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Riemann solitons on Lorentzian generalized

symmetric spaces
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Abstract. In this paper, we classify Riemann solitons on simply-connected 4-

dimensional Lorentzian generalized symmetric spaces up to isometry. Then it is

proved which of them is the gradient soliton. Also, we prove none of the potential

vector fields of Riemann solitons are Killing vector fields.
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1 Introduction

Hamilton [34] introduced the Ricci flow on a pseudo-Riemannian manifold (M, g) with the Ricci
tensor S as follows

∂

∂t
g = −2S. (1.1)

Special solution to (1.1) is Ricci soliton [16] which is given by

LW g + S + λg = 0, (1.2)

for some constant λ and vector field W where LW denotes the Lie derivative along W .

A Ricci soliton is a generalization of Einstein’s metric and has applications in physics [1,
23, 24, 32, 38]. The pseudo-Riemannian geometry has more interesting properties than the
Riemannian state and Ricci solitons have been studied on it [13, 17]. For example, in dimension
three, there are some Riemannian homogeneous Ricci solitons [7, 41], but there are no left-
invariant Riemannian Lie groups that admit Ricci solitons [31, 35, 42]. Also, there are several
examples of the left-invariant three-dimensional Lorentzian Ricci solitons [13]. Many authors
have generalized the Ricci flow and introduced new geometric flows. For instance, on manifold
(M, g) with Riemann curvature tensor R the Riemann flow introduced by Udrişte [46, 47] is as
follows

∂

∂t
G(t) = −2R(g(t)),
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where G = 1
2g ⊙ g where for two (0, 2)-tensors ω and θ product ⊙ is defined by

(ω ⊙ θ)(Z1, Z2, Z3, Z4) = ω(Z1, Z4)θ(Z2, Z3) + ω(Z2, Z3)θ(Z1, Z4)

−ω(Z1, Z3)θ(Z2, Z4)− ω(Z2, Z4)θ(Z1, Z3),

for all vector fields Z1, Z2, Z3, Z4. Manifold (M, g) is said to be a Riemann soliton (or RS) [36]
and denoted by (Mn, g, µ, Y ) if it admits

2R+ µg ⊙ g + g ⊙ LY g = 0, (1.3)

for some vector field Y and constant µ. If µ > 0 or µ < 0 or µ = 0 then the Riemann soliton
is called expanding or shrinking or steady. A Riemann soliton is labeled as a gradient Riemann
soliton if Y = gradh for a smooth map h and the RS becomes

2R+ µg ⊙ g + 2g ⊙∇2h = 0.

When µ is a smooth function then RS and gradient RS is said to be an almost RS and an almost
gradient RS, respectively. The RS is corresponding to the Riemann flow as a fixed point. From
(1.3), we get

2R(Z1, Z2, Z3, Z4) = −2µ [g(Z1, Z4)g(Z2, Z3)− g(Z1, Z3)g(Z2, Z4)]

− [g(Z1, Z4)LV g(Z2, Z3) + g(Z2, Z3)LV g(Z1, Z4)] (1.4)

+ [g(Z1, Z3)LV g(Z2, Z4) + g(Z2, Z4)LV g(Z1, Z3)] .

Contracting Z1 and Z4 in the last equation, we have

2S(Z2, Z3) = −2((n− 1)µ+ divV )g(Z2, Z3)− (n− 2)LV g(Z2, Z3). (1.5)

A lot of studies have been done on RSs on manifolds. For instance, Biswas et al. [10] investigated
RS on a almost co-Kahler 3-dimensional manifold, Venkatesha et al. [30, 48] studied RS on contact
geometry and almost Kenmotsu manifolds, and K. De and U. C. De [25] studied almost RS on
para-Sasakian manifolds. For the Ricci solitons on the Walker manifolds we refer the reader to
[14, 15]. Also, see [8, 11, 26].

