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Abstract. In this article, we establish sharp inequalities involving generalized nor-
malized δ-Casorati curvatures for quasi bi-slant submanifolds in generalized complex
space forms and characterize the submanifolds for which the equality holds. In ad-
dition, we’ve extended the same inequalities to other types of submanifolds within
the same geometric space. These include slant, invariant, anti-invariant, semi-slant,
hemi-slant and bi-slant submanifolds.
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1 Introduction

Curvature invariants are the most important Riemannian invariants and the most natural ones
in Riemannian geometry. Curvature invariants also play a key role in physics. For instance, the
motion of a body in a gravitational field is determined by the curvature of spacetime, according
to Einstein. All sorts of shapes, from soap bubbles to red blood cells, are determined by various
curvatures [37]. In 1956, Nash [35] proved his famous embedding theorem.

Theorem 1.1. Every Riemannian n-manifold can be isometrically embedded in a Euclidean
m-space with dimension m = n

2 (n+ 1)(3n+ 11).

This embedding theorem was aimed for in the hope that if each Riemannian manifold could
always be regarded as an Euclidean submanifold, then it could yield the opportunity to use help
from extrinsic geometry. However, this hope was not materialized for many years (see [25]). One
important reason is that at that time, there did not exist general optimal relationships between
known intrinsic invariants and main extrinsic invariants for arbitrary Euclidean submanifolds,
except the three fundamental equations of Gauss, Codazzi and Ricci. This leads to the following
fundamental problem in the theory of submanifolds (see [16, 17]).

Problem Find the relationship between extrinsic invariants and intrinsic invariants of a
submanifold and find their applications. To provide answers to this problem, Chen, in the 1990
introduced his δ-invariants (also known as Chen invariants). Chen was able to establish optimal
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inequalities involving the δ-invariants and the squared mean curvature of submanifolds [13, 18].
Also, Chen discovered sharp inequalities involving Ricci curvature and squared mean curvature
[16, 17], known as Chen-Ricci’s inequality. During the last 25 years, these inequalities have been
studied by many authors in various settings (see ([14, 15, 20, 21, 30, 32, 33, 34, 40, 41, 46]).
Casorati curvature, an extrinsic invariant of submanifolds within a Riemannian manifold, was
first introduced by Casorati [10]. It is defined as the normalized square length of the second
fundamental form. This concept expands upon the notion of principal directions for hypersurfaces
within a Riemannian manifold. The geometric significance and importance of Casorati curvature
have been extensively discussed by notable geometers([22, 23, 27]). Consequently, it has garnered
attention from geometers aiming to derive optimal inequalities for Casorati curvatures across
various ambient spaces ([5, 6, 19, 26, 28, 29, 31, 36, 43, 45]). On the other hand, in the theory
of submanifolds, the notion of slant submanifolds was introduced by Chen [11] as a natural
generalization of holomorphic immersions and totally real immersions. In the course of time,
this interesting notion has been studied broadly by several geometers ([3, 12, 41]). We note that
invariant and anti-invariant ([47]) submanifolds are special cases of slant submanifolds with slant
angles θ = 0 and θ = π

2 , respectively. Slant submanifolds that are neither invariant nor anti-
invariant are referred to as proper slant submanifolds. As a generalisation of slant submanifolds,
there are several kinds of submanifolds, semi-slant submanifolds ([38]), hemi-slant submanifolds
([4]), bi-slant submanifolds ([8, 9]), quasi bi-slant submanifolds ([1, 39]) and point wise quasi
bi-slant submanifolds [2].

Thus it is worthwhile to study relationships between intrinsic and extrinsic invariants of
submanifolds in a generalized space. This article explores such relationships for various types
of submanifolds, including slant, totally real, and invariant ones, within generalized complex
space forms, complex space forms, and RK-manifolds. The paper’s structure is as follows: In
Section 2, we provide preliminary information about generalized complex space forms and their
submanifolds. We also provide information about Casorati curvature and this section lays the
foundation for understanding the subsequent discussions. Section 3 focuses on establishing fun-
damental inequalities for quasi bi-slant submanifolds within generalized complex space forms.
Various subcases are presented succinctly within a tabular form. In section 4 we summarizes the
key implications of our results and out line several possible directions for future research in the
theory of submanifolds.

