r + 3), r = 1, 2, . . . , 2s;
(r, 4s− r + 1), r = 1, 2, . . . , s;
(s+ r + 2, 3s− r + 1), r = 1, 2, . . . , s− 2;
(s+ 1, s+ 2), (2s+ 1, 6s+ 2), (2s+ 2, 4s+ 1).

Following this, we will illustrate how to use this Skolem sequences to construct an antimagic
labelling.

Theorem 3.2. Given that n = 4s where s ≥ 3 is a positive integer, there exists a graph G =
sC3 ∪ 4sP3 which is antimagic.

Proof. In the case where n = 4s, the ordered pairs in Theorem 3.1 can be expressed as triples
(i, ai + n, bi + n), for i = 1, 2 . . . , n as detailed below:

(4s− 2r + 2, 8s+ r − 1, 12s− r + 1), r = 1, 2, . . . , 2s;
(4s− 2r − 1, 4s+ r, 8s− r − 1), r = 1, 2, . . . , s− 2;
(2s− 2r − 1, 5s+ r + 1, 7s− r), r = 1, 2, . . . , s− 2;
(2s+ 1, 5s− 1, 7s), (1, 5s, 5s+ 1), (2s− 1, 6s, 8s− 1),
(4s− 1, 6s+ 1, 10s).

To label the edges of the i-th 3-path, we use the pairs (i, ai + n), where i = 1, 2 . . . , n. It’s
important to note that the highest value of ai+n in this context is 10s− 1. We then identify the
set B, defined as B = {bi + n|bi + n ≤ 2n} and the elements within B can be listed as follows:

B = {5s+ 1, 7s, 8s− 1} ∪ {7s− r, 8s− r − 1|r = 1, 2, . . . , s− 2}
= {5s+ 1} ∪ {6s+ 2, . . . , 8s− 1}.

Observe that |B| = 2s − 1. By adding the elements 11s − 1 and 11s to B, we let B′ =
B ∪ {11s − 1, 11s}. If G is to be antimagic, there must exists a bijection function f mapping
E(G) to the set {1, 2, . . . , 11s}. We will label the triangles in G based on the following cases:

(i) For s = 3k where k ≥ 1, label the edges of all 3k triangles as follows: (6s+ 3j − 1, 6s+ 3j, 6s+ 3j + 1), j = 1, 2, . . . , 2k − 1;
(10s+ 3j − 1, 10s+ 3j, 10s+ 3j + 1), j = 1, 2, . . . , k − 1;
(5s+ 1, 11s− 1, 11s), (8s− 1, 10s, 10s+ 1);

(ii) When s = 3k + 1 where k ≥ 1, assign labels to the edges of each of the 3k + 1 triangles as
described below: (6s+ 3j − 1, 6s+ 3j, 6s+ 3j + 1), j = 1, 2, . . . , 2k;

(10s+ 3j − 3, 10s+ 3j − 2, 10s+ 3j − 1), j = 1, 2, . . . , k;
(5s+ 1, 11s− 1, 11s);
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(iii) For s = 3k + 2 where k ≥ 1, proceed to label the edges of all 3k + 2 triangles as follows: (6s+ 3j − 1, 6s+ 3j, 6s+ 3j + 1), j = 1, 2, . . . , 2k;
(10s+ 3j − 2, 10s+ 3j − 1, 10s+ 3j), j = 1, 2, . . . , k;
(5s+ 1, 11s− 1, 11s), (8s− 2, 8s− 1, 10s).

Since the labels for all vertices are distinct, this confirms that G = sC3 ∪ 4sP3 is antimagic.

