

Application of Lipschitz viscosity solutions for higher-order partial differential equations containing the special Lagrangian operator

S.M.E. Hosseini and S. Saiedinezhad

Abstract. Using the Lipschitz continuity of a class of viscosity solutions, we find a kind of viscosity solution for some higher-order partial differential equations containing the special Lagrangian operator. Additionally, we extend this analysis to equations that simultaneously contain the special Lagrangian and some other operators including Laplacian.

 ${\it Keywords.}$ Viscosity solutions to PDEs, Hamiltonian and Lagrangian structures, partial differential operators

1 Introduction

We can apply the theory of viscosity solutions to many partial differential equations (for example see [3], and [5]). Nevertheless, the theory of viscosity solutions is based on some versions of the maximum principle that have a second-order nature. As a result, the direct application of the theory is usually limited to the second-order partial differential equations (PDEs).

Recently, [2] introduced an approach to extend the application of the theory to higher-order PDEs. This approach can be expanded to cover more complex higher-order PDEs. Indeed, the main part of the approach uses a basic Holder continuity result (that can be found in earlier works like [6] or [7]). Here, we use a strong, recently proven, theorem from [8]. Also, by investigating a certain type of PDEs, we introduce a general method in the sense of change of variables, and we prove some theorems to expand the application of viscosity solutions to a new range of higher-order PDEs.

2 Preliminaries

For any natural number m, \mathbb{S}^m is the set of symmetric $m \times m$ matrices. Also, for $w : \mathbb{R}^N \to \mathbb{R}$, the symbol ∇w denotes the gradient of w, and D^2w represents the Hessian matrix of w. In addition, for a function $u(v, \eta, \varrho, \omega) : \mathbb{R}^4 \to \mathbb{R}$, we use $\nabla_{(v, \eta, \varrho)} u$ for gradient vector, and $D^2_{(v, \eta, \varrho)} u$ for

Received date: January 5, 2025; Published online: June 6, 2025. 2010 Mathematics Subject Classification. 35D40, 37J06, 47F99.

Corresponding author: Somayeh Saiedinezhad.

Hessian matrix of u with respect to the variables (v, η, ϱ) . In addition, tanh(.), and $\triangle w$ represent the hyperbolic tangent and the Laplacian of a function w, respectively.

For a symmetric $n \times n$ matrix H with eigenvalues $\{\beta_j\}_{j=1}^n$, the Special Lagrangian is

$$L(H) = \sum_{j=1}^{n} \tan^{-1}(\beta_j) . {(2.1)}$$

We call a connected open set $U \subset \mathbb{R}^N$ a smooth domain if its boundary ∂U can be locally viewed as the graph of a smooth function. Also, for any $n \geq 1$, we use $B^n(R)$ as a ball of radius R in \mathbb{R}^n . Note that these balls may not centered at the origin. Finally, to get familiar with the theory of viscosity solutions, one can see [3], or [5].

3 main results

Here, by a same technique as the one introduced in [2], we expand the application of viscosity solutions to some important types of higher-order PDEs, and specially to those that contain Lagrangian, and Laplacian operators, simultaneously.

Indeed, our method for solving a higher-order PDE splits into two problems (in the sense of change of variables), so that one of them contains a PDE that we can find a viscosity solution for it (we call it the first problem), and the second one contains a PDE that admits a classical solution which can be considered as a viscosity solution (so that it can merge with the viscosity solution of the first problem). The outcome of this approach makes a generalized solution for the main higher-order PDE that we call it (inspired from Definition 1 in [2]) the viscosity solution of the higher-order PDE.

Definition 1. Let $G: \mathbb{R}^n \times \mathbb{S}^n \to \mathbb{R}$. The function v is called a (generalized) viscosity solution of the PDE

$$Q\left(x,G(\bigtriangledown\upsilon,D^2\upsilon),\bigtriangledown G(\bigtriangledown\upsilon,D^2\upsilon),D^2G(\bigtriangledown\upsilon,D^2\upsilon)\right)=0,$$

if and only if, there exists a function ϖ such that $G(\nabla v, D^2 v) = \varpi$, in classical sense, where ϖ is a viscosity solution for the equation $Q(x, \varpi, \nabla \varpi, D^2(\varpi)) = 0$.

Now, to make a general formulation, we introduce a special type of functions.