2 Preliminaries

Let M be an almost Hermitian manifold equipped with an almost complex structure J̆ and a
Riemannian metric ğ. If J̆ satisfies the condition of integrability, i.e., the Nijenhuis tensor [J̆ , J̆ ]
vanishes, then M is termed a Hermitian manifold. The fundamental 2-form Λ of M is defined as
follows:

Λ(X1, X2) = ğ(X1, J̆X2),

where X1 and X2 are elements of the tangent space TM . An almost Hermitian manifold is called
a Käehler manifold if the the fundamental 2-form Λ is closed and ∇̆X1

J̆X2 = 0 is satisfied for
any X1, X2 ∈ X (M), where ∇̆ denote the Levi-Cevita connection on the manifold M . Moreover,
a complex space form with constant holomorphic sectional curvature c is denoted by M(c).

Gray ([24]) introduced the notion of constant type for a nearly Kähler manifold, which led
to definitions of RK-manifolds of constant holomorphic sectional curvature c and constant type
([44]) and generalized complex space forms([42]). An RK-manifold M is an almost Hermitian
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manifold for which the curvature tensor R̆ is J̆-invariant, i.e.,

R̆(J̆X1, J̆X2, J̆X3, J̆X4) = R̆(X1, X2, X3, X4),

for all vector fields X1, X2, X3, X4 ∈ TM . An almost Hermitian manifold M is said to have
(pointwise) constant type if for each x ∈ M and for all vector fields X1, X2, X3 ∈ TxM , such that

ğ(X1, X2) = ğ(X1, X3) = ğ(X1, J̆X2) = ğ(X1, J̆X3) = 0,

ğ(X1, X1) = ğ(X2, X2) = ğ(X3, X3) = 1,

we have

R̆(X1, X2, X1, X2)− R̆(X1, X2, J̆X1, J̆X2) = R̆(X1, X3, X1, X3)

−R̆(X1, X3, J̆X1, J̆X3).

An RK-manifold M has (pointwise) constant type if and only if there is a differentiable function
ᾰ on M such that

R̆(X1, X2, X1, X2)− R̆(X1, X2, J̆X1, J̆X2) = ᾰ{ğ(X1, X1)ğ(X2, X2)

− ğ2(X1, X2)− ğ2(X1, J̆X2)},

for all vector fields X1, X2 ∈ TM . Furthermore, M has a global constant type if ᾰ is constant.
The function ᾰ is called the constant type of M . An RK-manifold of constant holomorphic
sectional curvature c and constant type ᾰ is called a generalized complex space form, denoted by
M(c, ᾰ). The curvature tensor R̆ of M(c, ᾰ) has the following expression([34]);

4R̆(X1, X2, X3, X4) = (c+ 3ᾰ){ğ(X1, X3)ğ(X2, X4)− ğ(X1, X4)ğ(X2, X3)}
+(c− ᾰ){ğ(J̆X1, X3)ğ(J̆X2, X4)− ğ(J̆X1, X4)

ğ(J̆X2, X3) + 2ğ(X1, J̆X2)ğ(X3, J̆X4)}, (2.1)

for all vector fields X1, X2, X3, X4 ∈ TM .

If c = ᾰ, then M(c, ᾰ) is a space of constant curvature. A complex space form M(c) (i.e.,
a Käehler manifold of constant holomorphic sectional curvature c) belongs to the class of almost
Hermitian manifold M(c, ᾰ) (with constant type zero).
Let N be an m-dimensional submanifold of an n-dimensional generalized complex space form
M(c, ᾰ), the Gauss and Weingarten formulas are defined by;

∇̆X1
X2 = ∇X1

X2 + σ(X1, X2),

and

∇̆X1ξ = −AξX1 +∇⊥
X1

ξ,

respectively, for each X1, X2 ∈ X (N) and for the normal vector field ξ of N , where ∇̆ , ∇ and
∇⊥ are Riemannian, induced Riemannian and induced normal connections in M , N and the
normal bundle T⊥M of M respectively and σ and Aξ are denoted as the second fundamental
form and shape operator and are related as,

ğ(σ(X1, X2), ξ) = ğ(AξX1, X2).

