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Inverse problem for Dirac operators with a small

delay

Neboǰsa Djurić and Biljana Vojvodić

Abstract. This paper addresses inverse spectral problems associated with Dirac-

type operators with a constant delay, specifically when this delay is less than one-

third of the interval length. Our research focuses on eigenvalue behavior and operator

recovery from spectra. We find that two spectra alone are insufficient to fully recover

the potentials. Additionally, we consider the Ambarzumian-type inverse problem for

Dirac-type operators with a delay. Our results have significant implications for the

study of inverse problems related to differential operators with constant delay and

may inform future research directions in this field.
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1 Introduction

The main goal of this paper is to study a two-spectra inverse problem of recovering a system of
differential equations with delay. Specifically, we consider the boundary value problems Bj(a, p, q),
j = 1, 2, for Dirac-type system of the form

By′(x) +Q(x)y(x− a) = λy(x), 0 < x < π, (1.1)

y1(0) = yj(π) = 0,

where

B =

[
0 1
−1 0

]
, y(x) =

[
y1(x)
y2(x)

]
, Q(x) =

[
p(x) q(x)
q(x) −p(x)

]
,

as p(x), q(x) ∈ L2(0, π) are complex-valued functions with Q(x) = 0 on (0, a) and the delay
a ∈ (0, π

3 ). Let {λn,j}n∈Z, j = 1, 2, be the eigenvalues of Bj(a, p, q). The inverse problem is
formulated as follows.

Inverse problem 1. Given the two spectra {λn,j}n∈Z, j = 1, 2, construct p(x), q(x).
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1

http://dx.doi.org/10.5556/j.tkjm.56.2025.5433
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The idea of using two sequences of eigenvalues for a Dirac-type system on a finite interval orig-
inated with Gasymov’s and Dzabiev’s classic paper [14], where they developed a constructive
solution based on transformation operators and obtained the characterization of the spectral
data. Two-spectra inverse problems for Dirac-type systems have been considered in [1, 11]. Re-
search on inverse problems for the Dirac operator with a delay started a few years ago, and the
first result in this direction is the paper [4]. In that paper, the authors restrict themselves to
the case of a“large delay” when the dependence of the characteristic functions on the potential is
linear. However, for the considered case, they achieved their objectives by answering a full range
of questions regarding uniqueness, solvability, and uniform stability. Very recently, progress has
been made in the nonlinear case in the paper [10], by proving that two spectra uniquely deter-
mine potentials if a ∈ [2π/5, π/2), yet it is not possible in the case when a ∈ [π/3, 2π/5). In [26],
more research has been conducted for the case where a ∈ [2π/5, π/2) by giving a necessary and
sufficient condition for the solvability and formulating the stability of the inverse problem. The
question of whether two spectra are enough to uniquely recover potentials for a < π/3 remained
unanswered. In this paper, we fill this gap by giving a negative answer to the question of whether
the unique construction of the potentials is possible from the two spectra.

The answer to this question will also be valuable in addressing similar issues with other types
of differential operators with delays. A major avenue for further research involves boundary value
problems associated with differential equations that include two delays. In the papers [21], [25]
authors study four boundary value problems Dj(P,Q,m), m = 0, 1, j = 1, 2, for Dirac-type
system of the form

By′(x) + (−1)mP (x)y(x− a1) +Q(x)y(x− a2) = λy(x), 0 < x < π, (1.2)

y1(0) = yj(π) = 0,

where π
3 ≤ a1 < a2 < π,

P (x) =

[
p1(x) p2(x)
p2(x) −p1(x)

]
, Q(x) =

[
q1(x) q2(x)
q2(x) −q1(x)

]
,

and p1(x), p2(x), q1(x), q2(x) ∈ L2[0, π] are complex-valued functions such that

P (x) = 0, x ∈ (0, a1), Q(x) = 0, x ∈ (0, a2).

Let {λm
n,j} be the spectrum of the boundary value problem Dj(P,Q,m), j = 1, 2, m = 0, 1, and

assume that delays a1 and a2 are known. In the papers [21] and [25] the authors consider the
following inverse problem.

Inverse problem 2. Given the four spectra {λm
n,j}n∈Z, j = 1, 2, m = 0, 1, construct the matrix

functions P (x) and Q(x).