We use the abbreviation GSS to represent generalized symmetric spaces, and FGSS for
four-dimensional GSS. In a paper by Cerny and Kowalski [22], pseudo-Riemannian FGSS were
classified into four classes denoted as A,B,C, and D. With the exception of type C, which is
Lorentzian, the associated pseudo-Riemannian metrics have signatures of (4, 0), (2, 2), and (0, 4).
The geometric properties of these spaces, such as the Levi-Civita connection, curvature tensor,
and Ricci tensor, were calculated in [20, 29]. Batat and Onda [9] conducted a study on algebraic
Ricci solitons on pseudo-Riemannian FGSS. Numerous research works have been carried out on
the geometric structures of GGSSs, including studies on homogeneous geodesics [28], curvature
properties [20], harmonicity properties of invariant vector fields [19], Ricci solitons [12], and Ricci
bi-conformal vector fields [2]. Also, see [33, 37, 39, 40, 44, 45, 18]. ‌

Motivated by mentioned works, we study the RSs on Lorentzian FGSSs up to isometry.
The article is arranged as follows. We recall some essential notions about simply-connected non-
symmetric Lorentzian FGSSs which be used throughout this paper in Section 2. In the Section
3, the main results and their proof are presented.

2 Preliminaries

Let (M, g) be a pseudo-Riemannian connected manifold and x ∈ M . If an isometry sx of M is
such that x is fixed isolated point, then it is called symmetry at the point x.



Running Heading With Forty Five Characters Or Less 3

A family of isometries denoted by {sx|x ∈ M} is termed a regular s structure if it satisfies
the condition sx ◦ sy = ssx(y) ◦ sx for all x, y ∈ M , where sx represents a symmetry for all x ∈ M ,
and the mapping M×M → M , given by (x, y) 7→ sx(y), is smooth. (M, g) that possesses at least
one regular s structure is referred to as a GSS. In the context of GSS, if (M, g) is a GSS, it is
homogeneous, and can be identified with (G/H, g), where G is a subgroup of the isometry group
I(M) that acts transitively on M , and H denotes the isotropy group at a fixed point x ∈ M . A
FGSS of type C is the underlying homogeneous space G/H, where

G =


e−w 0 0 x
0 ew 0 y
0 0 1 z
0 0 0 1

 .

A FGSS of type C is the space R4(x, y, z, w) with the metric

g = ϵ(e−2wdx2 + e2wdy2) + dzdw, (2.1)

where ϵ = ±1. The possible signatures are (1, 3), (3, 1).

Now, let (M = G/H, g) be a non-symmetric simply-connected FGSS of type C with coordi-
nates (x, y, z, w). Let ∇ be the Levi-Civita connection of (M, g) and R be its curvature tensor.
The Ricci tensor is defined by

S(X1, X2) = trace(X3 → R(X1, X3)X2). (2.2)

Let

∂1 =
∂

∂x
, ∂2 =

∂

∂y
, ∂3 =

∂

∂z
, ∂4 =

∂

∂w

be the coordinates vector fields on M . From [12], ∇ of M with respect to {∂i}4i=1 is given by

∇∂i∂j =


2ϵe−2w∂3 0 0 −∂1

0 −2ϵe2w∂3 0 ∂2
0 0 0 0

−∂1 ∂2 0 0

 , (2.3)

and

R(∂2, ∂4)∂4 = ∂2, R(∂4, ∂2)∂2 = 2ϵe2w∂3,

R(∂4, ∂1)∂4 = −∂1, R(∂1, ∂4)∂1 = −2ϵe−2w∂3.

Hence, the Riemann curvature tensor is characterized by non-zero elements

R1414 = −R1441 = −R4114 = R4141 = −ϵe−2w, (2.4)

R2424 = −R2442 = −R4224 = R4242 = −ϵe2w

and the Ricci tensor is given by

S =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −2

 .
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Along an arbitrary vector field X = Xi∂i on manifold where Xi = Xi(x, y, z, w), i = 1, 2, 3, 4
are smooth maps, we have

(LXg)11 = 2ϵe−2w(∂1X1 −X4), (LXg)12 = ϵ(e2w∂1X2 + e−2w∂2X1),

(LXg)13 = 1
2∂1X4 + ϵe−2w∂3X1, (LXg)14 = 1

2∂1X3 + ϵe−2w∂4X1,

(LXg)22 = 2ϵe2w(X4 + ∂2X2), (LXg)23 = 1
2∂2X4 + ϵe2w∂3X2,

(LXg)24 = 1
2∂2X3 + ϵe2w∂4X2, (LXg)33 = ∂3X4,

(LXg)34 = 1
2 (∂3X3 + ∂4X4), (LXg)44 = ∂4X3.