Now, for any X1 ∈ X (N) and for the normal vector field ξ of N , we have:

J̆X1 = PX1 + FX1,
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J̆ξ = tξ + fξ,

where PU(tξ) and FU(fξ) are tangential to N and normal to N , respectively. Similarly, the
equations of Gauss is given by:

R̆(X1, X2, X3, X4) = R(X1, X2, X3, X4) + ğ(σ(X1, X4), σ(X2, X3))

−ğ(σ(X1, X3), σ(X2, X4)), (2.2)

for allX1, X2, X3, X4 tangent toN , where R̆ and R are curvature tensors ofM andN respectively.
The Mean curvature H at x ∈ N is given by,

H =
1

m
trace(σ), (2.3)

Also, set

σγ
ij = ğ(σ(ei, ej), eγ), i, j ∈ {1, . . . ,m}, γ ∈ {m+ 1, . . . , n},

and

∥σ∥2 =

m∑
i,j=1

ğ(σ(ei, ej), σ(ei, ej)), (2.4)

and the squared norm of second fundamental form σ denoted by C is defined as

C =
1

m

n∑
γ=m+1

m∑
i,j=1

(
σγ
ij

)2
, (2.5)

known as Casorati curvature of the submanifold ([28]).

Let L be a subspace of TxM of dimension k ≥ 2, and {e1, . . . , ek} an orthonormal basis of
L. Define τ(L) as the scalar curvature of the k-plane section L by

τ(L) =
∑
i<j

K(ei ∧ ej), i, j = 1, . . . , k.

Given an orthonormal basis {e1, . . . , en} of the tangent space TxM , we denote by τ1...k the scalar
curvature of the k-plane section spanned by e1, . . . , ek. The scalar curvature τ(x) of M at x is
the scalar curvature of the tangent space of M at p. If L is a 2-plane section, then τ(L) reduces
to the sectional curvature K(L) of the plane section L. If K(π) is the sectional curvature of M
for a plane section π in TxM , where x ∈ M , then the scalar curvature τ(x) and normalized scalar
curvature ρ(x) at x are defined respectively by

τ(x) =
∑
i<j

Kij , ρ(x) =
2τ

m(m− 1)
,

where Kij is the sectional curvature of the plane section spanned by ei and ej at x ∈ M and the
Casorati curvature C of the subspace L is as follows [28]

C(L) = 1

k

m∑
γ=n+1

n∑
i,j=1

(
hγ
ij

)2
.
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A point x ∈ N is said to be an invariantly quasi-umbilical point if there exist n − m mutually
orthogonal unit normal vectors ξm+1, . . . , ξn such that the shape operators with respect to all
directions ξγ have an eigenvalue of multiplicity m−1 and that for each ξγ the distinguished eigen
direction is the same. The submanifold is said to be an invariantly quasi-umbilical submanifold
if each of its points is an invariantly quasi-umbilical point [7].

The normalized δ-Casorati curvature δc(m− 1) and δ̂c(m− 1) are defined as[28]

[δc(m− 1)]x =
1

2
Cx +

m+ 1

2m
inf{C(L)|L : a hyperplane of TxN}, (2.6)

and

[δ̂c(m− 1)]x = 2Cx +
2m− 1

2m
sup{C(L)|L : a hyperplane of TxN}. (2.7)

For a positive real number ν ̸= m(m− 1), put

β(ν) =
1

mν
(m− 1)(m+ ν)(m2 −m− ν), (2.8)

then the generalized normalized δ-Casorati curvatures δc(ν;m− 1) and δ̂c(ν;m− 1) are given as

[δc(ν;m− 1)]x = νCp + β(ν)inf{C(L)|L : a hyperplane of TxN},

if 0 < ν < m2 −m, and

[δ̂c(ν;m− 1)]x = νCx + β(ν)sup{C(L)|L : a hyperplane of TxN},

if ν > m(m− 1).

Definition 1. ([1]) Let N be isometrically immersed submanifold in Käehler manifold M . Then
N is called quasi bi-slant submanifold if there exists distributions ∆, ∆1 and ∆2 such that:
(1) The tangent bundle TN can be decomposed orthogonally as:

TN = ∆⊕∆1 ⊕∆2,

(2) The distribution ∆ is invariant under the complex structure J̆ , i.e.,

J̆(∆) = ∆,

(3) The transformed distribution J̆(∆1) is orthogonal to the distribution ∆2, i.e.,