It is obvious that equation (1.2) becomes equation (1.1) when P (x) = 0, and then Inverse problem
2 reduces to Inverse problem 1. In the paper [25] it has been shown that Inverse problem 2 has a
unique solution as soon as the delays a1, a2 ∈ [2π/5, π). One can easily conclude that the solution
of Inverse Problem 2 is not unique in the case a2 ∈ [π/3, 2π/5). In fact, it has been shown in the
paper [10] that the solution of Inverse problem 1 is not unique for a ∈ [π/3, 2π/5). Therefore,
taking P (x) = 0 in equation (1.2), we obtain the same conclusion for Inverse Problem 2. The
case a1 ∈ [π/3, 2π/5) and a2 ∈ [2π/5, π) has been considered in the paper [21]. It has been
established that Inverse problem 2 possesses a unique solution in the case where 2a1 + a2/2 ≥ π,
whereas no uniqueness holds if 2a1 + a2/2 < π.



Inverse problem for Dirac operators with a small delay 3

In the paper [27], the authors introduced Dirac-type operators with a global constant delay
on a star graph consisting of m equal edges. They proved that the uniqueness theorem is valid
in the case when the delay is greater than one-half of the length of the interval.

Many of the differential equations with delays, primarily sourced from the literature in biolog-
ical sciences, await exploration. These encompass different types of models spanning population
biology, physiology, epidemiology, economics, neural networks, and intricate control mechanisms
of mechanical systems. The application of differential equations with delay is covered in the
books by Erneux [12], Polyanin [18], and Smith [19]. Additionally, Norkin [15] dealt with models
involving the Sturm-Liouville equation with delay,

−y′′(x) + q(x)y(x− a) = λy(x), 0 < x < π.

For this reason, the inverse spectral problems for Sturm-Liouville operators with delay have been
studied in detail. Some important results in this field can be found in [2, 5, 7, 8, 9, 13, 16, 17, 20].
In addition, inverse problems for Sturm-Liouville operators with two delays have been thoroughly
investigated in articles [22, 23, 24].

The paper is organized as follows. In Section 2, we describe characteristic functions and
study the asymptotic behavior of eigenvalues. In Section 3, we construct the class of iso-bispectral
potentials p(x), q(x) that have the same characteristic functions. In this way, we show that two
spectra of boundary value problems Bj(a, p, q), j = 1, 2, are not enough to uniquely determine
the potentials p(x), q(x). In Section 4, we study the Ambarzumian-type inverse problem for Dirac
operators with constant delay.

2 Characteristic functions and spectra

Let a ∈ [π/(N + 1), π/N) for N ∈ N and S(x, λ) =

[
s1(x, λ)
s2(x, λ)

]
be the fundamental (vector)

solution of Eq. (1.1) satisfying the initial condition at the origin:

S(0, λ) =

[
0
−1

]
.

The solution S(x, λ) is the unique solution of the following integral equation

S(x, λ) = S0(x, λ) +

∫ x

a

Q(t)B−1(λ(x− t))S(t− a, λ) dt (2.1)

where

S0(x, λ) =

[
sinλx

− cosλx

]
, B(t) =

[
sin t cos t

− cos t sin t

]
.

The method of successive approximations gives

S(x, λ) =

N∑
k=0

Sk(x, λ),

Sk(x, λ) =

∫ x

ka

Q(t)B−1(λ(x− t))Sk−1(t− a, λ) dt, x > ka,

Sk(x, λ) = 0, x ≤ ka, k = 1, N.

(2.2)
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According to (2.2), we can calculate (see [10])

S1(x, λ) =

∫ x

a

Q(t1)

[
cosλ(x− 2t1 + a)
− sinλ(x− 2t1 + a)

]
dt1,

S2(x, λ) =

∫ x

2a

Q(t1)

∫ t1−a

a

Q(t2)

[
sinλ(x− 2t1 + 2t2)

− cosλ(x− 2t1 + 2t2)

]
dt2 dt1.