(2.5)

3 RS on FGSS of type C

Now, we classify all RSs on non-symmetric simply-connected FGSSs of type C. Using (1.4),
(M, g, µ,X) is a Riemann soliton if and only if

2R1414 = g11(LXg)44,

2R2424 = g22(LXg)44,

2R3434 = −2µg234 − 2g34(LXg)34,

2R1212 = 2µg11g22 + g11(LXg)22 + g22(LXg)11,

2R1313 = g11(LXg)33,

2R1214 = g11(LXg)24,

2R1213 = g11(LXg)23,

2R1223 = −g22(LXg)13, (3.1)

2R1224 = −g22(LXg)14,

2R1314 = 2µg11g34 + g11(LXg)34 + g34(LXg)11,

2R1324 = g34(LXg)12,

2R1334 = g34(LXg)13.

Applying (2.1), (2.4), and (2.5) in the equations (3.1), we have

∂4X3 = −2, (3.2)

1

2
(∂3X3 + ∂4X4) = −µ, (3.3)

µ+ ∂2X2 + ∂1X1 = 0, (3.4)

∂3X4 = 0, (3.5)

1

2
∂2X3 + ϵe2w∂4X2 = 0, (3.6)

1

2
∂2X4 + ϵe2w∂3X2 = 0, (3.7)

1

2
∂1X4 + ϵe−2w∂3X1 = 0, (3.8)

1

2
∂1X3 + ϵe−2w∂4X1 = 0, (3.9)

2µ+
1

2
(∂3X3 + ∂4X4) + 2(∂1X1 −X4) = 0, (3.10)

e2w∂1X2 + e−2w∂2X1 = 0. (3.11)
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Equations (3.2) and (3.5) imply that

X3 = −2w +G(x, y, z), X4 = F (x, y, w), (3.12)

for smooth maps F and G. Deriving equations (3.6) and (3.9) with respect to w, one gets

∂2
44X1 − 2∂4X1 = 0, (3.13)

∂2
44X2 + 2∂4X2 = 0. (3.14)

Solving these equations and using equations (3.6) and (3.9), we deduce

X1 = H(x, y, z)− 1

4ϵ
e2w∂1G(x, y, z), (3.15)

X2 = K(x, y, z) +
1

4ϵ
e−2w∂2G(x, y, z) (3.16)

for some smooth functionsH andK. Utilizing (3.15) and (3.16) in (3.11), we conclude e2w∂1K(x, y, z)+
e−2w∂2H(x, y, z) = 0. Hence ∂1K(x, y, z) = 0 and ∂2H(x, y, z) = 0. Therefore,

X1 = L(x, z)− 1

4ϵ
e2w∂1G(x, y, z), (3.17)

X2 = I(y, z) +
1

4ϵ
e−2w∂2G(x, y, z) (3.18)

for some smooth functions L and I. Deriving (3.7) and (3.8) with respect to z, it follows ∂2
33X1 = 0

and ∂2
33X2 = 0. It follows that

L(x, y) = L1(x)z + L2(x), ∂1G(x, y, z) = G1(x, y)z +G2(x, y), (3.19)

I(x, y) = I1(y)z + I2(y), ∂2G(x, y, z) = G3(x, y)z +G4(x, y), (3.20)

and

X1 = L1(x)z + L2(x)−
1

4ϵ
e2w (G1(x, y)z +G2(x, y)) , (3.21)

X2 = I1(y)z + I2(y) +
1

4ϵ
e−2w (G3(x, y)z +G4(x, y)) . (3.22)

Equations (3.19) and (3.20) yield

∂2G1(x, y) = ∂1G3(x, y), ∂2G2(x, y) = ∂1G4(x, y). (3.23)

Applying (3.21) and (3.22) in (3.7) and (3.8), we infer

1

2
∂1F (x, y, w) + ϵe−2w

(
L1(x)−

1

4ϵ
e2wG1(x, y)

)
= 0, (3.24)

1

2
∂2F (x, y, w) + ϵe2w

(
I1(y) +

1

4ϵ
e−2wG3(x, y)

)
= 0. (3.25)

Deriving (3.24) and (3.25) with respect to y and x, respectively, we find

1

2
∂2
12F (x, y, w)− 1

4
∂2G1(x, y) = 0, (3.26)

