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Weak solutions for the fractional Kirchhoff-type

problem via Young measures

Ihya Talibi, Farah Balaadich, Brahim El Boukari and Jalila El Ghordaf

Abstract. The aim of this paper is to investigate the existence of weak solutions to

the following Kirchhoff-type problem:{
M
(
[u]psp

)
(−∆)sp(u) = f(x, u) in Ω,

u = 0 in Rn\Ω,

where Ω ⊂ Rn, 0 < s < 1 < p < ∞, [u]sp is Gagliardo semi-norm, M is a contin-

uous function with value in R+, f is a given function and (−∆)sp is the fractional

p-Laplacian operator. Under appropriate assumptions on the main functions, we

obtain the existence results by applying the Galerkin method combined with the

theory of Young measures.

Keywords. Kirchhoff equation, weak solution, fractional p-Laplacian system, Young mea-
sure, Galerkin method

1 Introduction

In this article, we are concerned with the existence of solutions to the following Kirchhoff-type
problem: {

M
(
[u]psp

)
(−∆)sp(u) = f(x, u) in Ω,

u = 0 in Rn\Ω,
(1.1)

where Ω is a bounded open domain of Rn, u : Ω → Rm, m ∈ {0, 1, 2...} is a vector-valued
function, M : R+ → R+, [u]sp is Gagliardo semi-norm and f satisfies specific conditions that will
be described later. Here (−∆)spu is the fractional p-Laplacian operator and will be introduced
subsequently.

The Kirchhoff-type equation dates back to Kirchhoff’s 1883 work [27], where he extended
the classical D’Alembert wave equation by incorporating the effect of variations in string length
during vibrations. Kirchhoff’s model involved a nonlocal term dependent on the average kinetic
energy. The mathematical literature on Kirchhoff-type problems has expanded considerably,
especially with regard to the existence of solutions. For instance, the case of Kirchhoff problems
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involving the classical Laplace operator has been studied by [2, 21], while studies involving the
p-Laplacian can be found in [4, 5]. The fractional Kirchhoff-type equation involving nonlocal
operators was introduced in [23]. See also the application of these operators in various fields
[3, 13, 14, 15, 16, 19, 25, 26, 28, 38].

Many authors have recently studied the existence results of the problem (1.1) by using
different methods, for example, in [39], the authors showed the existence of nontrivial weak
solutions by using the variational methods and the existence of two nontrivial weak solutions by
applying the Mountain Pass Theorem. Based on the symmetric Mountain Pass Theorem and
the Krasnoselskii genus theory, Xiang et al. in [30] proved the existence of nontrivial solutions.
We also refer to [18, 34, 40, 41, 42] for more works solved by different methods. When M ≡ 1,
problem (1.1) becomes the fractional p-Laplacian equation{

(−∆)sp(u) = f(x, u) in Ω,

u = 0 in Rn\Ω,
(1.2)

which is discussed by several researchers. For example, in [12], the authors proved the existence
of weak solutions using the tool of Young measures. Qiu and Xiang in [32], used Leray-Schauder’s
nonlinear alternative to show the existence of nonnegative solutions. In [31], the authors proved
the existence and multiplicity results via cohomological local splitting and critical groups. See
also [17, 25, 33].

In the theory of nonlinear partial differential equations and the calculus of variations, Young
measures have recently become an increasingly important tool to discuss the existence of solutions.
For more details on this theory, we refer to see [24]. To the best of our knowledge, this is the first
paper that treats a Kirchhoff problem involving fractional p-Laplacian by such a theory. The
works studied in the literature are in the classical case; for example, Azroul and Balaadich in [7],
proved the existence of solutions for a class of Kirchhoff-type problems−M

(∫
Ω

A(x,∇u)dx

)
div a(x,∇u) = f(x, u) in Ω,

u = 0 in RN\Ω,
(1.3)

where a(., ξ) = ∇ξA(., ξ), by using the theory of Young measures combined with the Galerkin
method. We suggest to the readers to consult [8, 9, 10, 11, 12, 35, 36, 37] where this theory was
applied to some quasi-linear elliptic systems.

In the present paper, motivated by the results in [7] and [12], we consider the problem (1.1)
to study the existence results using the Galerkin method to build the approximation solutions
and the theory of Young measures to pass to the limit.