In a similar way, we obtain

S3(x, λ) =

∫ x

3a

Q(t1)

∫ t1−a

2a

Q(t2)

∫ t2−a

a

Q(t3)[
cosλ(x− 2t1 + 2t2 − 2t3 + a)
− sinλ(x− 2t1 + 2t2 − 2t3 + a)

]
dt3 dt2 dt1,

and consequently, by induction, we determine the form of the functions Sk(x, λ) for the case
k = n, n ∈ N is even, as

Sn(x, λ) =

∫ x

na

Q(t1) dt1

∫ t1−a

(n−1)a

Q(t2) dt2 · · ·
∫ tn−1−a

a

Q(tn)[
sinλ(x− 2t1 + 2t2 − 2t3 + ...− 2tn−1 + 2tn)

− cosλ(x− 2t1 + 2t2 − 2t3 + ...− 2tn−1 + 2tn)

]
dtn,

(2.3)

and for the case k = m, m ∈ N is odd, as

Sm(x, λ) =

∫ x

ma

Q(t1) dt1

∫ t1−a

(m−1)a

Q(t2) dt2 · · ·
∫ tm−1−a

a

Q(tm)[
cosλ(x− 2t1 + 2t2 − 2t3 + ...+ 2tm−1 − 2tm + a)
− sinλ(x− 2t1 + 2t2 − 2t3 + ...+ 2tm−1 − 2tm + a)

]
dtm.

(2.4)

The functions

∆j(λ) := sj(π, λ), j = 1, 2, (2.5)

are called the characteristic functions of the boundary value problems Bj(a, p, q). These functions
are entire in λ and their zeros coincide with the eigenvalues of Bj(a, p, q).

In order to express the characteristic functions in a more convenient way, let us introduce
the notation for the functions Sk(x, λ) given in Eq. (2.2):

Sk(x, λ) =

[
s1,k(x, λ)
s2,k(x, λ)

]
, k = 1, N.

Taking Eq.s (2.1), (2.3), (2.4), and (2.5) into account, we can rewrite the characteristic functions
as

∆j(λ) = sj(π, λ) = sj,0(π, λ) +

N∑
k=1

sj,k(π, λ), j = 1, 2. (2.6)
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Now, let k = 1, N . Then, for the case k = m, m is odd, the characteristic functions become

sj,m(π, λ) =

∫ π

ma

dt1

∫ t1−a

(m−1)a

dt2 · · ·
∫ tm−1−a

a

(
Qm

j,1(t1, t2, · · · , tm)

cosλ

(
π − 2t1 + 2t2 − 2t3 + · · ·+ 2tm−1 − 2tm + a

))
dtm

−
∫ π

ma

dt1

∫ t1−a

(m−1)a

dt2 · · ·
∫ tm−1−a

a

Qm
j,2(t1, t2, · · · , tm)

sinλ

(
π − 2t1 + 2t2 − 2t3 + · · ·+ 2tm−1 − 2tm + a

))
dtm,

(2.7)

and for the case k = n, n is even,

sj,n(π, λ) =

∫ π

na

dt1

∫ t1−a

(n−1)a

dt2 · · ·
∫ tn−1−a

a

(
Qn

j,1(t1, t2, · · · , tn)

sinλ

(
π − 2t1 + 2t2 − 2t3 + · · · − 2tn−1 + 2tn

))
dtn

−
∫ π

na

dt1

∫ t1−a

(n−1)a

dt2 · · ·
∫ tn−1−a

a

Qn
j,2(t1, t2, ..., tn)

cosλ

(
π − 2t1 + 2t2 − 2t3 + ...− 2tn−1 + 2tn

))
dtn.

(2.8)

where we use the notation Qk
j,l(t1, t2, · · · , tk) for the entries in the j−th row and l−th column of

the matrix
Qk(t1, t2, · · · , tk) := Q(t1)Q(t2) · · ·Q(tk).

One can easily show that next relations hold:

Qk
11(t1, t2, · · · , tk) = (−1)kQk

22(t1, t2, · · · , tk),
Qk

21(t1, t2, · · · , tk) = (−1)k+1Qk
12(t1, t2, · · · , tk).