Definition 2. Let $n \geq 1$, and $w: B^n(R) \to \mathbb{R}$ be Holder continuous (with an exponent $\gamma \leq 1$). The function $G: \mathbb{R}^n \times \mathbb{S}^n \to \mathbb{R}$ is in the set $\Upsilon(w, B^n(R))$ if and only if the following equation has a classical solution, in $B^n(R)$:

$$G(\nabla v, D^2 v) = w(s)$$
 , $s \in B^n(R)$. (3.1)

Also, the notation $G \in \Upsilon$, means that for any Holder continuous function w, and any ball $B^n(R)$ we have $G \in \Upsilon(w, B^n(R))$.

Remark 1. As it is mentioned in Section 5 of [1] (Specifically, by Theorem 5.11 in [1]), when $G \in \Upsilon(w, B^n(R))$, the classical solution of (3.1) is also a viscosity solution (note that $G(s, \cdot)$ is non-increasing).

Example 1. Since For any Holder continuous function w, and any ball $B^n(R) \subset \mathbb{R}^n$, the equation $-\triangle v = tanh(w(s))$ has a classical solution (see Chapter 3 of [4]), thus $G_1(\nabla v, D^2v) :=$

 $-trace(D^2v) = -\Delta v \in \Upsilon$. Similarly, since tanh(.) is Lipschitz, and so Holder continuous, the equation $-\Delta v = tanh(w(s))$ has a classical solution, and therefore

$$G_2(\nabla v, D^2 v) := tanh^{-1}(-trace(D^2 v)) = tanh^{-1}(-\triangle v) \in \Upsilon.$$

Definition 3. The function $\alpha : \mathbb{R} \to \mathbb{R}$ is in the set $\Lambda^{(1)}$, if and only if, for every ball $B^1(R) \subset \mathbb{R}$, the following equation has a classical solution $\varphi : \mathbb{R} \to \mathbb{R}$:

$$\varphi'(\omega) = (\alpha(\omega))^{-1}\omega$$
.

Also, we say that the function α belongs to the set $\Lambda^{(2)}$, if and only if, the following equation has a classical solution $\varphi : \mathbb{R} \to \mathbb{R}$:

$$\varphi''(\omega) = (\alpha(\omega))^{-1}\omega .$$

Remark 2. Some simple examples of the functions that satisfy the conditions of Definition 3 are exponential, polynomial, and constant functions that do not have any root.

Theorem 3.1. Let $G \in \Upsilon$, and $\alpha \in \Lambda^{(1)}$. Also, for any $i \in \{1, 2, 3\}$, consider $b_i : \mathbb{R}^3 \to \mathbb{R}$ as a real valued function. Then, there exist $\tau \in [0, \pi/2)$, R > 0, and a function $u(v, \eta, \varrho, \omega)$ defined on a ball $B^4(R) \subset \mathbb{R}^4$ such that for

$$K[u](v,\eta,\varrho,\omega) := (b_1(v,\eta,\varrho),b_2(v,\eta,\varrho),b_3(v,\eta,\varrho),\alpha(\omega)) . \nabla u ,$$

we have

$$(K[u])_{\omega} + L(D^2_{(\upsilon,\eta,\varrho)}(G(\nabla_{(\upsilon,\eta,\varrho)}u, D^2_{(\upsilon,\eta,\varrho)}u))) = 2\tau ,$$

in the viscosity sense in $B^4(R)$.

Proof. In [8], it is proved that there exist $\tau \in [0, \pi/2)$, and a smooth bounded domain $\Omega \subset \mathbb{R}^3$ such that the equation $L(D^2v) = \tau$ has a Lipschitz viscosity solution v, in Ω . Now, let R' > 0 such that $B^3(R') \subset \Omega$. Since $G \in \Upsilon$, $G(\nabla \tilde{u}, D^2 \tilde{u}) = v$ admits a classical solution \tilde{u} , in $B^3(R')$. Therefore, the function \tilde{u} is a viscosity solution (based on our terminology) of the equation $L(D^2(G(\nabla \tilde{u}, D^2 \tilde{u}))) = \tau$, in $B^3(R') \subset \mathbb{R}^3$.