J̆(∆1) ⊥ ∆2,

(4) For any non-zero vector field X1 ∈ (∆1)x, where x is a point in N , the angle θ1 between J̆X1

and (∆1)x remains constant and does not depend on the specific choice of x and X1.
(5) For any non-zero vector field Z1 ∈ (∆2)y, where y is a point in N , the angle θ2 between J̆Z1

and (∆)y remains constant and does not depend on the specific choice of y and Z1.
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Remark 1. Based on the dimensions of the distributions and the values of the slant angles θ1
and θ2, different cases can be identified:
(i) If dim(∆) ̸= 0, dim(∆1) = 0, and dim(∆2) = 0, the submanifold N is classified as an invariant
submanifold.
(ii) If dim(∆) ̸= 0, dim(∆1) ̸= 0, 0 < θ1 < π

2 , and dim(∆2) = 0, the submanifold N is classified
as a proper semi-slant submanifold.
(iii) If dim(∆) = 0, dim(∆1) ̸= 0, 0 < θ1 < π

2 , and dim(∆2) = 0, the submanifold N is classified
as a slant submanifold with a slant angle of θ1.
(iv) If dim(∆) = 0, dim(∆1) = 0, and dim(∆2) ̸= 0, 0 < θ2 < π

2 , the submanifold N is classified
as a slant submanifold with a slant angle of θ2.
(v) If dim(∆) = 0, dim(∆1) ̸= 0, θ1 = π

2 , and dim(∆2) = 0, the submanifold N is classified as an
anti-invariant submanifold.
(vi) If dim(∆) ̸= 0, dim(∆1) ̸= 0, θ1 = π

2 , and dim(∆2) = 0, the submanifold N is classified as
semi-invariant submanifold.
(vii) If dim(∆) = 0, dim(∆1) ̸= 0, 0 < θ1 < π

2 , and dim(∆2) ̸= 0, θ2 = π
2 , the submanifold N is

classified as a hemi-slant submanifold.
(viii) If dim(∆) = 0, dim(∆1) ̸= 0, 0 < θ1 < π

2 , and dim(∆2) ̸= 0, 0 < θ2 < π
2 , the submanifold

N is classified as proper bi-slant submanifold.
(ix) If dim(∆) ̸= 0 and 0 < θ1 = θ2 < π

2 , then submanifold N is classified as a proper semi-slant
submanifold.
(x) If dim(∆) ̸= 0, dim(∆1) ̸= 0, 0 < θ1 < π

2 , and dim(∆2) ̸= 0, 0 < θ2 < π
2 , the submanifold N

is classified as proper quasi bi-slant submanifold.

Thus quasi bi-slant submanifolds are generalisation of invariant, anti-invariant, slant, semi-slant,
hemi-slant and bi-slant submanifolds.

3 Main Results

In this section we obtain inequalities for generalized normalized δ-Casorati curvature of quasi
bi-slant submanifolds of generalized complex space forms.

Theorem 3.1. Let N be an m-dimensional quasi bi-slant submanifold of a n-dimensional gen-
eralized complex space form M(c, ᾰ), then
(i) The generalized normalized δ-Casorati curvature δc(ν;m− 1) satisfies

ρ ≤ δc(ν;m− 1)

m(m− 1)
+

c+ 3ᾰ

4
+

3(c− ᾰ)

2m(m− 1)
(d1 + d2cos

2θ1 + d3cos
2θ2), (3.1)

for any real number ν such that 0 < ν < m(m− 1).

(ii) The generalized normalized δ-Casorati curvature δ̂c(ν;m− 1) satisfies

ρ ≤ δ̂c(ν;m− 1)

m(m− 1)
+

c+ 3ᾰ

4
+

3(c− ᾰ)

2m(m− 1)
(d1 + d2cos

2θ1 + d3cos
2θ2), (3.2)

for any real number ν > m(m− 1).

Moreover , the equality holds in (3.1) and (3.2) iff N is an invariantly quasi-umbilical sub-
manifold with trivial normal connection in M(c, ᾰ), such that with respect to suitable tangent
orthonormal frame {e1, . . . , em} and normal orthonormal frame {em+1, . . . , en}, the shape oper-
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ator Ar ≡ Aer , r ∈ {m+ 1, . . . , n}, take the following form

Am+1 =



β 0 0 · · · 0 0
0 β 0 · · · 0 0
0 0 β · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · β 0

0 0 0 · · · 0
m(m− 1)

ν
β


, Am+2 = Am+3 = · · · = An = 0. (3.3)

Proof. Let {e1, . . . , em} and {em+1, . . . , en} be the orthonormal basis of TxN and T⊥
x N respec-

tively at any point x ∈ N . Putting X1 = X4 = ei, X2 = X3 = ej , i ̸= j from equation (2.1), we
have

4R̆(ei, ej , ei, ej) = (c+ 3ᾰ){m2 −m}+ 3(c− ᾰ){
m∑

i,j=1

ğ2(J̆ei, ej).