(2.9)

It is obvious from (2.7) and (2.8) that the next asymptotic holds

sj,k(π, λ) = O

(
exp

(
|Imλ|(π − ka)

))
, |λ| → ∞. (2.10)

Taking equations (2.6),(2.7), (2.8) and (2.10) into account, we derive the asymptotics of the
characteristic functions given in Eq. (2.6), for |λ| → ∞,

∆1(λ) = sinλπ +

∫ π

a

p(t) cosλ(π − 2t1 + a) dt1

−
∫ π

a

q(t) sinλ(π − 2t1 + a) dt1 +O

(
exp

(
|Imλ|(π − 2a)

))
, (2.11)

∆2(λ) =− cosλπ +

∫ π

a

q(t) cosλ(π − 2t1 + a) dt1

+

∫ π

a

p(t) sinλ(π − 2t1 + a) dt1 +O

(
exp

(
|Imλ|(π − 2a)

))
. (2.12)

Therefore, the following theorem can be proved using the standard method [5, Lemma 3], Rouche’s
theorem, and Eq.s (2.11), (2.12).
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Theorem 2.1. The boundary value problems Bj(a, p, q), j = 1, 2, have infinitely many eigenvalues
{λn,j}n∈Z of the form

λn,j = n+
1− j

2
+ o(1), |n| → ∞.

Lemma 2.1. The specification of the spectrum {λn,j}n∈Z, j = 1, 2, uniquely determines the
characteristic function ∆j(λ) by the formulae

∆1(λ) = π(λ0,1 − λ)
∏

|n|∈N

λn,1 − λ

n
exp

(λ
n

)
, ∆2(λ) =

∏
n∈Z

λn,2 − λ

n− 1/2
exp

( λ

n− 1/2

)
.

Proof. The proof can be performed similarly as in [3, Theorem 5] using the Hadamard factoriza-
tion method.

In addition to examining the asymptotic behavior of the characteristic functions, solving
the Ambarzumian-type inverse problem requires considering appropriate combinations of these
functions and determining their asymptotic behavior. For that purpose, let us introduce the
functions:

L(λ) = 1

2

(
∆1(λ) + ∆1(−λ) + i

(
∆2(λ)−∆2(−λ)

))
, (2.13)

M(λ) = exp(iλπ) +
1

2

(
∆2(λ) + ∆2(−λ) + i

(
−∆1(λ) + ∆1(−λ)

))
. (2.14)

It follows from Eq.s (2.6), (2.7), (2.8), (2.9), (2.13) and (2.14) that

L(λ) =
N∑

k=1

Lk(λ), M(λ) =

N∑
k=1

Mk(λ),

holds for

Lk(λ) =

∫ π

ka

dt1

∫ t1−a

(k−1)a

dt2 · · ·
∫ tk−1−a

a

(
Qk

2−φ(k),1(t1, t2, · · · , tk)

exp iλ
(
π − 2t1 + 2t2 − 2t3 + · · ·+ (−1)k−12tk−1 + (−1)k2tk + aφ(k)

))
dtk,

(2.15)

Mk(λ) = (−1)k+1

∫ π

ka

dt1

∫ t1−a

(k−1)a

dt2 · · ·
∫ tk−1−a

a

(
Qk

1+φ(k),1(t1, t2, ..., tk)

exp iλ
(
π − 2t1 + 2t2 − 2t3 + ...+ (−1)k−12tk−1 + (−1)k2tk + aφ(k)

))
dtk,

(2.16)

where φ(2k) = 0 and φ(2k − 1) = 1, k ∈ N. In particular, the following asymptotic formulas are
valid for Imλ > 0 as |λ| → ∞:

Lk(λ) = O
(
exp(−iλ(π − ka))

)
, Mk(λ) = O

(
exp(−iλ(π − ka))

)
.
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3 Iso-bispectral potentials

In this Section we shall establish non-uniqueness of the solution of Inverse problem 1. Specifically,
we construct an infinite family of iso-bispectral potentials pα(x) and qβ(x), α, β ∈ C, i.e. for which
both problems B1(a, pα, qβ) and B2(a, pα, qβ) posses one and the same pair of spectra. For that
purpose we use the ideas of the construction of the counterexample from the papers [9] and [10].
We restrict ourselves with potentials vanishing on the interval (3a, π) and using (2.6,2.7,2.8) we
obtain the following representation of the characteristic functions

