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Weak solutions for the fractional Kirchhoff-type

problem via Young measures
Ihya Talibi, Farah Balaadich, Brahim El Boukari and Jalila El Ghordaf

Abstract. The aim of this paper is to investigate the existence of weak solutions to
the following Kirchhoff-type problem:

M ([ulz,) (=A)j(u) = f(z,u)  inQ,
w=0 in R"\Q,

where @ C R", 0 < s <1 < p < o0, [u]sp is Gagliardo semi-norm, M is a contin-
uous function with value in R*, f is a given function and (—A); is the fractional
p-Laplacian operator. Under appropriate assumptions on the main functions, we
obtain the existence results by applying the Galerkin method combined with the

theory of Young measures.

Keywords. Kirchhoff equation, weak solution, fractional p-Laplacian system, Young mea-
sure, Galerkin method

1 Introduction

In this article, we are concerned with the existence of solutions to the following Kirchhoff-type
problem:

{M () (M) () = flrw) i 1)
u=0 in R™\€Q, '

where Q is a bounded open domain of R®, u : @ — R™, m € {0,1,2...} is a vector-valued
function, M : Rt — R*, [u],, is Gagliardo semi-norm and f satisfies specific conditions that will
be described later. Here (—A)zu is the fractional p-Laplacian operator and will be introduced
subsequently.

The Kirchhoff-type equation dates back to Kirchhoff’s 1883 work [27], where he extended
the classical D’Alembert wave equation by incorporating the effect of variations in string length
during vibrations. Kirchhoff’s model involved a nonlocal term dependent on the average kinetic
energy. The mathematical literature on Kirchhoff-type problems has expanded considerably,
especially with regard to the existence of solutions. For instance, the case of Kirchhoff problems
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involving the classical Laplace operator has been studied by [2, 21], while studies involving the
p-Laplacian can be found in [4, 5]. The fractional Kirchhoff-type equation involving nonlocal
operators was introduced in [23]. See also the application of these operators in various fields
[3, 13, 14, 15, 16, 19, 25, 26, 28, 38].

Many authors have recently studied the existence results of the problem (1.1) by using
different methods, for example, in [39], the authors showed the existence of nontrivial weak
solutions by using the variational methods and the existence of two nontrivial weak solutions by
applying the Mountain Pass Theorem. Based on the symmetric Mountain Pass Theorem and
the Krasnoselskii genus theory, Xiang et al. in [30] proved the existence of nontrivial solutions.
We also refer to [18, 34, 40, 41, 42] for more works solved by different methods. When M = 1,
problem (1.1) becomes the fractional p-Laplacian equation

(=A)p(u) = flz,u)  in,
{u =0 in R™\Q, (12)

which is discussed by several researchers. For example, in [12], the authors proved the existence
of weak solutions using the tool of Young measures. Qiu and Xiang in [32], used Leray-Schauder’s
nonlinear alternative to show the existence of nonnegative solutions. In [31], the authors proved
the existence and multiplicity results via cohomological local splitting and critical groups. See
also [17, 25, 33].

In the theory of nonlinear partial differential equations and the calculus of variations, Young
measures have recently become an increasingly important tool to discuss the existence of solutions.
For more details on this theory, we refer to see [24]. To the best of our knowledge, this is the first
paper that treats a Kirchhoff problem involving fractional p-Laplacian by such a theory. The
works studied in the literature are in the classical case; for example, Azroul and Balaadich in [7],
proved the existence of solutions for a class of Kirchhoff-type problems

-M (/ A(aaVu)dx) diva(z,Vu) = f(z,u) in Q,
Q

(1.3)

where a(.,€) = VA(,€), by using the theory of Young measures combined with the Galerkin
method. We suggest to the readers to consult [8, 9, 10, 11, 12, 35, 36, 37] where this theory was
applied to some quasi-linear elliptic systems.

In the present paper, motivated by the results in [7] and [12], we consider the problem (1.1)
to study the existence results using the Galerkin method to build the approximation solutions
and the theory of Young measures to pass to the limit.