There are three sections in this article. In section 2, we give some background information
on fractional Sobolev spaces and some fundamental tools on Young measures. In section 3, we
define weak solutions to problem (1.1), and we finish this section by proving the main results.

2 Preliminaries and notations

We recall some notations and definitions in this part, as well as some of the results that will be
applied to this work.

Let 0 < s < 1 < p < ∞ be real numbers, we define p∗s the fractional critical exponent giving
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by:

p∗s =

{
∞ if ps ≥ n,

np/(n− ps) if ps < n.

The fractional p-Laplacian operator (−∆)spu is defined as follows:

(−∆)spu(x) = P.V

∫
Rn

|u(x)− u(y)|p−2(u(x)− u(y))

|x− y|n+ps
dy, x ∈ Rn

where x ∈ Rn and P.V , which stands for ”in the principal value sense,” is a frequently used
abbreviation.

Let Ω ⊂ Rn, we denote Γ = R2n\J , where J = (Rn\Ω) × (Rn\Ω) ⊂ R2n. Based on W ,
which is a space of Lebesgue measurable and linear functions from Rn to Rm, and any function
u in W its restriction belongs to Lp (Ω;Rm) and∫∫

Γ

|u(x)− u(y)|p

|x− y|n+ps
dxdy < ∞.

The space W is equipped with the norm

∥u∥W = ∥u∥Lp(Ω;Rm) +

(∫∫
Γ

|u(x)− u(y)|p

|x− y|n+ps
dxdy

) 1
p

.

The next closed linear space will be the space of work

W0 = {u ∈ W : u(x) = 0 a.e. in Rn\Ω} ,

equipped with the norm

∥u∥W0 := [u]sp =

(∫∫
Γ

|u(x)− u(y)|p

|x− y|n+ps
dxdy

) 1
p

.

The dual space of (W0, ∥ · ∥W0
) is indecated by

(
W ∗

0 , ∥ · ∥W∗
0

)
.

Lemma 2.1. [39] (W0, ∥ · ∥W0
) is a uniformly convex Banach space.

Remark 1. By the separability of W in [6] and Theorem 1.21 in [1], W0 is separable.

Lemma 2.2. [22] C∞
0 (Ω;Rm) is a space of infinitely differentiable functions with compact support

on Ω which is dense in W0.

Lemma 2.3. [29] The following embedding W0 ↪→ Lλ (Ω;Rm) is compact for all 1 ≤ λ < p∗s,
and continuous for all 1 ≤ λ ≤ p∗s.

In the following, C0 (Rm) stands for the space of continuous functions on Rm with compact
support with regard to the ∥.∥∞-norm. The space of signed Radon measures with finite mass is
noted M (Rm). The corresponding duality is given by

⟨µ, ρ⟩ =
∫
Rm

ρ(λ)dµ(λ).
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Definition 1. [12] Let a bounded sequence noted by {τj}j≥1 in L∞ (Ω;Rm). Then there exists

a subsequence {τk} ⊂ {τj} and a Borel probability measure µx on Rm for almost every x ∈ Ω,
such that for a.e. ρ ∈ C (Rm) we have ρ (τk) ⇀

∗ ρ̄ weakly in L∞(Ω), where

ρ̄(x) = ⟨µx, ρ⟩ =
∫
Rm

ρ(λ)dµx(λ)

for a.e. x ∈ Ω.

Lemma 2.4. [20] Let Ω ⊂ Rn be Lebesgue measurable (not necessarily bounded) and τj from Ω to
Rm, with j ∈ N, be a sequence of Lebesgue measurable functions. Then there exist a subsequence
τk and a family {µx}x∈Ω of non-negative Radon measures on Rm, such that

(i) ∥µx∥M(Rm) :=
∫
Rm dµx(λ) ≤ 1 for almost x ∈ Ω.

(ii) ρ (τk) ⇀
∗ ρ̄ weakly in L∞(Ω) for all C0 (Rm), where ρ̄ = ⟨µx, ρ⟩.

(iii) If for all M > 0
lim

N→∞
sup
k∈N

|{x ∈ Ω ∩BM (0) : |τk(x)| ≥ N}| = 0, (2.1)

then ∥µx∥ = 1 for a.e. x ∈ Ω, and for any measurable Ω′ ⊂ Ω we have ρ (τk) ⇀ ρ̄ = ⟨µx, ρ⟩
weakly in L1 (Ω′) for continuous function ρ provided the sequence ρ (τk) is weakly precompact in
L1 (Ω′).