1

2
∂2
21F (x, y, w) +

1

4
∂1G3(x, y) = 0. (3.27)
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Equations (3.26) and (3.27) lead to −∂2G1(x, y) = ∂1G3(x, y). Then (3.23) leads to ∂2G1(x, y) =
∂1G3(x, y) = 0 and G1(x, y) = G5(x) and G3(x, y) = G6(y) for some smooth functions G5 and
G6. Using (3.3), (3.4), and (3.10), we have

∂1X1 − ∂2X2 − 2X4 = 0. (3.28)

Upon differentiating equation (3.28) with respect to z it follows

∂2
13X1 − ∂2

23X2 = 0. (3.29)

Substiutiting (3.21) and (3.22) in (3.29), we get

L′
1(x)−

1

4ϵ
e2wG′

5(x)− I ′1(y)−
1

4ϵ
e−2wG′

6(y) = 0. (3.30)

The last equation yields L′
1(x) = I ′1(y) and G′

5(x) = G′
6(y) = 0, then

L1(x) = a1x+ a2, I1(y) = a1y + a3, G5(x) = a4, G6(y) = a5 (3.31)

for some constants a1, a2, a3, a4 and a5. Upon differentiating equation (3.28) regarding to x it
follows that

L′′
2(x)−

1

4ϵ
e2w∂2

11G2(x, y)−
1

4ϵ
e−2w∂2

12G4(x, y) + 4ϵe−2w(a1x+ a2)− a4 = 0. (3.32)

Equation (3.32) leads to

∂2
11G2(x, y) = 0, ∂2

12G4(x, y) = 16(a1x+ a2), L′′
2(x) = a4. (3.33)

Upon differentiating equation (3.28) regarding to y, we arrive at

−I ′′2 (y)−
1

4ϵ
e2w∂2

12G2(x, y)−
1

4ϵ
e−2w∂2

22G4(x, y) + 4ϵe2w(a1y + a3) + a5 = 0. (3.34)

Equation (3.34) leads to

∂2
12G2(x, y) = 16(a1y + a3), ∂2

22G4(x, y) = 0, I ′′2 (y) = a5. (3.35)

From (3.23), (3.33), and (3.35), we conclude a1 = a2 = a3 = 0

G2(x, y) = 16(
1

2
a1y

2 + a3y + a6)x+ 8a2y
2 − a7y + a8,

G4(x, y) = 16(
1

2
a1x

2 + a2x+ a9)y + 8a3x
2 − a7x+ a10,

L2(x) =
1

2
a4x

2 + a11x+ a12, I2(y) =
1

2
a5y

2 + a13y + a14,

for some constants a6, . . . , a14. Also, from (3.24) and (3.25), we deduce

F (x, y, w) = −2ϵe−2w(
1

2
a1x

2 + a2x) +
1

2
a4x− 2ϵe2w(

1

2
a1y

2 + a3y)−
1

2
a5y + F1(w) (3.36)

for some smooth function F1. Applying (3.28), it follows that

F1(w) =
1

2

(
a11 − a13 − 4ϵa6e

2w − 4ϵa9e
−2w

)
. (3.37)
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Equation (3.3) implies that

µ = −1

2

(
∂3G(x, y, z) + 4ϵe−2w(

1

2
a1x

2 + a2x+ a9)− 4ϵe2w(
1

2
a1y

2 + a3y + a6)

)
. (3.38)

Equation (3.4) implies that

µ = −(2a1z + a4x+ a11 + a5y + a13 + 4ϵe−2w(
1

2
a1x

2 + a2x+ a9) (3.39)

−4ϵe2w(
1

2
a1y

2 + a3y + a6)).

Compare (3.38) and (3.39) gives a1 = a2 = a3 = a6 = a9 = 0 and ∂3G(x, y, z) = 2(a4x + a11 +
a5y + a13). Applying (3.39) in (3.10) we get a11 = 0. Using ∂3G(x, y, z) = 2(a4x + a5y + a13),
(3.19), and (3.20), we obtain a4 = a5 = 0,

G(x, y, z) = −a7xy + a8x+ a10y + 2a13z + a14 (3.40)

for some constant a14.