There are three sections in this article. In section 2, we give some background information
on fractional Sobolev spaces and some fundamental tools on Young measures. In section 3, we
define weak solutions to problem (1.1), and we finish this section by proving the main results.

2 Preliminaries and notations

We recall some notations and definitions in this part, as well as some of the results that will be
applied to this work.

Let 0 < s <1 < p < oo be real numbers, we define p? the fractional critical exponent giving
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by:

. oo if ps > n,
Ps = np/(n—ps) if ps <n.

The fractional p-Laplacian operator (fA)f)u is defined as follows:

ju(z) ~ u(y) " *(ulx) - u(y))
ERFIE

(=A)ju(z) = P.V/ dy, zeR"

where x € R™ and P.V, which stands for ”in the principal value sense,” is a frequently used
abbreviation.

Let Q C R", we denote I' = R?"\ 7, where J = (R"\Q) x (R"\Q) C R?". Based on W,
which is a space of Lebesgue measurable and linear functions from R™ to R™, and any function
w in W its restriction belongs to LP (; R™) and

[u(e) — u(y)|”
———————dzdy < co.
S o

The space W is equipped with the norm

1
ulxr) —u p P
HMW|WM@®M+(/ ()(”mw).
I

o=y
The next closed linear space will be the space of work
Wo ={u e W :u(z) =0 a.e. in R"\Q},

equipped with the norm

mm%fwm—</ﬁﬁﬁQﬁﬁ%m@5

The dual space of (Wo, || - [lw,) is indecated by (Wg, || - lwg)-
Lemma 2.1. [39] (W, || - lw,) is a uniformly convex Banach space.
Remark 1. By the separability of W in [6] and Theorem 1.21 in [1], W) is separable.

Lemma 2.2. [22]C§° (;R™) is a space of infinitely differentiable functions with compact support
on Q which is dense in Wy.

Lemma 2.3. [29] The following embedding Wy — L* (Q;R™) is compact for all 1 < \ < p?,
and continuous for all 1 < X < pk.

In the following, Cy (R™) stands for the space of continuous functions on R with compact
support with regard to the ||.||oc-norm. The space of signed Radon measures with finite mass is
noted M (R™). The corresponding duality is given by

w¢»=/;puwm».
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Definition 1. [12] Let a bounded sequence noted by {7;},,, in L* (€;R"™). Then there exists
a subsequence {7} C {7;} and a Borel probability measure p, on R™ for almost every z € Q,
such that for a.e. p € C (R™) we have p (1) —=* p weakly in L>°(Q), where

pla) = Gasp) = [ pNdiea()
for a.e. z € Q.

Lemma 2.4. [20] Let Q@ C R™ be Lebesgue measurable (not necessarily bounded) and t; from €2 to
R™, with j € N, be a sequence of Lebesgue measurable functions. Then there exist a subsequence
Tk and a family {p.},cq of non-negative Radon measures on R™, such that

(i) Nl pgmy = Jom dpa(X) < 1 for almost x € Q.
(i) p () = p weakly in L>=°(Q2) for all Co (R™), where p = (g, p).

(i) If for all M >0

lim sup|{z € QN Bp(0) : |7x(x)| > N} =0, (2.1)
N—00 LeN

then ||pzl| = 1 for a.e. x € Q, and for any measurable Q' C Q we have p(7,) — p = {fiz, p)
weakly in L' () for continuous function p provided the sequence p (1y) is weakly precompact in
LY ().

In the sequel, let ps < n, p’ = p—, and C;, i = 1,2, 3... are positive constants, which vary
from line to line and denote Uy (z,y) = ug(z) — ux(y) and U(z,y) = u(z) — u(y).
3 Existence of weak solutions

In this section, we will define weak solutions for the problem (1.1) and prove the main results.
We start by citing the following statements:

(F1): The function f is a Carathéodory function from Q x R™ to R satisfying:
There exists C; >0, 1<p< % such that |f(z,¢)| < &(z) + C1[¢|P 1,
for all ¢ € R™ and almost every z € 2, where £ € LV’ (Q), with £ > 0 a.e. in Q.