∆1(λ) := sinλπ +

∫ 3a

a

p(t) cosλ(π − 2t+ a) dt−
∫ 3a

a

q(t) sinλ(π − 2t+ a) dt

+

∫ 3a

2a

∫ t−a

a

(
p(t)p(s) + q(t)q(s)

)
sinλ(π − 2t+ 2s) ds dt

+

∫ 3a

2a

∫ t−a

a

(
q(t)p(s)− p(t)q(s)

)
cosλ(π − 2t+ 2s) ds dt,

∆2(λ) :=− cosλπ +

∫ 3a

a

p(t) sinλ(π − 2t+ a) dt+

∫ 3a

a

q(t) cosλ(π − 2t+ a) dt

−
∫ 3a

2a

∫ t−a

a

(
p(t)p(s) + q(t)q(s)

)
cosλ(π − 2t+ 2s) ds dt,

+

∫ 3a

2a

∫ t−a

a

(
q(t)p(s)− p(t)q(s)

)
sinλ(π − 2t+ 2s) ds dt.

Let us assume that the delay a is known. For fixed a ∈ (0, π
3 ) let us define the integral operator

Mhf(x) =

∫ 7a/2−x

3a/2

f(t)h
(
t+ x− a

2

)
dt, x ∈

(
3a

2
, 2a

)
,

for some non-zero real function h(x) ∈ L2(
5a
2 , 3a).

Operator Mh is a non-zero compact Hermitian operator in L2(
3a
2 , 2a) and hence, it has at least

one non-zero eigenvalue η. Putting hm(x) = (−1)mh(x)/η for m ∈ {0, 1}, we obtain that (−1)m

is an eigenvalue of the operator Mhm . Let em(x) be a corresponding eigenfunction, i.e.

Mhm(x) = (−1)mem(x), x ∈ (
3a

2
, 2a).

Now we construct the iso-bispectral family of functions

D = {pα(x), qβ(x) : α, β ∈ C}

where

pα(x) =

{
0, x ∈ (0, 3a

2 ) ∪ (2a, π),

αe1(x), x ∈ ( 3a2 , 2a),
(3.1)

and

qβ(x) =


0, x ∈ (0, 3a

2 ) ∪ (2a, 5a
2 ) ∪ (3a, π),

βe0(x), x ∈ ( 3a2 , 2a),

h(x), x ∈ ( 5a2 , 3a).

(3.2)
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We shall prove that the spectra of the boundary value problem Bj(a, pα, qβ) for j = 1, 2, is
independent of α and β, hence, the solution of the Inverse problem 1 is not unique for a delay
less than one-third of the interval length.

Theorem 3.1. Let delay a ∈ (0, π
3 ). The spectra {λn,j}n∈Z of the boundary value problem

Bj(a, pα, qβ) for j = 1, 2, are independent of α and β.

Proof. Taking into account that all multiple integrals except the double one in (2.7) and (2.8)
are equal to zero, we obtain that the characteristic functions for the boundary value problem
Bj(a, pα, qβ) have the form

∆1(λ) = sinλπ +

∫ 5a/2

a/2

K1(x) cosλ(π − 2x)dx−
∫ 5a/2

a/2

K2(x) sinλ(π − 2x)dx, (3.3)

∆2(λ) = − cosλπ +

∫ 5a/2

a/2

K1(x) sinλ(π − 2x)dx+

∫ 5a/2

a/2

K2(x) cosλ(π − 2x)dx, (3.4)

where

K1(x) =


p(x+ a/2), x ∈ (a/2, a) ∪ (2a, 5a/2),

p(x+ a/2)−
3a∫

x+a

p(t)q(t− x)dt+
3a∫

x+a

q(t)p(t− x)dt, x ∈ (a, 2a),

K2(x) =


q(x+ a/2), x ∈ (a/2, a) ∪ (2a, 5a/2),

q(x+ a/2)−
3a∫

x+a

p(t)p(t− x)dt−
3a∫

x+a

q(t)q(t− x)dt, x ∈ (a, 2a).