Hence, we have the next consequence:

Theorem 3.1. A FGSS of type C admit almost Riemann soliton (M, g, µ,X) with X = Xi∂i if
and only if µ = b1 and 

X1 = b2 − 1
4ϵe

2w(b3y + b4),

X2 = −b1y + b5 +
1
4ϵe

−2w(b3x+ b6),

X3 = −2w + b3xy + b4x+ b6y − 2b1z + b7,

X4 = 1
2b1,

(3.41)

where b1, b2, . . . , b7 ∈ R.

Theorem (3.1) gives:

Corollary 3.2. Any almost Riemann soliton on FGSS of type C is a Riemann soliton.

Now, we investigate which of RSs are gradient RS. For this end, we consider the potential
vector field of a gradient RS is X = ∇f for some smooth function f on a FGSS of type C. On a
FGSS, we have

∇f = ϵe2w(∂1f)∂1 + ϵe−2w(∂2f)∂2 + 2(∂4f)∂3 + 2(∂3f)∂4. (3.42)

From (3.41) and (3.42), we have

∂1f = ϵb2e
−2w − 1

4
(b3y + b4), (3.43)

∂2f = ϵe2w(−b1y + b5) +
1

4
(b3x+ b6), (3.44)

∂3f =
1

4
b1, (3.45)

∂4f =
1

2
(−2w + b3xy + b4x+ b6y − 2b1z + b7). (3.46)
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By taking derivative of the equations (3.43) and (3.46) with respect to w and x, respectively, we
obtain −2ϵb2e

−2w = 1
2 (b3y + b4) which implies that b2 = b3 = b4 = 0. Also, taking derivative of

(3.44) and (3.46) with respect to w and y, respectively, we deduce ϵe2w(−b1y + b5) =
1
2b6 which

yields to b1 = b5 = b6 = 0. Thus

∂1f = ∂2f = ∂3f = 0, and ∂4f =
b7
2
, (3.47)

and

f =
b7
2
w + b8, (3.48)

where b8 ∈ R. Therefore, we have:

Corollary 3.3. A FGSS of type C admits gradient RS (M, g, µ,∇f) if and only if f = a
2w + b,

where a, b ∈ R.

Remark 1. A Killing vector field on (M, g) is a vector field X such that

LXg = 0.

Hence, from Theorem 3.1 we deduce that any potential vector fields of almost Riemann soliton
on FGSS of type C is not Killing vector field because (LXg)44 = ∂4X3 = −2 ̸= 0. Also, is not
conformal vector field.

Remark 2. A Ricci collineation vector field [21] is the vector field X such that LXS = 0. The
Lie-derivative of S regarding to X = Xi∂i on FGSS of type C is represented by

LXS =


0 0 0 −2∂1X4

0 0 0 −2∂2X4

0 0 0 −2∂3X4

−2∂1X4 −2∂2X4 −2∂3X4 −4∂4X4

 . (3.49)

Using Theorem 3.1, the potential vector fields of Riemann solitons on FGSS of type C become
Ricci collineation vector field.

Remark 3. Ricci bi-conformal vector field [27] on a pseudo-Riemannian manifold (M, g) is a
vector field X such that

LXg = αg + βS, LXS = αS + βg, (3.50)

for smooth maps β and α. Also, see [2, 3, 4, 5, 6, 43]. Using Theorem 3.1, LXS = 0 which leads
to α = β = 0. But LXg ̸= 0. Therefore, the potential vector fields of Riemann solitons on FGSSs
of type C are not Ricci bi-conformal vector fields.

Remark 4. If a vector field X will be a potential vector field of a Ricci soliton on FGSSs of type
C then the equation (1.2) implies that it satisfies in the following system.

2ϵe−2w(∂1X1 −X4) = ϵλe−2w, ϵ(e2w∂1X2 + e−2w∂2X1) = 0,
1
2∂1X4 + ϵe−2w∂3X1 = 0, 1

2∂1X3 + ϵe−2w∂4X1 = 0,

2ϵe2w(X4 + ∂2X2) = ϵλe2w, 1
2∂2X4 + ϵe2w∂3X2 = 0,

1
2∂2X3 + ϵe2w∂4X2 = 0, ∂3X4 = 0,
1
2 (∂3X3 + ∂4X4) = λ, ∂4X3 = 2.

(3.51)

Applying Theorem 3.1, we conclude that any potential vector fields of almost Riemann soliton
on FGSS of type C is not potential vector fields of Ricci soliton because ∂4X3 = −2 ̸= 2.
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dimensional Lorentzian homogeneous Ricci solitons, Israel J. Math., 188 (2012), 385-403.