(F2): M is a continuous function from RT to R* and satisfies
mes® 1 < M(s) < mys®L,
for all s > 0 and mg, m; are real numbers such that 0 < mg < mj and g > 1

Definition 2. For the datum f, u € Wy is said to be a weak solution to the problem (1.1) if

() [ LD 400) — ooy = [ f(amiotoa

holds for any ¢ € Wj.
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The aim of this paper is to prove Theorem 3.1 below, using the Galerkin method and fixed
point theory to guarantee the approximate solution, and by passing through the limit, we obtain
the existence of the weak solutions. We shall prove the following existence theorem:

Theorem 3.1. Suppose that (Fy) — (F3) holds. Then, the problem (1.1) has a weak solution in
the sense of Definition 2.

Since Wy is a uniformly convex Banach space and is separable, there is (V}) a sequence of
finite dimensional subspaces such that V3 C Vo C ... C V, C W, with the property that Ug>1V;
is dense in Wy. We define the operator ¥(u) : Wy — W{ to build the approximating solutions:

(W 6) = 0 (Jully,) [ LT 000 olw))aody (31)

[z, u)p(x)dr,

Q
with Qb € Wo.

To prove the existence of the approximating solutions, we need the following assertions:
Assertion 1: The operator VU is well defined and bounded.

Indeed, by using the Holder inequality and (F'1) — (F'2), we obtain

(W (), )
]M|w //Wwyw mx”wwww@mmw—éfmwamm

o =y

< ma (Ilullfy,)” el B ollw, + (1€l + Callul 516l lw,
< Cal[o]lw,

for all u,p € Wy.
Assertion 2: The restriction of ¥ to a finite linear subspace of W is continuous.

Indeed, let Vj, = span{ey,..., e}, where {ei}le is a basis of V}, is a finite subspace of Wj.
Let {ug} C Wy such that uy converge to u in Vj. Then, for a subsequence still indexed by wy,
up — u a.e. and bounded in Wy. As a result for all ¢ € Wy with ||¢|lw, < 1,

(U(ug), d) — (¥(u), ¢) = M (J[ug][fy, / rlmg)l” Vel )il )_(b(y))da:dy

o =yl

3 (i) ] WwprW%ww0—¢Uumy

o=yl

—/uwww—ﬂxmwum
Q

X p 2 x,
= [V (luelF) = 0 (lalth,)] [ P ZERE (0) — ()
—|—M || ||p / Uk (@, y)[P2U (z, y) — |U(x,y)|P 2U(z,y) (¢(x) — ¢(y))dxdy

n+ps n+ps

|z —y| + |z —y| 7




6 1. Talibi, F. Balaadich, B. EL Boukari and J. El Ghordaf

—[}ﬂauw—f@ﬂm¢@Mx
= Ay + Ay — As,

where
Ur(z,y) P20
Ay = [M (|lwel[fy,) = M (J[ullfy, / / 1T wmylmwﬁs(x Y (4() — (),

(Ilul %y, / |Uk(z,9)[P~2Uk (@, y) — U (2, 9)|P"2U (2, y) (¢(z) — $(y))

"+Ps ntps
[z —y[ >

Ap =

Aszlkﬂﬁum—f@nm¢@Mm
Due to the Holder inequality, we have

Av < [M (llwellfy,) — M (Ilallfy, )] lluelliy,

Ur(z,y) [P~ 2U(x Uz, y)[P~2U(z, 1 N
Ao < 0 (Jull (U<mcy|aﬁ>L;@ <w> m@)
Tr—y

1
'Y

A< ([ 11 @) = sl o)
Q
The continuity of M implies that

Jin M (lfugl ) = M (lully,)

it follows that

Av < [M ((funlfy,) = M (Il )] iy, — 0 as k= oo.