Then, from (3.1) and (3.2) we obtain

K1(x− a/2) =


0, x ∈ (0, 3a

2 ) ∪ (2a, 3a),

pα(x) +
7a/2−x∫
3a/2

pα(t)h(t+ x− a/2)dt, x ∈ ( 3a2 , 2a),

K2(x− a/2) =


0, x ∈ (0, 3a

2 ) ∪ (2a, 5a
2 ),

qβ(x)−
7a/2−x∫
3a/2

qβ(t)h(t+ x− a/2)dt, x ∈ ( 3a2 , 2a),

h(x), x ∈ ( 5a2 , 3a).

Since e0(x) and e1(x) are eigenfunctions of the operator Mh corresponding to the eigenvalues 1
and −1 respectively, we obtain

K1(x− a/2) = 0, x ∈ (a, 3a),

and

K2(x− a/2) =

{
0, x ∈ (a, 5a

2 ),

h(x), x ∈ ( 5a2 , 3a).
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Then, using (3.3) and (3.4) we conclude that characteristic functions for family of iso-bispectral
potentials D have the form

∆1(λ) = sinλπ −
∫ 3a

5a/2

h(x) sinλ(π − 2x+ a)dx,

∆2(λ) = − cosλπ +

∫ 3a

5a/2

h(x) cosλ(π − 2x+ a)dx,

i.e. they are independent of α and β.

4 Ambarzumian-type inverse problem

In Section 3, we proved that the solution to Inverse Problem 1 is not unique. Using the results
from Section 3 and the paper [10], we conclude that two spectra are not sufficient to recover the
potentials when a ∈ (0, 2π/5). However, it is interesting to examine whether the uniqueness of the
solution holds for the Ambarzumian-type inverse problem for Dirac operators with delay. In the
papers [5, 13], the authors prove that the uniqueness of the solution holds for the Ambarzumian-
type inverse problem for the Sturm-Liouville operators with delay. For this reason, we consider
the boundary value problems B̃j = Bj(p̃, q̃, a), where p̃(x) = q̃(x) = 0 for j = 1, 2. Since it is
known that for a ∈ [2π/5, π), two spectra uniquely determine the potentials p(x) and q(x) (see
[4, 10]), we will further consider the case a ∈ (0, 2π/5).

Let {λ̃n,j}n∈Z, be the eigenvalues of the boundary value problem B̃j = Bj(p̃, q̃, a), j = 1, 2.

Denote by ∆̃j(λ) the characteristic function of B̃j , j = 1, 2. From (2.6),(2.7) and (2.8) we

obtain ∆̃1(λ) = sinλπ and ∆̃2(λ) = − cosλπ. Therefore, it is obvious that λ̃n,j = n − j/2,
n ∈ Z, j = 1, 2.

Theorem 4.1. Let the delay a ∈ (0, 2π
5 ) be known. If λn,j = λ̃n,j for all n ∈ Z, j = 1, 2, then

p(x) = q(x) = 0 a.e. on (a, π).

Proof. Let us assume that λn,j=λ̃n,j , n ∈ Z, j = 1, 2, holds. By virtue of Lemma 2.1 one has

∆1(λ) = sinλπ, ∆2(λ) = − cosλπ,

and consequently L(λ) = 0 and M(λ) = 0. From (2.13) it follows that

L1(λ) = −L+(λ), M1(λ) = −M+(λ), (4.1)

where for k ≥ 2,

L+(λ) =

N∑
k=2

Lk(λ), M+(λ) =

N∑
k=2

Mk(λ),

and for k = 1, L+(λ) = 0, M+(λ) = 0. Let notice that

L1(λ) =

∫ π

a

p(t1) exp
(
iλ(π − 2t1 + a)

)
dt1,

M1(λ) =

∫ π

a

q(t1) exp
(
iλ(π − 2t1 + a)

)
dt1.

(4.2)

Now we divide the proof of the theorem in three steps.
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Step (1): Consider the case when p(x) = q(x) = 0 a.e. on the interval (2a, π). In this scenario,
we have L+(λ) = 0 and M+(λ) = 0. From equation (4.1), it follows that L1(λ) = M1(λ) = 0.
Consequently, from equation (4.2), we deduce that p(x) = q(x) = 0 a.e. on the interval (a, π).