For the case when s = 1 and s = 2, the existence of the antimagic labelling for G = sC3∪4sP3

is given in the Table 1:

Table 1: Antimagic labelling for G = sC3 ∪ 4sP3, n = 4s.
s n Labellings of C3 Labellings of P3

1 4 (6,10,11) (1,5),(4,8),(2,9),(3,7)

2 8 (11,21,22),(14,15,20) (1,10),(2,19),(3,12),(4,18),
(5,9),(6,17),(7,13),(8,16)

An extended Skolem sequence of order n is a sequence ES = (s1, s2, . . . , s2n+1) of 2n + 1
integers satisfying the conditions for every k ∈ {1, 2, . . . , n} there exist exactly two elements
si, sj ∈ S such that si = sj = k with i < j, then j − i = k and there is exactly one si ∈ ES such
that si = 0. An extended Skolem sequence of order n exists for all n [2].

For the case n = 4s + 1, n = 4s + 2 and n = 4s − 1, we shall use the extended skolem
sequence to construct the antimagic labelling. Let’s look at an explicit construction for the
extended Skolem sequence [7]:

n = 4s+ 1, n > 5 :


(r, 4s− r + 2), r = 1, 2, . . . , 2s;
(5s+ r, 7s− r + 3), r = 1, 2, . . . , s;
(4s+ r + 2, 8s− r + 3), r = 1, 2, . . . , s− 2;
(2s+ 1, 6s+ 2), (6s+ 1, 8s+ 4), (7s+ 3, 7s+ 4).

n = 4s+ 2, n > 2 :


(r, 4s− r + 3), r = 1, 2, . . . , 2s;
(4s+ r + 4, 8s− r + 4), r = 1, 2, . . . , s− 1;
(5s+ r + 3, 7s− r + 3), r = 1, 2, . . . , s− 2;
(2s+ 1, 6s+ 3), (2s+ 2, 6s+ 2), (4s+ 4, 6s+ 4),
(7s+ 3, 7s+ 4), (8s+ 4, 8s+ 6).

n = 4s− 1, n > 3 :


(r, 4s− r), r = 1, 2, . . . , 2s− 1;
(4s+ r + 1, 8s− r), r = 1, 2, . . . , s− 2;
(5s+ r, 7s− r − 1), r = 1, 2, . . . , s− 2;
(2s, 6s− 1), (5s, 7s+ 1), (4s+ 1, 6s), (7s− 1, 7s).

In the upcoming theorems, we will demonstrate the use of extended Skolem sequences of
order n to construct antimagic labellings for the graph G when n = 4s + 1, n = 4s + 2 and
n = 4s− 1.
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Theorem 3.3. For any positive integer n such that n = 4s + 1 and s ≥ 3, there exists an
antimagic graph G = (n+3

4 )C3 ∪ nP3.

Proof. When n = 4s + 1, the ordered pairs found in the extended Skolem sequences can be
organized into sets of three, as demonstrated by the following triples:

(4s− 2r + 2, 4s+ r + 1, 8s− r + 3), r = 1, 2, . . . , 2s;
(2s− 2r + 3, 9s+ r + 1, 11s− r + 4), r = 1, 2, . . . , s;
(4s− 2r + 1, 8s+ r + 3, 12s− r + 4), r = 1, 2, . . . , s− 2;
(4s+ 1, 6s+ 2, 10s+ 3), (2s+ 3, 10s+ 2, 12s+ 5), (1, 11s+ 4, 11s+ 5).

We label the edges of the i-th 3-path with the pairs (i, ai+n) for i = 1, 2 . . . , n. The maximum
value of ai + n is 11s + 4. Following this, we define the set B as B = {bi + n|bi + n ≤ 2n} and
enumerate its elements as shown below:

B = {10s+ 3} ∪ {8s− r + 3|r = 1, . . . , 2s} ∪ {11s− r + 4|r = 1, . . . , s}
= {6s+ 3, 6s+ 4, . . . , 8s+ 2} ∪ {10s+ 3, 10s+ 4, . . . , 11s+ 3}.