On the other hand, we have

Ao < M ([[ulliy,) 1Bk~ Ballpo

where ,
U, p=2y '
Bas(z,y) = T(x )| (n’fg) Y e 17 (r,R™),
z—yl”
and )
p7 /
Ba(a,y) = W@V @Y) pprip gy,
o =y 7 )
Note that
Ui(x
La,k(x7 y) |k(|(ny+)ps) LP(I" Rnl)a
r—=y
and
U
La(may) = Lnyzpb) S LP(F Rm)

o — 7
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Since uy, — w in Wy then Ly k(x,y) — Lo(x,y) in LP(T',R™), then there exists g € LP(T',R™)
such that |L, (z,y)| < g(x,y), so we have B, y(z,y) — By(x,y) a.e in I'. Then

| Bai(@,9)| = |La s (z, y)[PH < |g(z, )P~
According to the dominant convergence theorem, we deduce that
By k(z,y) = Ba(z,y) in LY (D,R™) as k — oo.

As a result
Az < M (||ulliy, ) | Bas — Bal| o (r gmy = 0 as k — oo.

As < ( [ 1f @) = sl dx) v

By using the boundedness of (ux) in LP (2; R™), we deduce from (F'1) that:

However, we have

/ I (2, un)[P da < 275 / (IE@I + O jugl?) do < (3.2)
Q Q
According to (3.2), the uniformly boundednes and equiintegrability of the sequence

{11 @w) = f@ )}

in L1(Q) can be easily deduced. We apply the Vitali Convergence Theorem, we find that

lim/|f(ac,uk)—f(x,u)\p,dx:0.

k—o0 O

From the above discussion, we can infer that

Jm ({8 (ug) , @) = ((u), §)] = 0.

k—00
Assertion 3: VU is coercive.
Indeed, as 8 > 1, we get
u(z
(U(u),u) = |\u|| / Ju |n+pg dxdy / f(z,u)udx
8—1
> mo (|[ullfy, ) HUHWO — Cull€]lp [lullwe — C1CF|ul

s
o) = Call€llpllullwy — CLCE[ully,
— Cull€]lp [ullwy — CLC5ullyy,

Il
3
(=)
—
=

I
5
£

Under the assumption that p > 1 and with the chosen embedding constant

1

P
Cs = % (78—?) , we have

(W)W _ .

ullwy —oo||2] [,

From the instructions above, we can now construct the approximating solutions.
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Lemma 3.1. There exists ux, € Vi, Yk € {0,1,2...} such that

(¥ (ug), @) =0 forall ¢ € V. (3.3)
Moreover, there is a constant M > 0 such that

luklly, <M Vke{0,1,2..}. (3.4)

Proof. On one hand, assume that dimV; = r and fix k. For efficiency, we use the notation
Zle d'e; = d'e;, where (e;);_, is a basis of Vj,. We define the following map:

s R - R’
(d'oond) = (U (der)e5))) -

Let u = d’e;, via Assertion 1, the function S is continuous. We find that ||d||g- tends to oo is
equivalent to ||u|lw, tends to oo and S(d)d = (¥(u),u). Hence

S(d)d — o0 as |d||gr — o0.

As a result, M > 0 exists such that for all d € 0Bj(0) C R" we have S(d)d > 0. There
is # € By (0) solution of S(z) = 0, this according to [28, Lemma 4.3]. Therefore, for all
k €{0,1,2...} there exists u € V) such that

(¥ (ug), ¢y =0 for all ¢ € Uy.

On the other hand, observe that if [luy||;, tends to oo, we get (¥ (u),ux) — oo. There is a
contradiction with (3.3). As a result, {ux} is uniformly bounded. O

As stated in the introduction, Young measures is the tool we use to prove the existence of a
weak solution. To identify the weak limit, we consider the following lemmas:

Lemma 3.2. Assume that (3.4) holds. Then, the existence of a Young measure i, generated
by we@=uW) o 7p (T;R™) has the following properties:

le—y| »
1) ||u(””’y)”M(Rm) =1 for a.e. (x,y) €T, i.e. fi(q,y) is a probability measure.
2) (W(ay) id) = [m Adpi(z ) (N) is the weak L*-limit of wy,.