In the sequel, let ps < n, p′ = p
p−1 , and Ci, i = 1, 2, 3... are positive constants, which vary

from line to line and denote Uk(x, y) = uk(x)− uk(y) and U(x, y) = u(x)− u(y).

3 Existence of weak solutions

In this section, we will define weak solutions for the problem (1.1) and prove the main results.
We start by citing the following statements:

(F1): The function f is a Carathéodory function from Ω× Rm to R satisfying:

There exists C1 > 0, 1 < p <
n

s
such that |f(x, ζ)| ≤ E(x) + C1|ζ|p−1,

for all ζ ∈ Rm and almost every x ∈ Ω, where E ∈ Lp′
(Ω), with E ≥ 0 a.e. in Ω.

(F2): M is a continuous function from R+ to R+ and satisfies

m0s
β−1 ≤ M(s) ≤ m1s

β−1,

for all s > 0 and m0,m1 are real numbers such that 0 < m0 ≤ m1 and β ⩾ 1.

Definition 2. For the datum f , u ∈ W0 is said to be a weak solution to the problem (1.1) if

M
(
||u||pW0

) ∫∫
Γ

|U(x, y)|p−2U(x, y)

|x− y|n+ps
(ϕ(x)− ϕ(y))dxdy =

∫
Ω

f(x, u)ϕ(x)dx

holds for any ϕ ∈ W0.
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The aim of this paper is to prove Theorem 3.1 below, using the Galerkin method and fixed
point theory to guarantee the approximate solution, and by passing through the limit, we obtain
the existence of the weak solutions. We shall prove the following existence theorem:

Theorem 3.1. Suppose that (F1)− (F2) holds. Then, the problem (1.1) has a weak solution in
the sense of Definition 2.

Since W0 is a uniformly convex Banach space and is separable, there is (Vk) a sequence of
finite dimensional subspaces such that V1 ⊂ V2 ⊂ . . . ⊂ Vk ⊂ W0 with the property that ∪k≥1Vk

is dense in W0. We define the operator Ψ(u) : W0 → W ∗
0 to build the approximating solutions:

⟨Ψ(u), ϕ⟩ = M
(
||u||pW0

) ∫∫
Γ

|U(x, y)|p−2U(x, y)

|x− y|n+ps
(ϕ(x)− ϕ(y))dxdy (3.1)

−
∫
Ω

f(x, u)ϕ(x)dx,

with ϕ ∈ W0.

To prove the existence of the approximating solutions, we need the following assertions:

Assertion 1: The operator Ψ is well defined and bounded.

Indeed, by using the Hölder inequality and (F1)− (F2), we obtain

|⟨Ψ(u), ϕ⟩|

=

∣∣∣∣M (
||u||pW0

) ∫∫
Γ

|U(x, y)|p−2U(x, y)

|x− y|n+ps
(ϕ(x)− ϕ(y))dxdy −

∫
Ω

f(x, u)ϕ(x)dx

∣∣∣∣
≤ m1

(
||u||pW0

)β−1 ||u||p−1
W0

||ϕ||W0 + (||E||p′ + C1||u||p−1
p )||ϕ||W0

≤ C2||ϕ||W0

for all u, ϕ ∈ W0.

Assertion 2: The restriction of Ψ to a finite linear subspace of W0 is continuous.

Indeed, let Vk = span {e1, . . . , ek}, where {ei}ki=1 is a basis of Vk is a finite subspace of W0.
Let {uk} ⊂ W0 such that uk converge to u in Vk. Then, for a subsequence still indexed by uk,
uk → u a.e. and bounded in W0. As a result for all ϕ ∈ W0 with ∥ϕ∥W0 ≤ 1,

⟨Ψ(uk), ϕ⟩ − ⟨Ψ(u), ϕ⟩ = M
(
||uk||pW0

) ∫∫
Γ

|Uk(x, y)|p−2Uk(x, y)(ϕ(x)− ϕ(y))

|x− y|n+ps
dxdy

−M
(
||u||pW0

) ∫∫
Γ

|U(x, y)|p−2U(x, y)(ϕ(x)− ϕ(y))

|x− y|n+ps
dxdy

−
∫
Ω

(f(x, uk)− f(x, u))ϕ(x)dx

=
[
M
(
||uk||pW0

)
−M

(
||u||pW0

)] ∫∫
Γ

|Uk(x, y)|p−2Uk(x, y)