[14] M. Brozos-Vazquez , E. Garcia-Rio , and S. Gavino-Fernandez, Locally conformally flat
Lorentzian gradient Ricci solitons, J. Geom. Anal. 23 (2013), 1196-1212.

[15] M. Brozos-Vazquez, E. Garcia-Rio, P. Gilkey, S. Nikcevic, and R. Vazquez-Lorenzo, The
Geometry of Walker Manifolds, Vol. 5 of Synthesis Lectures on Mathematics and Statics,
Morgan and Claypool, San Rafael, CA, 2009.

[16] C. Calin and M. Crasmareanu, From the Eisenhart problem to Ricci solitons in f -Kenmotsu
manifolds, Bull. Malays. Math. Soc. 33(3) (2010), 361-368.

[17] G. Calvaruso, Homogeneous structures on three-dimensional homogeneous Lorentzian man-
ifolds, J. Geom. Phys., 57 (2007), 1279-1291.



10 M. Jafari and S. Azami

[18] G. Calvaruso, Symplectic, complex and Kähler structures on four-dimensional generalized
symmetric spaces, Differential geometry and its applications, 29 (2011), 758-769.

[19] G. Calvaruso, Harmonicity of invariant vector fields on four-dimensional generalized sym-
metric spaces, Center. Eur. J. Math., 10 (2012), 411-425.

[20] G. Calvaruso and B. De Leo, Curvature properties of four-dimensional generalized symmet-
ric spaces, J. Geom., 90 (2008), 30-46.

[21] U. Camci, H. Baysal, I. Tarhan, I. Yilmaz and I. Yavuz, Ricci collineations of the Bianchi
type I and III, and Kantowski-Saches spacetimes, Int. J. Modern Physics D, 10(5) (2001),
751-765.

[22] J. Cerny and O. Kowalski, Classification of generalized symmetric pseudo-Riemannian spaces
of dimension n = 4, Tensor N.S. 38 (1982), 256-267.

[23] T. Chave and G. Valent, Quasi-Einstein metrics and their renormalizability properties, Helv.
Phys. Acta. 69 (1996), 344-347.

[24] T. Chave, G. Valent, On a class of compact and non-compact quasi-Einstein metrics and
their renormalizability properties, Nuclear Phys. B. 478 (1996) 758-778.

[25] K. De and U. C. De, Riemann solitons on para-Sasakian geometry, Carpathian Mathematical
Publications, 14(2) (2022), 395-405.

[26] K. De, U.C. De, A note on almost Riemann Solitons and gradient almost Riemann Solitons,
Afr. Mat. 33(74) (2022). https://doi.org/10.1007/s13370-022-01010-y.

[27] U. C. De, A. Sardar, and A. Sarkar, Some conformal vector fields and conformal Ricci
solitons on N(k)-contact metric manifolds, AUT J. Math. Com., 2(1) (2021), 61-71.

[28] B. De Leo and R. A. Marinosci, Homogeneous geodesics of four-dimensional generalized
symmetric pseudo-Riemannian spaces, Publ. Math. Debrecen. 73 (2008), 341-360.

[29] B. De Leo and J. V. Der Veken, Totally geodesic hypersurfaces of four-dimensional gener-
alized symmetric spaces, Geometriae Dedicata, 159(1) (2012), 373-387.

[30] M. N. Devaraja, H. A. Kumara and V. Venkatesha, Riemannian soliton within the frame
work of contact geometry, Quaestiones Mathematicae, 44 (2021), 637-651.

[31] L. F. di Cerbo, Generic properties of homogeneous Ricci soliton, Advances in Geometry,
14(2) (2014), 225-237.

[32] D. H. Friedan, Nonlinear models in 2+ ϵ dimensions, Ann. Physics, 163(2) (1985), 318-419.

[33] A. Gray, Riemannian manifolds with geodesic symmetres of order 3, J. Differential Geom.,
7 (1970), 343-369.

[34] R. S. Hamilton, The Ricci flow on surfaces, Mathematics and general relativity, Contempo-
rary Mathematics, 71 (1988), 237-261.

[35] S. Hervik, Ricci nilsoliton black holes, J. Geom. Phys., 58(9) (2008), 1253-1264.
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