Now, consider:

$$L(D^2_{(\upsilon,\eta,\varrho)}(G(\bigtriangledown_{(\upsilon,\eta,\varrho)}u,D^2_{(\upsilon,\eta,\varrho)}u)))=\tau\ ,$$

as an equation in \mathbb{R}^3 . We have proved that we can find $\tau \in [0, \pi/2)$, R' > 0 so that the above equation has a viscosity solution $\tilde{u}(v, \eta, \varrho)$, in a set $D := B^3(R') \subset \mathbb{R}^3$. Now, choose R > 0 such that there exists a ball $B^4(R) \subset D \times \mathbb{R}$. Note that for $\varphi \in \Lambda^{(1)}$, we have

$$(b_{1}(\upsilon,\eta,\varrho),b_{2}(\upsilon,\eta,\varrho),b_{3}(\upsilon,\eta,\varrho),\alpha(\omega)).(\frac{\partial \tilde{u}}{\partial \upsilon},\frac{\partial \tilde{u}}{\partial \eta},\frac{\partial \tilde{u}}{\partial \varrho},\tau.\varphi'(\omega)))_{\omega}$$

$$=\tau.(\alpha(\omega).\varphi'(\omega))'=\tau.$$

Therefore, the function $u(v, \eta, \varrho, \omega) := \tilde{u}(v, \eta, \varrho) + \tau \cdot \varphi(\omega)$, where $\varphi \in \Lambda^{(1)}$, is a viscosity solution of our main equation in the ball $B^4(R) \subset \mathbb{R}^4$.

In addition, this method can be generalized to many PDEs, and specially, to those that contain Laplacian. In this regard, we prove the following theorem.

Theorem 3.2. Let $G \in \Upsilon$, and $\alpha \in \Lambda^{(2)}$. Also, for any $i \in \{1, 2, 3\}$, suppose that $b_i : \mathbb{R}^3 \to \mathbb{R}$ is a real valued function. Then, there exist $\tau \in [0, \pi/2)$, R > 0, and a function $u(v, \eta, \varrho, \omega)$ defined on a ball $B^4(R) \subset \mathbb{R}^4$ such that for

$$J[u](v,\eta,\varrho,\omega) := (b_1(v,\eta,\varrho),b_2(v,\eta,\varrho),b_3(v,\eta,\varrho),\alpha(\omega)) .(u_{vv},u_{\eta\eta},u_{\varrho\varrho},u_{\omega\omega}) ,$$

we have

$$(J[u])_{\omega} + L(D^2_{(\upsilon,\eta,\varrho)}(G(\bigtriangledown_{(\upsilon,\eta,\varrho)}u,D^2_{(\upsilon,\eta,\varrho)}u))) = 2\tau \ ,$$

in the viscosity sense, in $B^4(R)$.

Proof. First, consider:

$$L(D^2_{(\upsilon,\eta,\varrho)}(G(\nabla_{(\upsilon,\eta,\varrho)}u,D^2_{(\upsilon,\eta,\varrho)}u))) = \tau .$$

as an equation in \mathbb{R}^3 . We have discussed in the proof of Theorem 3.1 that we can find $\tau \in [0, \pi/2)$, and R' > 0 so that the above equation has a viscosity solution $\hat{u}(v, \eta, \varrho)$ in $D := B^3(R') \subset \mathbb{R}^3$. Now, choose R > 0 such that there exists a ball $B^4(R) \subset D \times \mathbb{R}$. Note that for $\varphi \in \Lambda^{(2)}$, we have

$$((b_1(v,\eta,\varrho),b_2(v,\eta,\varrho),b_3(v,\eta,\varrho),\alpha(\omega)) \cdot (\hat{u}_{vv},\hat{u}_{\eta\eta},\hat{u}_{\varrho\varrho},\varphi^{''}(\omega)))_{\omega}$$

= $\tau \cdot (\alpha(\omega)\varphi^{''}(\omega))' = \tau$.

Therefore, the function $u(v, \eta, \varrho, \omega) := \hat{u}(v, \eta, \varrho) + \varphi(\omega)$, where $\varphi \in \Lambda^{(2)}$, is a viscosity solution of our main equation in the ball $B^4(R) \subset \mathbb{R}^4$.

Now, we can prove many corollaries, and examples by the above theorems, and we provide some of them, here.

Corollary 3.3. Let $G \in \Upsilon$. There exist $\tau \in [0, \pi/2)$, R > 0, and a function $u(v, \eta, \varrho, \omega)$ defined on a ball $B^4(R) \subset \mathbb{R}^4$ such that

$$(\triangle u)_{\omega} + L(D^2_{(\upsilon,\eta,\varrho)}(G(\bigtriangledown_{(\upsilon,\eta,\varrho)}u,D^2_{(\upsilon,\eta,\varrho)}u))) = 2\tau \ ,$$

in the viscosity sense, in $B^4(R)$.