|x− y|n+ps
(ϕ(x)− ϕ(y))dxdy

+M
(
||u||pW0

) ∫∫
Γ

|Uk(x, y)|p−2Uk(x, y)− |U(x, y)|p−2U(x, y)

|x− y|
n+ps

p′

(ϕ(x)− ϕ(y))

|x− y|
n+ps

p

dxdy
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−
∫
Ω

(f(x, uk)− f(x, u))ϕ(x)dx

= A1 +A2 −A3,

where

A1 =
[
M
(
||uk||pW0

)
−M

(
||u||pW0

)] ∫∫
Γ

|Uk(x, y)|p−2Uk(x, y)

|x− y|n+ps
(ϕ(x)− ϕ(y))dxdy,

A2 = M
(
||u||pW0

) ∫∫
Γ

|Uk(x, y)|p−2Uk(x, y)− |U(x, y)|p−2U(x, y)

|x− y|
n+ps

p′

(ϕ(x)− ϕ(y))

|x− y|
n+ps

p

dxdy

A3 =

∫
Ω

(f(x, uk)− f(x, u))ϕ(x)dx.

Due to the Hölder inequality, we have

A1 ≤
[
M
(
||uk||pW0

)
−M

(
||u||pW0

)]
||uk||p−1

W0
,

A2 ≤ M
(
||u||pW0

)∫∫
Γ

(
|Uk(x, y)|p−2Uk(x, y)− |U(x, y)|p−2U(x, y)

|x− y|
p−1
p (n+ps)

) p
p−1

dxdy


p−1
p

A3 ≤
(∫

Ω

|f (x, uk)− f(x, u)|p
′
dx

) 1
p′

.

The continuity of M implies that

lim
k→∞

M
(
||uk||pW0

)
= M

(
||u||pW0

)
,

it follows that

A1 ≤
[
M
(
||uk||pW0

)
−M

(
||u||pW0

)]
||uk||p−1

W0
−→ 0 as k → ∞.

On the other hand, we have

A2 ≤ M
(
||u||pW0

)
∥Ba,k −Ba∥Lp′ (Γ,Rm),

where

Ba,k(x, y) =
|Uk(x, y)|p−2Uk(x, y)

|x− y|
p−1
p (n+ps)

∈ Lp′
(Γ,Rm),

and

Ba(x, y) =
|U(x, y)|p−2U(x, y)

|x− y|
p−1
p (n+ps)

∈ Lp′
(Γ,Rm).

Note that

La,k(x, y) =
Uk(x, y)

|x− y|
(n+ps)

p

∈ Lp(Γ,Rm),

and

La(x, y) =
U(x, y)

|x− y|
(n+ps)

p

∈ Lp(Γ,Rm).



Weak solutions for the fractional Kirchhoff problem 7

Since uk → u in W0 then La,k(x, y) → La(x, y) in Lp(Γ,Rm), then there exists g ∈ Lp(Γ,Rm)
such that |La,k(x, y)| ≤ g(x, y), so we have Ba,k(x, y) → Ba(x, y) a.e in Γ. Then

|Ba,k(x, y)| = |La,k(x, y)|p−1 ≤ |g(x, y)|p−1.

According to the dominant convergence theorem, we deduce that

Ba,k(x, y) → Ba(x, y) in Lp′
(Γ,Rm) as k → ∞.

As a result
A2 ≤ M

(
||u||pW0

)
∥Ba,k −Ba∥Lp′ (Γ,Rm) → 0 as k → ∞.

However, we have

A3 ≤
(∫

Ω

|f (x, uk)− f(x, u)|p
′
dx

) 1
p′

.

By using the boundedness of (uk) in Lp (Ω;Rm), we deduce from (F1) that:∫
Ω

|f (x, uk)|p
′
dx ≤ 2

1
p−1

∫
Ω

(
|E(x)|p

′
+ C1 |uk|p

)
dx ≤ C3 (3.2)

According to (3.2), the uniformly boundednes and equiintegrability of the sequence{
|f (x, uk)− f(x, u)|p

′}
in L1(Ω) can be easily deduced. We apply the Vitali Convergence Theorem, we find that

lim
k→∞

∫
Ω

|f (x, uk)− f(x, u)|p
′
dx = 0.

From the above discussion, we can infer that

lim
k→∞

|⟨Ψ(uk) , ϕ⟩ − ⟨Ψ(u), ϕ⟩| = 0.