In the extended Skolem sequence, we have sn+1 = 0. Thus we define B′ = B∪{8s+3}. Since
|B| = 3s+ 1, it follows that |B′| = 3s+ 2. Recognizing that each triangle comprises three edges,
we further expand our set to B′′ = B′∪{11s+5}. Consequently, the size of B′′ is |B′′| = 3(s+1).
For G to be considered antimagic, there must exist a bijective function f from the edges of G,
denoted by E(G), to the set {1, 2, . . . , 11s+5}. Using the elements in B′′, we labels the edges of
all (s+ 1) triangles as follows:

(i) When s = 3k where k ≥ 1, label the edges of each of the (3k+1) triangles in the following
manner:  (6s+ 3j, 6s+ 3j + 1, 6s+ 3j + 2), j = 1, 2, . . . , 2k;

(10s+ 3j + 2, 10s+ 3j + 3, 10s+ 3j + 4), j = 1, 2, . . . , k − 1;
(8s+ 3, 10s+ 3, 10s+ 4), (11s+ 2, 11s+ 3, 11s+ 5).

(ii) When s = 3k + 1, k ≥ 1, apply the following labels to the edges of all (3k + 2) triangles: (6s+ 3j, 6s+ 3j + 1, 6s+ 3j + 2), j = 1, 2, . . . , 2k + 1;
(10s+ 3j, 10s+ 3j + 1, 10s+ 3j + 2), j = 1, 2, . . . , k;
(11s+ 2, 11s+ 3, 11s+ 5).

(iii) For the case s = 3k + 2 where k ≥ 1, label the edges of each of the (3k + 3) triangles as
indicated: (6s+ 3j, 6s+ 3j + 1, 6s+ 3j + 2), j = 1, 2, . . . , 2k + 1;

(10s+ 3j + 1, 10s+ 3j + 2, 10s+ 3j + 3), j = 1, 2, . . . , k;
(8s+ 2, 8s+ 3, 10s+ 3), (11s+ 2, 11s+ 3, 11s+ 5).

As all vertex labels are different, this leads us to the conclusion that G = (n+3
4 )C3 ∪ nP3 is

antimagic.

The existence of antimagic labelling for the graph G = (n+3
4 )C3 ∪ nP3 in cases where n =

4s+ 1 is shown for s = 1 and s = 2 in Table 2.
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Table 2: Antimagic labelling for G = (n+3
4 )C3 ∪ nP3, n = 4s+ 1.

s n Labellings of C3 Labellings of P3

1 5 (6,11,12), (10,15,16) (1,5),(4,8),(2,9),(3,7),(13,14)

2 9 (15,16,17),(18,19,23), (1,26),(2,13),(3,21),(4,12),
(24,25,27) (5,20),(6,11),(7,22),(8,10),(9,14)

Theorem 3.4. Given a positive integer n where n = 4s + 2 for s ≥ 3, an antimagic graph
G = ⌈n

3 ⌉C3 ∪ nP3 exists.

Proof. Note that for n = 4s + 2, we can reformulate the ordered pairs in the extended Skolem
sequences into triples, as listed below:

(4s− 2r + 3, 4s+ r + 2, 8s− r + 5), r = 1, 2, . . . , 2s;
(4s− 2r, 8s+ r + 6, 12s− r + 6), r = 1, 2, . . . , s− 1;
(2s− 2r, 9s+ r + 5, 11s− r + 5), r = 1, 2, . . . , s− 2;
(4s+ 2, 6s+ 3, 10s+ 5), (4s, 6s+ 4, 10s+ 4), (2s, 8s+ 6, 10s+ 6),
(1, 11s+ 5, 11s+ 6), (2, 12s+ 6, 12s+ 8).

For each 3-path indexed by i, we label its edges with (i, ai+n), for i = 1, 2 . . . , n. Notice that
the highest value ai+n can reach is 12s+6. We then define the set B comprising {bi+n|bi+n ≤
2n}. The elements of this set are as follows:

B = {10s+ 4, 10s+ 5, 10s+ 6, 11s+ 6} ∪ {8s− r + 5|r = 1, 2, . . . , 2s}
∪{12s− r + 6|r = 1, 2, . . . , s− 1} ∪ {11s− r + 5|r = 1, 2, . . . , s− 2}

= {6s+ 5, 6s+ 6, . . . , 8s+ 4} ∪ {10s+ 4, 10s+ 5, . . . , 11s+ 4}
∪{11s+ 6, 11s+ 7, . . . , 12s+ 5}.