(3.4)

Let dim(N) = m = 2d1 + 2d2 + 2d3, we consider an adopted quasi bi-slant orthonormal frames

e1, e2 = J̆e1, . . . , e2d1−1, e2d1 = J̆e2d1−1,

e2d1+1, e2d1+2 = sec2 θ1J̆e2d1+1, . . . ,

e2d1+2d2−1, e2d1+2d2 = sec2 θ1J̆e2d1+2d2−1,

e2d1+2d2+1, e2d1+2d2+2 = sec2 θ2J̆e2d1+2d2+1, . . . ,

e2d1+2d2+2d3−1, e2d1+2d2+2d3 = sec2 θ2J̆e2d1+2d2+2d3−1.

Clearly, we have

ğ(J̆ej , ej+1) =


1 for j ∈ {1, ..., 2d1 − 1}
cos2 θ1 for j ∈ {2d1 + 1, . . . , 2d1 + 2d2 − 1}
cos2 θ2 for j ∈ {2d1 + 2d2 + 1, . . . , 2d1 + 2d2 + 2d3 − 1},

(3.5)

and hence
m∑

i,j=1

ğ2(J̆ei, ej) = 2(d1 + d2 cos
2 θ1 + d3 cos

2 θ2). (3.6)

Substituting foregoing equation in (3.4), we get

R̆(ei, ej , ei, ej) =
(c+ 3ᾰ)

4
{m(m− 1)}

+
6(c− ᾰ)

4
(d1 + d2cos

2θ1 + d3cos
2θ2).

(3.7)

On the other hand from (2.2), (2.4) and (2.3), we get

R̆(ei, ej , ei, ej) = 2τ + ∥σ∥2 −m2∥H∥2. (3.8)

From (3.7) and (3.8), we get

2τ = m2∥H∥2 − ∥σ∥2 + c+ 3ᾰ

4
{m(m− 1)}
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+6(
c− ᾰ

4
){(d1 + d2cos

2θ1 + d3cos
2θ2)}. (3.9)

Consider a quadratic polynomial P in the components of the second fundamental form

P = νC + β(ν)C(L)− 2τ +m(m− 1)
(c+ 3ᾰ)

4

+6(
c− ᾰ

4
){(d1 + d2cos

2θ1 + d3cos
2θ2)}, (3.10)

where L is the hyperplane of TpN . Without loss of generality, we suppose that L is spanned by
e1, . . . , em−1, it follows from (3.10) that

P =
m+ ν

m

n∑
γ=m+1

m∑
i,j=1

(σγ
ij)

2 +
β(ν)

m− 1

n∑
γ=m+1

m−1∑
i,j=1

(σγ
ij)

2 −
n∑

γ=m+1

( m∑
i=1

σγ
ii

)2

,

which can be easily written as

P =

n∑
γ=m+1

m−1∑
i=1

[(
m+ ν

m
+

β(ν)

m− 1

)
(σγ

ii)
2 +

2(m+ ν)

m
(σγ

im)2
]

+

m∑
m+1

[
2

(
m+ ν

m
+

β(ν)

m− 1

) m∑
(i<j)=1

(σγ
ij)

2 − 2

m∑
(i<j)=1

σγ
iiσ

γ
jj +

ν

m
(σγ

mm)2
]
.

(3.11)

From (3.11), we can see that the critical points

σc = (σm+1
11 , σm+1

12 , . . . , σm+1
mm , . . . , σn

11, . . . , σ
m
nn),

of P are the solutions of the following system of homogenous equations:

∂P
∂σγ

ii
= 2

(
m+ν
m + β(ν)

m−1

)
(σγ

ii)− 2
∑n

t=1 σ
γ
tt = 0

∂P
∂σγ

mm
= 2ν

m σγ
mm − 2

∑m−1
t=1 σγ

tt = 0

∂P
∂σγ

ij
= 4

(
m+ν
m + β(ν)

m−1

)
(σγ

ij) = 0

∂P
∂σγ

im
= 4(m+ν

m )(σγ
im) = 0,

(3.12)

where i, j = {1, 2, . . . ,m− 1}, i ̸= j, and γ ∈ {m+ 1,m+ 2, . . . , n}.
Hence, every solution σc has σγ

ij = 0 for i ̸= j and the corresponding determinant to the first
two equations of the above system is zero. Moreover, the Hessian matrix of P is of the following
form

H(P) =

 H1 O O
O H2 O
O O H3

 ,

where

H1 =


2(m+ν

m + β(ν)
m−1 )− 2 −2 . . . −2 −2

−2 2(m+ν
m + β(ν)

m−1 )− 2 . . . −2 −2
...