Assertion 3: Ψ is coercive.
Indeed, as β ⩾ 1, we get

⟨Ψ(u), u⟩ = M
(
||u||pW0

) ∫∫
Γ

|u(x)− u(y)|p

|x− y|n+ps
dxdy −

∫
Ω

f(x, u)udx

⩾ m0

(
||u||pW0

)β−1 ||u||pW0
− C4||E||p′ ||u||W0

− C1C
p
5 ||u||

p
W0

= m0

(
||u||pW0

)β − C4||E||p′ ||u||W0 − C1C
p
5 ||u||

p
W0

= m0||u||pβW0
− C4||E||p′ ||u||W0

− C1C
p
5 ||u||

p
W0

.

Under the assumption that p > 1 and with the chosen embedding constant

C5 = 1
2

(
m0

C1

) 1
p

, we have

lim
||u||W0

→∞

⟨Ψ(u), u⟩
||u||W0

= ∞. □

From the instructions above, we can now construct the approximating solutions.
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Lemma 3.1. There exists uk ∈ Vk, ∀k ∈ {0, 1, 2...} such that

⟨Ψ(uk) , ϕ⟩ = 0 for all ϕ ∈ Vk. (3.3)

Moreover, there is a constant M > 0 such that

∥uk∥W0
≤ M ∀k ∈ {0, 1, 2...} . (3.4)

Proof. On one hand, assume that dimVk = r and fix k. For efficiency, we use the notation∑k
i=1 d

iei = diei, where (ei)
r
i=1 is a basis of Vk. We define the following map:

S : Rr → Rr(
d1, . . . , dr

)
7→

(〈
Ψ
(
diei

)
, ej
〉)r

j=1
.

Let u = diei, via Assertion 1, the function S is continuous. We find that ∥d∥Rr tends to ∞ is
equivalent to ∥u∥W0 tends to ∞ and S(d)d = ⟨Ψ(u), u⟩. Hence

S(d)d −→ ∞ as ∥d∥Rr −→ ∞.

As a result, M > 0 exists such that for all d ∈ ∂BM (0) ⊂ Rr we have S(d)d > 0. There
is x ∈ BM (0) solution of S(x) = 0, this according to [28, Lemma 4.3]. Therefore, for all
k ∈ {0, 1, 2...} there exists uk ∈ Vk such that

⟨Ψ(uk) , ϕ⟩ = 0 for all ϕ ∈ Uk.

On the other hand, observe that if ∥uk∥W0
tends to ∞, we get ⟨Ψ(uk) , uk⟩ → ∞. There is a

contradiction with (3.3). As a result, {uk} is uniformly bounded.

As stated in the introduction, Young measures is the tool we use to prove the existence of a
weak solution. To identify the weak limit, we consider the following lemma:

Lemma 3.2. Assume that (3.4) holds. Then, the existence of a Young measure µ(x,y) generated

by uk(x)−uk(y)

|x−y|
n+ps

p

∈ Lp (Γ;Rm) has the following properties:

1)
∥∥µ(x,y)

∥∥
M(Rm)

= 1 for a.e. (x, y) ∈ Γ, i.e. µ(x,y) is a probability measure.

2)
〈
µ(x,y), id

〉
=
∫
Rm λdµ(x,y)(λ) is the weak L1-limit of uk.

3)
〈
µ(x,y), id

〉
= u(x)−u(y)

|x−y|
n+ps

p

for a.e. (x, y) ∈ Γ.

Proof. 1) For simplicity reasons, we write

vk(x, y) =
uk(x)− uk(y)

|x− y|
n+ps

p

∈ Lp (Γ;Rm) . (3.5)

We know that for any M > 0, (Ω ∩BM )
2 ⊆ Ω×Ω & Γ, where BM is the ball centered in 0 with

radius M . Let N ∈ R such that ΓN ≡ {(x, y) ∈ (Ω ∩BM )
2
: |vk(x, y)| ≥ N

}
. Moreover, by (3.4)

we have

∥vk∥Lp(Γ;Rm) =

(∫∫
Γ

|uk(x)− uk(y)|p

|x− y|n+ps
dxdy

) 1
p

= ∥uk∥W0
≤ M. (3.6)
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Then, the sequence (vk) is bounded in Lp (Γ;Rm). Consequently, there exists C6 ≥ 0 such that

C6 ≥
∫∫

Γ

|vk(x, y)|p dxdy ≥
∫∫

ΓN

|vk(x, y)|p dxdy ≥ Np |ΓN | , (3.7)

where |ΓN | is the Lebesgue measure of ΓN . According to equation (3.7), the sequence (vk)
satisfies the equation (2.1). Hence, a Young measure noted by µ(x,y) is generated by vk such that∥∥µ(x,y)

∥∥
M(Rm)

= 1 for a.e. (x, y) ∈ Γ.