Since we are using the extended Skolem sequence, we expand our set to B′ = B ∪ {8s+ 5}.
Considering that |B| = 4s + 1, the size of the new set B′ becomes |B′| = 4s + 2. The triangles
in G will then be labelled using all the elements in B′ as detailed below for each case.

(i) In the situation where s = 3k where k ≥ 1, assign labels to the edges of all the (4k + 1)
triangles using the following pattern:

(6s+ 3j + 2, 6s+ 3j + 3, 6s+ 3j + 4), j = 1, 2, . . . , 2k;
(10s+ 3j + 3, 10s+ 3j + 4, 10s+ 3j + 5), j = 1, 2, . . . , k − 1;
(11s+ 3j + 4, 11s+ 3j + 5, 11s+ 3j + 6), j = 1, 2, . . . , k − 1;
(8s+ 5, 10s+ 4, 10s+ 5), (11s+ 3, 11s+ 4, 11s+ 6),
(12s+ 4, 12s+ 5, 12s+ 7).

(ii) For the case s = 3k+1 where k ≥ 1, label the edges of all the (4k+2) triangles as outlined
below: 

(6s+ 3j + 2, 6s+ 3j + 3, 6s+ 3j + 4), j = 1, 2, . . . , 2k + 1;
(10s+ 3j + 1, 10s+ 3j + 2, 10s+ 3j + 3), j = 1, 2, . . . , k;
(11s+ 3j + 4, 11s+ 3j + 5, 11s+ 3j + 6), j = 1, 2, . . . , k;
(11s+ 3, 11s+ 4, 11s+ 6).
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(iii) Given s = 3k + 2 where k ≥ 1, label the edges of all the (4k + 4) triangles as follows:
(6s+ 3j + 2, 6s+ 3j + 3, 6s+ 3j + 4), j = 1, 2, . . . , 2k + 1;
(10s+ 3j + 2, 10s+ 3j + 3, 10s+ 3j + 4), j = 1, 2, . . . , k;
(11s+ 3j + 4, 11s+ 3j + 5, 11s+ 3j + 6), j = 1, 2, . . . , k;
(8s+ 4, 8s+ 5, 10s+ 4), (11s+ 3, 11s+ 4, 11s+ 6),
(12s+ 5, 12s+ 7, 12s+ 8).

Given that each vertex has a distinct label, G = ⌈n
3 ⌉C3 ∪ nP3 is thus confirmed to be antimagic.

The existence of an antimagic labelling for the graph G = ⌈n
3 ⌉C3 ∪ nP3 is demonstrated for

n = 4s+ 2 in Table 3, specifically for the cases where s = 1 and s = 2.

Table 3: Antimagic labelling for G = ⌈n3 ⌉C3 ∪ nP3, n = 4s+ 2.

s n Labellings of C3 Labellings of P3

1 6 (9,10,15),(11,12,17) (1,16),(2,18),(3,8),(4,6),(5,7),(13,14)

2 10 (17,18,19),(20,21,24), (1,27),(2,30),(3,14),(4,22),(5,13),
(25,26,28), (29,31,32) (6,23),(7,12),(8,16),(9,11),(10,15)

Theorem 3.5. For n = 4s − 1 where s ≥ 3, there exists a graph G = (n+1
4 )C3 ∪ nP3 that is

antimagic.