...
. . .

...
...

−2 −2 . . . 2(m+ν
m + β(ν)

m−1 )− 2 −2

−2 −2 . . . −2 2ν
m

 ,
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H2 and H3 are the diagonal matrices and O is the null matrix of the respective dimensions. H2

and H3 are respectively given as

H2 = diag

(
4

(
m+ ν

m
+

β(ν)

m− 1

)
, 4

(
m+ ν

m
+

β(ν)

m− 1

)
, . . . , 4

(
m+ ν

m
+

β(ν)

m− 1

))
,

and

H3 = diag

(
4(m+ ν)

m
,
4(m+ ν)

m
, . . . ,

4(m+ ν)

m

)
.

As H2 and H3 are diagonal matrices, so their eigen values are well known. In order to find eigen
values of H1, we need to obatin the roots of characteristic equation

det|H1 − λIm| = 0.

From foregoing equation and on simple computations, we get

(
2(m+ ν)(m− 1) +mβ(ν)

m

)(m−2)
∣∣∣∣∣∣2
(

ν−m2+2m
m + β(ν)

m−1

)
− λ −2(m− 1)

−2 2ν
m − λ

∣∣∣∣∣∣ = 0.

On further solvation the eigen values of matrix H1 are given by

λ11 = 0, λ22 = 2

(
2ν −m2 + 2m

m
+

β(ν)

m− 1

)
,

λ33 = · · · = λmm = 2

(
m+ ν

m
+

β(ν)

m− 1

)
.

Consequetly we deduce that eigen values of H(x) are

λ11 = 0, λ22 = 2

(
2ν −m2 + 2m

m
+

β(ν)

m− 1

)
,

λ33 = · · · = λmm = 2

(
m+ ν

m
+

β(ν)

m− 1

)
,

λij = 4

(
m+ ν

m
+

β(ν)

m− 1

)
, λim =

4(m+ ν)

m
,∀i, j ∈ {1, 2, . . . ,m− 1}, i ̸= j.

Thus, P is parabolic and reaches at minimum P(σc) = 0 for the solution σc of the system (3.12).
Hence P ≥ 0 and hence

2τ ≤ νC + β(ν)C(L) +m(m− 1)
(c+ 3ᾰ)

4

+
6(c− ᾰ)

4
[d1 + d2cos

2θ1 + d3cos
2θ2].

From foregoing equation, we obtain

ρ ≤ ν

m(m− 1)
C +

β(ν)

m(m− 1)
C(L) + (c+ 3ᾰ)

4

+
3(c− ᾰ)

2(m(m− 1))
[d1 + d2cos

2θ1 + d3cos
2θ2],
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for every tangent hyperplane L of N . If we take the infimum over all tangent hyperplanes L, the
result trivially follows. Moreover the equality sign holds if and only if

σγ
ij = 0, ∀ i, j ∈ {1, . . . ,m}, i ̸= j and γ ∈ {m+ 1, . . . , n}, (3.13)

and

σγ
mm =

m(m− 1)

ν
σγ
11 = · · · = m(m− 1)

ν
σγ
m−1m−1,∀γ ∈ {m+ 1, . . . , n}. (3.14)

From (3.13) and (3.14), we obtain that the equality holds if and only if the submanifold is invari-
antly quasi-umbilical with normal connections in N , such that the shape operator with respect
to the orthonormal tangent and orthonormal normal frames takes the form (3.3). Inequality 3.2
can be proven in the same way.

Theorem 3.2. Let N be submanifold of generalized complex space forms then for generalised nor-
malised δ-Casorati curvature, we have the following table where in each of the above inequalities

M N Inequality

M(c, ᾰ) Bi-slant (i) ρ ≤ δc(ν;m−1)
m(m−1) + c+3ᾰ

4

+ 3(c−ᾰ)
2m(m−1) [d2cos

2θ1 + d3cos
2θ2].

(ii) ρ ≤ δ̂c(ν;m−1)
m(m−1) + c+3ᾰ

4

+ 3(c−ᾰ)
2m(m−1) [d2cos

2θ1 + d3cos
2θ2].