Step (2): In this step, we observe the case when p(x) = q(x) = 0 a.e. on the interval
(π − νa/2, π) for a fixed ν = 0, 2N − 3. We will show that in this case p(x) = q(x) = 0 a.e. on
the interval (π− (ν+1)a/2, π). We consider the case π−νa/2 > 2a; otherwise, we arrive at Step
(1) and the proof is complete. Then from (2.15,2.16) we obtain

L2(λ) =

∫ π−νa/2

2a

dt1

∫ t1−a

a

Q2
2,1(t1, t2) exp

(
− iλ(−π + 2t1 − 2t2)

)
dt2,

M2(λ) =

∫ π−νa/2

2a

dt1

∫ t1−a

a

Q2
1,1(t1, t2) exp

(
− iλ(−π + 2t1 − 2t2)

)
dt2

In the last integrals we have that −π+2t1−2t2 ∈ (2a−π, π−(ν+2)a) and for Imλ > 0, |λ| → ∞,
the next asymptotic formulas hold:

L2(λ) = O
(
exp(−iλ(π − (ν + 2)a))

)
,

M2(λ) = O
(
exp(−iλ(π − (ν + 2)a))

)
.

(4.3)

For k > 2, the functions Lk(λ), Mk(λ), have less growth than the right-hand side in (4.3). This
means that

L+(λ) = O
(
exp(−iλ(π − (ν + 2)a))

)
,

M+(λ) = O
(
exp(−iλ(π − (ν + 2)a))

)
.

(4.4)

It follows from (4.1,4.2,4.4) that for Imλ > 0, |λ| → ∞,∫ π−νa/2

a

p(t1) exp
(
− iλ(−π + 2t1 − a)

)
dt1 = O

(
exp(−iλ(π − (ν + 2)a))

)
,∫ π−νa/2

a

q(t1) exp
(
− iλ(−π + 2t1 − a)

)
dt1 = O

(
exp(−iλ(π − (ν + 2)a))

)
,

or, which is the same, as

exp(iλ(2π − (ν + 1)a))

∫ π−νa/2

a

p(t1) exp
(
− 2iλt1)

)
dt1 = O

(
1
)
,

exp(iλ(2π − (ν + 1)a))

∫ π−νa/2

a

q(t1) exp
(
− 2iλt1)

)
dt1 = O

(
1
)
.

(4.5)

Let us introduce the functions

F (λ) = exp(iλ(2π − (ν + 1)a))

∫ π−νa/2

π−(ν+1)a/2

p(t1) exp
(
− 2iλt1)

)
dt1,

G(λ) = exp(iλ(2π − (ν + 1)a))

∫ π−νa/2

π−(ν+1)a/2

q(t1) exp
(
− 2iλt1)

)
dt1.
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The functions F (λ), G(λ) are entire in λ. One can show that F (λ) = O
(
1
)
, G(λ) = O

(
1
)
, for

Imλ ≤ 0, |λ| → ∞. On the other hand, from (4.5) follows that F (λ) = O
(
1
)
, G(λ) = O

(
1
)
, for

Imλ > 0, |λ| → ∞.
By Liouville’s theorem [6, page 77], it follows that F (λ) ≡ c1 and G(λ) ≡ c2, where c1, c2 are
constants. Since F (λ) = o(1), G(λ) = o(1) for λ ∈ R and |λ| → ∞, we conclude that F (λ) ≡ 0
and G(λ) ≡ 0. Therefore, it holds∫ π−νa/2

π−(ν+1)a/2

p(t1) exp
(
− 2iλt1)

)
dt1 = 0,

∫ π−νa/2

π−(ν+1)a/2

q(t1) exp
(
− 2iλt1)

)
dt1 = 0.

This yields p(x) = q(x) = 0 a.e. on interval (π − (ν + 1)a/2, π − νa/2).

Step (3): Applying Step (2) successively for ν = 0, 1, . . . , 2N − 3, we obtain that p(x) =
q(x) = 0 a.e. on the interval (π − (N − 1)a, π). Since (2a, π) ⊆ (π − (N − 1)a, π), from Step (1)
we conclude that p(x) = q(x) = 0 a.e. on the interval (a, π). Theorem 4.1 is proved.
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