Proof. By choosing $b_i(v, \eta, \varrho) = 1$ (for i = 1, 2, 3), and $\alpha(\omega) = 1$, Theorem 3.2 asserts that we can find $\tau \in [0, \pi/2)$, and R > 0 so that the above equation has a viscosity solution, in a ball $B^4(R)$.

Corollary 3.4. Let $G \in \Upsilon$. There exist $\tau \in [0, \pi/2)$, R > 0, and a function $u(v, \eta, \varrho, \omega)$ defined on a ball $B^4(R) \subset \mathbb{R}^4$ such that

$$e^{\omega}.(u_{\omega}+u_{\omega\omega})+L(D^2_{(\upsilon,\eta,\varrho)}(G(\nabla_{(\upsilon,\eta,\varrho)}u,D^2_{(\upsilon,\eta,\varrho)}u)))=2\tau$$
,

in the viscosity sense, in $B^4(R)$.

Proof. By choosing $b_i(v, \eta, \varrho) = 0$ (for i = 1, 2, 3), and $\alpha(\omega) = e^{\omega}$, Theorem 3.1 asserts that we can find $\tau \in [0, \pi/2)$, and R > 0 so that the above equation has a viscosity solution, in a ball $B^4(R)$.

Example 2. There exist $\tau \in [0, \pi/2)$, R > 0, and a function $u(v, \eta, \varrho, \omega)$ defined on a ball $B^4(R) \subset \mathbb{R}^4$ such that

$$e^{\omega}.(u_{\omega}+u_{\omega\omega})+L(D^2_{(v,\eta,\rho)}(-\triangle_{(v,\eta,\rho)}(u)))=2\tau$$

in the viscosity sense, in $B^4(R)$.

Proof. Choose $G(\nabla_{(v,\eta,\varrho)}u, D^2_{(v,\eta,\varrho)}u) := -\Delta_{(v,\eta,\varrho)}(u)$. Now, from Corollary 3.4, we can find $\tau \in [0, \pi/2)$, and R > 0 so that the above equation has a viscosity solution, in a ball $B^4(R)$. \square

Example 3. There exist $\tau \in [0, \pi/2)$, R > 0, and a function $u(v, \eta, \varrho, \omega)$ defined on a ball $B^4(R) \subset \mathbb{R}^4$ such that

$$(\triangle u)_{\omega} + L(D^2_{(v,\eta,\varrho)}(\tanh^{-1}(\triangle_{(v,\eta,\varrho)}(u))) = 2\tau ,$$

in the viscosity sense, in $B^4(R)$.

Proof. Choose $G(\nabla_{(v,\eta,\varrho)}u, D^2_{(v,\eta,\varrho)}u) := tanh^{-1}(\triangle_{(v,\eta,\varrho)}(u))$. Now, from Corollary 3.3, we can find $\tau \in [0, \pi/2)$, and R > 0 so that the above equation has a viscosity solution, in a ball $B^4(R)$.

References

- [1] Luigi . Ambrosio, Carlotto. Alessandro and Massaccesi. Annalisa, Lectures on elliptic partial differential equations, Vol. 18, Springer, 2019.
- [2] M.P. Coiculescu, An application of the theory of viscosity solutions to higher order differential equations, Monatshefte für Mathematik, **203** (2024), 825–841.
- [3] M.G. Crandall, H. Ishii and P.L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc., **27.1** (1992), 1–67.
- [4] W. Hackbusch, Elliptic differential equations, Springer Series in Computational Mathematics, Vol. 18, Springer, 2017.
- [5] H. Ishii and P.L. Lions, Viscosity solutions of fully nonlinear second-order elliptic partial differential equations, Journal of Differential Equations, 83.1 (1990), 26–78.
- [6] E. Jakobsen and K. Karlsen, Continuous dependence estimates for viscosity solutions of fully nonlinear degenerate elliptic equations, Electronic Journal of Differential Equations, 2002 (2002), 1–10.
- [7] R. Jensen and P.E. Souganidis, A regularity result for viscosity solutions of Hamilton-Jacobi equations in one space dimension, Trans. Amer. Math. Soc., **301.1** (1987), 137–147.
- [8] C. Mooney and O. Savin, Non C^1 solutions to the special Lagrangian equation, Duke Mathematical Journal, 1.1 (2024), 1–17.

SeyedMohammadErfan Hosseini School of Mathematics, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran

 $E\text{-mail: }s_hosseini78@mathdep.iust.ac.ir$

Somayeh Saiedinezhad School of Mathematics, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran

 $\hbox{E-mail: ssaiedinezhad@iust.ac.ir}$