M(c, ᾰ) Semi-slant (i) ρ ≤ δc(ν;m−1)
m(m−1) + c+3ᾰ

4

+ 3(c−ᾰ)
2m(m−1) [d1 + d2cos

2θ1].

(ii) ρ ≤ δ̂c(ν;m−1)
m(m−1) + c+3ᾰ

4

+ 3(c−ᾰ)
2m(m−1) [d1 + d2cos

2θ1].

0 < ν < n(n− 1) and ν > m(m− 1) for (i) and (ii) respectively. The equality case holds in each
of the above inequalities iff N is an invariantly quasi-umbilical submanifold with trivial normal
connection in M(c, ᾰ), such that with respect to suitable tangent orthonormal frame {e1, . . . , em}
and normal orthonormal frame {em+1, . . . , en}, the shape operator Ar ≡ Aer , r ∈ {m+1, . . . , n},
take the form (3.3).
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M N Inequality

M(c, ᾰ) Hemi-slant (i) ρ ≤ δc(ν;m−1)
m(m−1) + c+3ᾰ

4 + 3(c−ᾰ)
2m(m−1) [d2cos

2θ1].

(ii) ρ ≤ δ̂c(ν;m−1)
m(m−1) + c+3ᾰ

4 + 3(c−ᾰ)
2m(m−1) [d2cos

2θ1].

M(c, ᾰ) θ1-slant (i) ρ ≤ δc(ν;m−1)
m(m−1) + c+3ᾰ

4 + 3(c−ᾰ)
4(m−1)cos

2θ1.

(ii) ρ ≤ δ̂c(ν;m−1)
m(m−1) + c+3ᾰ

4 + 3(c−ᾰ)
4(m−1)cos

2θ1.

M(c, ᾰ) θ2-slant (i) ρ ≤ δc(ν;m−1)
m(m−1) + c+3ᾰ

4 + 3(c−ᾰ)
4(m−1)cos

2θ2.

(ii) ρ ≤ δ̂c(ν;m−1)
m(m−1) + c+3ᾰ

4 + 3(c−ᾰ)
4(m−1)cos

2θ2.

M(c, ᾰ) Invariant (i) ρ ≤ δc(ν;m−1)
m(m−1) + c+3ᾰ

4 + 3(c−ᾰ)
4(m−1) .

(ii) ρ ≤ δ̂c(ν;m−1)
m(m−1) + c+3ᾰ

4 + 3(c−ᾰ)
4(m−1) .

M(c, ᾰ) Anti-Invariant (i) ρ ≤ δc(ν;m−1)
m(m−1) + c+3ᾰ

4 .

(ii) ρ ≤ δ̂c(ν;m−1)
m(m−1) + c+3ᾰ

4 .

Theorem 3.3. Let N be an m-dimensional quasi bi-slant submanifold of a n-dimensional gen-
eralized complex space form M(c, ᾰ), then
(i) The normalized δ-Casorati curvature δc(ν;m− 1) satisfies

ρ ≤ δc(ν;m− 1) +
c+ 3ᾰ

4
+

3(c− ᾰ)

2m(m− 1)
(d1 + d2cos

2θ1 + d3cos
2θ2)

for any real number ν such that 0 < ν < m(m− 1).

Moreover , the equality holds iff N is an invariantly quasi-umbilical submanifold with triv-
ial normal connection in M(c, ᾰ), such that with respect to suitable tangent orthonormal frame
{e1, . . . , em} and normal orthonormal frame {em+1, . . . , en}, the shape operator Ar ≡ Aer , r ∈
{m+ 1, . . . , n}, take the following form
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Am+1 =



β 0 0 · · · 0 0
0 β 0 · · · 0 0
0 0 β · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · β 0
0 0 0 · · · 0 2β


, Am+2 = Am+3 = · · · = An = 0. (3.15)

(ii) The normalized δ-Casorati curvature δ̂c(r;m− 1) satisfies

ρ ≤ δ̂c(ν;m− 1) +
c+ 3ᾰ

4
+

3(c− ᾰ)

2m(m− 1)
(d1 + d2cos

2θ1 + d3cos
2θ2)

for any real number ν > m(m − 1). Moreover , the equality holds iff N is an invariantly quasi-
umbilical submanifold with trivial normal connection in M(c, ᾰ), such that with respect to suitable
tangent orthonormal frame {e1, . . . , em} and normal orthonormal frame {em+1, . . . , en}, the shape
operator Ar ≡ Aer , r ∈ {m+ 1, . . . , n}, take the following form