Proof. In the context of n = 4s − 1, the ordered pairs from the extended Skolem sequences can
be grouped into triples, which are outlined as follows:

(4s− 2r, 4s+ r − 1, 8s− r − 1), r = 1, 2, . . . , 2s− 1;
(4s− 2r − 1, 8s+ r, 12s− r − 1), r = 1, 2, . . . , s− 2;
(2s− 2r − 1, 9s+ r − 1, 11s− r − 2), r = 1, 2, . . . , s− 2;
(4s− 1, 6s− 1, 10s− 2), (2s+ 1, 9s− 1, 11s),
(2s− 1, 8s, 10s− 1), (1, 11s− 2, 11s− 1).

We proceed to label the edges of the i-th 3-path using the pairs (i, ai+n), for i = 1, 2 . . . , n.
Note that the maximum value for ai+n is 11s−2. The elements of B = {bi+n|bi+n ≤ 11s−2}
can be enumerated as follows:

B = {10s− 2, 10s− 1} ∪ {8s− r − 1|r = 1, 2, . . . , 2s− 1}
∪{11s− r − 2|r = 1, 2, . . . , s− 2}

= {6s, 6s+ 1, . . . , 8s− 2} ∪ {10s− 2, 10s− 1, . . . , 11s− 3}.

Let B′ = B ∪ {8s − 1} = {6s, 6s + 1, . . . , 8s − 1} ∪ {10s − 2, 10s − 1, . . . , 11s − 3}. Since
|B| = 3s − 1, it follows that |B′| = 3s. Using the elements in B′, we label the edges of all s
triangles in the following way.

(i) For s = 3k where k ≥ 1, proceed to label the edges of all (3k) triangles as shown below:{
(6s+ 3j − 3, 6s+ 3j − 2, 6s+ 3j − 1), j = 1, 2, . . . , 2k;
(10s+ 3j − 5, 10s+ 3j − 4, 10s+ 3j − 3), j = 1, 2, . . . , k.
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(ii) If s = 3k + 1 and k ≥ 1, label each edge of the (3k + 1) triangles as follows: (6s+ 3j, 6s+ 3j + 1, 6s+ 3j + 2), j = 1, 2, . . . , 2k;
(10s+ 3j − 4, 10s+ 3j − 3, 10s+ 3j − 2), j = 1, 2, . . . , k;
(8s− 2, 8s− 1, 10s− 2).

(iii) When s = 3k+2 with k ≥ 1, assign the following labels to the edges of each of the (3k+2)
triangles:  (6s+ 3j − 3, 6s+ 3j − 2, 6s+ 3j − 1), j = 1, 2, . . . , 2k + 1;

(10s+ 3j − 3, 10s+ 3j − 2, 10s+ 3j − 1), j = 1, 2, . . . , k;
(8s− 1, 10s− 2, 10s− 1).

Since the labels of all vertices are distinct, it follows that G = (n+1
4 )C3∪nP3 is indeed antimagic.

In Table 4, the existence of an antimagic labelling for the graph G = (n+1
4 )C3 ∪ nP3 is

demonstrated for n = 4s− 1 with s = 1 and s = 2.

Table 4: Antimagic labelling for G = (n+1
4 )C3 ∪ nP3, n = 4s− 1.

s n Labellings of C3 Labellings of P3

1 3 (6,7,8) (1,9),(2,4),(3,5)

2 7 (12,13,14),(15,18,19), (1,20),(2,10),(3,16),(4,9),
(5,17),(6,8),(7,11)

Building on the previously established theorems, the following demonstrates the result for
the general cases.

Theorem 3.6. For any integer n ≥ 9, the graph formed by the disjoint union of ⌈n
3 ⌉ copies of

the graph C3 and n copies of the path graph P3 is antimagic.

Proof. The results are subsequently supported by Theorems 3.2, 3.3, 3.4, and 3.5, as well as by
Proposition 2.4.

Theorem 3.6 and Proposition 2.4 provide foundational support for the following theorem.

Theorem 3.7. There exists a G = mC3 ∪ nP3 which is antimagic for n ≥ 9 and m ≥ ⌈n
3 ⌉.
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