3) {pa gy id) = 2248 for a.e. (z,y) €T.

le—y| P
Proof. 1) For simplicity reasons, we write

ug(z) — Uk(}/)

€ L (T;R™). (3.5)
lx —y|l

Uk(xa y) =
We know that for any M > 0, (2N BM)2 COxQ&T, where By is the ball centered in 0 with
radius M. Let N € R such that Ty = {(z,4) € (2N Bux)* : |og(z,y)] > N}. Moreover, by (3.4)

we have

Jun () —we )" 7
D e I (36)
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Then, the sequence (vg) is bounded in L? (I'; R™). Consequently, there exists Cs > 0 such that

Co > / fow (2, )| dedy > // foi (. y)|? dady > N” [T |, (3.7)
T I'n

where |T'y| is the Lebesgue measure of I'y. According to equation (3.7), the sequence (vg)
satisfies the equation (2.1). Hence, a Young measure noted by j(, ) is generated by vy, such that

H,u xy)HM(Rm) 1 for a.e. (z,y) €.

2) By (3.4), there exists a weak convergent subsequence still denoted by (vy), that con-
vergences in LP (I';R™). As LP (I';R™) is reflexive (p > 1), then vy is weakly convergent in
LY (T;R™). By the third assertion in Lemma 2.4, we replace the function p by the identity
function, we then have

Vg = (W(ay),id) = /R Adp(z ) (A) weakly in L' (I;R™) .

3) Using (3.4), we get v, — v in LP (I';R™) (for a subsequence). Owing to the previous
arguments, the uniqueness of limits implies that

. u(z) — uly
(W) id) = v(z,y) = ()|n+(p) for a.e. (z,y) €T.
r—y

Now, we are in a position to prove the main results.

Proof. (of Theorem 3.1) Let {v}, be the sequence given in (3.5). The weak convergence given
in Lemma 3.2 shows that

R P2 v — /R AP Ad i) (M)
= |[vP2v (3.8)
_ U@, y)PU (2, y)

o=y

weakly in L! (I; R™). Since L? is reflexive and |vg |’ 2 vy, is bounded in L?" (I'; R™), the sequence
luk|P~? vy, converges in L' (I';R™), and its weak L¥ is also |v[’~*v. Moreover, for any ¢ € W,
we have

¢($) - ¢( ) e [P (F Rm)

ntps
|z —y[ >

Finally, we deduce that
\Uk z, Y|P Uk(z,y)

o5 MU0 (4(2) — o(y))dady
k—o0 |1’ | p p ; (39)
/ - mmy—l |n-(-]p(:v 4] (¢(z) — ¢(y))dzdy,

for every ¢ € Wy.

On the other hand, according to (3.4), we have ux — u in LP(I', R™) for a subsequence, we
can deduce from the continuity of M that

v ([ e sat) o v ([ ) e ok e, @10



10

1. Talibi, F. Balaadich, B. EL Boukari and J. El Ghordaf

From (3.9) and (3.10) it follows that

A e e e e

xr — n+ps xr — n+ps
vl |z -yl

_M<//|'U$y'p dvd )/ T@DI20@,Y) (40 gy ey,

for all ¢ € Wy.

On the other hand, by (3.4), we get

ug, — u strongly in LP (Q;R™) and a.e in 2 (for a subsequence) .

The property of the continuity in (F'1) leads to the conclusion that

fx,ug) (up —u) -0 ae in Q as k— oo.

According to the growth condition in (F'1), {f (x,ug) (ux — w)} is uniformly bounded and equi-
integrable in L'(Q). We apply the Vitali Convergence Theorem, then

lim / f(x,ug) (ur — w)dax = 0. (3.12)

k—o0 Q

We conclude from (3.11), (3.12), Lemma 3.1, and density of Ux>1V} in Wy, that (¥ (u),¢) =0
for all ¢ € Wy. O
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