Am+1 =



2β 0 0 · · · 0 0
0 2β 0 · · · 0 0
0 0 2β · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 2β 0
0 0 0 · · · 0 β


, Am+2 = Am+3 = · · · = An = 0. (3.16)

Corollary 3.4. Let N be a submanifold of generalized complex space forms then for normalised
δ-Casorati curvature, we have the following table

M N Inequality

M(c, ᾰ) Bi-slant (i) ρ ≤ δc(ν;m− 1) + c+3ᾰ
4

+ 3(c−ᾰ)
2m(m−1) [d2cos

2θ1 + d3cos
2θ2]

(ii) ρ ≤ δ̂c(ν;m− 1) + c+3ᾰ
4

+ 3(c−ᾰ)
2m(m−1) [d2cos

2θ1 + d3cos
2θ2]
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M N Inequality

M(c, ᾰ) Semi-slant (i) ρ ≤ δc(ν;m− 1) + c+3ᾰ
4

+ 3(c−ᾰ)
2m(m−1) [d1 + d2cos

2θ1].

(ii) ρ ≤ δ̂c(ν;m− 1) + c+3ᾰ
4

+ 3(c−ᾰ)
2m(m−1) [d1 + d2cos

2θ1].

M(c, ᾰ) Hemi-slant (i) ρ ≤ δc(ν;m− 1) + c+3ᾰ
4

+ 3(c−ᾰ)
2m(m−1) [d2cos

2θ1].

(ii) ρ ≤ δ̂c(ν;m− 1) + c+3ᾰ
4

+ 3(c−ᾰ)
2m(m−1) [d2cos

2θ1].

M(c, ᾰ) θ1-slant (i) ρ ≤ δc(ν;m− 1) + c+3ᾰ
4 + 3(c−ᾰ)

4(m−1)cos
2θ1.

(ii) ρ ≤ δ̂c(ν;m− 1) + c+3ᾰ
4 + 3(c−ᾰ)

4(m−1)cos
2θ1.

M(c, ᾰ) θ2-slant (i) ρ ≤ δc(ν;m− 1) + c+3ᾰ
4 + 3(c−ᾰ)

4(m−1)cos
2θ2.

(ii) ρ ≤ δ̂c(ν;m− 1) + c+3ᾰ
4 + 3(c−ᾰ)

4(m−1)cos
2θ2.

M(c, ᾰ) Invariant (i) ρ ≤ δc(ν;m− 1) + c+3ᾰ
4 + 3(c−ᾰ)

4(m−1) .

(ii) ρ ≤ δ̂c(ν;m− 1) + c+3ᾰ
4 + 3(c−ᾰ)

4(m−1) .

M(c, ᾰ) Anti-Invariant (i) ρ ≤ δc(ν;m− 1) + c+3ᾰ
4 .

(ii) ρ ≤ δ̂c(ν;m− 1) + c+3ᾰ
4 .

Moreover, the equality for δc holds iff N is an invariantly quasi-umbilical submanifold with
trivial normal connection in M(c, ᾰ), such that with respect to suitable tangent orthonormal
frame {e1, . . . , em} and normal orthonormal frame {em+1, . . . , en}, the shape operator Ar ≡ Aer ,

r ∈ {m + 1, . . . , n}, take the form (3.15) and the equality for δ̂ holds iff N is an invariantly
quasi-umbilical submanifold with trivial normal connection in M(c, ᾰ), such that with respect to
suitable tangent orthonormal frame {e1, . . . , em} and normal orthonormal frame {em+1, . . . , en},
the shape operator Ar ≡ Aer , r ∈ {m+ 1, . . . , n}, take the form (3.16).

4 Conclusion

This article established Casorati curvature inequalities for quasi bi-slant submanifolds within
generalized complex space forms. These results offer significant insight into the intrinsic and
extrinsic curvature properties of such submanifolds and elucidate the geometric constraints they
satisfy in complex ambient spaces. To facilitate comparison and interpretation, we have sum-
marized several particular cases in tabular form, thereby enhancing clarity and comprehension
of the derived inequalities. Moreover, similar Casorati curvature inequalities can be formulated
for quasi bi-slant submanifolds of contact manifolds by using the orthonormal frame structure
introduced in this work.
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