2) By (3.4), there exists a weak convergent subsequence still denoted by (vk)k that con-
vergences in Lp (Γ;Rm). As Lp (Γ;Rm) is reflexive (p > 1), then vk is weakly convergent in
L1 (Γ;Rm). By the third assertion in Lemma 2.4, we replace the function ρ by the identity
function, we then have

vk ⇀
〈
µ(x,y), id

〉
=

∫
Rm

λdµ(x,y)(λ) weakly in L1 (Γ;Rm) .

3) Using (3.4), we get vk ⇀ v in Lp (Γ;Rm) (for a subsequence). Owing to the previous
arguments, the uniqueness of limits implies that〈

µ(x,y), id
〉
= v(x, y) =

u(x)− u(y)

|x− y|
n+ps

p

for a.e. (x, y) ∈ Γ.

Now, we are in a position to prove the main results.

Proof. (of Theorem 3.1) Let {vk}k be the sequence given in (3.5). The weak convergence given
in Lemma 3.2 shows that

|vk|p−2
vk ⇀

∫
Rm

|λ|p−2λdµ(x,y)(λ)

= |v|p−2v

=
|U(x, y)|p−2U(x, y)

|x− y|ps−s

(3.8)

weakly in L1 (Γ;Rm). Since Lp is reflexive and |vk|p−2
vk is bounded in Lp′

(Γ;Rm), the sequence

|vk|p−2
vk converges in Lp′

(Γ;Rm), and its weak Lp′
is also |v|p−2

v. Moreover, for any ϕ ∈ W0,
we have

ϕ(x)− ϕ(y)

|x− y|
n+ps

p

∈ Lp (Γ;Rm) .

Finally, we deduce that

lim
k→∞

∫∫
Γ

|Uk(x, y)|p−2Uk(x, y)

|x− y|n+ps
(ϕ(x)− ϕ(y))dxdy

=

∫∫
Γ

|U(x, y)|p−2U(x, y)

|x− y|n+ps
(ϕ(x)− ϕ(y))dxdy,

(3.9)

for every ϕ ∈ W0.

On the other hand, according to (3.4), we have uk → u in Lp(Γ,Rm) for a subsequence, we
can deduce from the continuity of M that

M

(∫∫
Γ

|Uk(x, y)|p

|x− y|n+ps
dxdy

)
→ M

(∫∫
Γ

|U(x, y)|p

|x− y|n+ps
dxdy

)
a.e. for k → ∞, (3.10)
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From (3.9) and (3.10) it follows that

lim
k→∞

M

(∫∫
Γ

|Uk(x, y)|p

|x− y|n+ps
dxdy

)∫∫
Γ

|Uk(x, y)|p−2(uk(x)− uk(y))

|x− y|n+ps
(ϕ(x)− ϕ(y))dxdy

= M

(∫∫
Γ

|U(x, y)|p

|x− y|n+ps
dxdy

)∫∫
Γ

|U(x, y)|p−2U(x, y)

|x− y|n+ps
(ϕ(x)− ϕ(y))dxdy,

(3.11)

for all ϕ ∈ W0.

On the other hand, by (3.4), we get

uk → u strongly in Lp (Ω;Rm) and a.e in Ω (for a subsequence) .

The property of the continuity in (F1) leads to the conclusion that

f (x, uk) (uk − u) → 0 a.e. in Ω as k → ∞.

According to the growth condition in (F1), {f (x, uk) (uk − u)} is uniformly bounded and equi-
integrable in L1(Ω). We apply the Vitali Convergence Theorem, then

lim
k→∞

∫
Ω

f (x, uk) (uk − u)dx = 0. (3.12)

We conclude from (3.11), (3.12), Lemma 3.1, and density of ∪k≥1Vk in W0, that ⟨Ψ(u) , ϕ⟩ = 0
for all ϕ ∈ W0.
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