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Application of Lipschitz viscosity solutions for

higher-order partial differential equations

containing the special Lagrangian operator
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Abstract. Using the Lipschitz continuity of a class of viscosity solutions, we find

a kind of viscosity solution for some higher-order partial differential equations con-

taining the special Lagrangian operator. Additionally, we extend this analysis to

equations that simultaneously contain the special Lagrangian and some other oper-

ators including Laplacian.
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1 Introduction

We can apply the theory of viscosity solutions to many partial differential equations (for example
see [3], and [5]). Nevertheless, the theory of viscosity solutions is based on some versions of the
maximum principle that have a second-order nature. As a result, the direct application of the
theory is usually limited to the second-order partial differential equations (PDEs).

Recently, [2] introduced an approach to extend the application of the theory to higher-order
PDEs. This approach can be expanded to cover more complex higher-order PDEs. Indeed, the
main part of the approach uses a basic Holder continuity result (that can be found in earlier works
like [6] or [7]). Here, we use a strong, recently proven, theorem from [8]. Also, by investigating
a certain type of PDEs, we introduce a general method in the sense of change of variables,
and we prove some theorems to expand the application of viscosity solutions to a new range of
higher-order PDEs.

2 Preliminaries

For any natural number m, Sm is the set of symmetric m×m matrices. Also, for w : RN → R, the
symbol ▽w denotes the gradient of w, and D2w represents the Hessian matrix of w. In addition,
for a function u(υ, η, ϱ, ω) : R4 → R, we use ▽(υ,η,ϱ)u for gradient vector, and D2

(υ,η,ϱ)u for
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Hessian matrix of u with respect to the variables (υ, η, ϱ). In addition, tanh(.), and △w represent
the hyperbolic tangent and the Laplacian of a function w, respectively.

For a symmetric n× n matrix H with eigenvalues {βj}nj=1, the Special Lagrangian is

L(H) =

n∑
j=1

tan−1(βj) . (2.1)

We call a connected open set U ⊂ RN a smooth domain if its boundary ∂U can be locally viewed
as the graph of a smooth function. Also, for any n ≥ 1, we use Bn(R) as a ball of radius R in
Rn. Note that these balls may not centered at the origin. Finally, to get familiar with the theory
of viscosity solutions, one can see [3], or [5].

3 main results

Here, by a same technique as the one introduced in [2], we expand the application of viscosity
solutions to some important types of higher-order PDEs, and specially to those that contain
Lagrangian, and Laplacian operators, simultaneously.

Indeed, our method for solving a higher-order PDE splits into two problems (in the sense of
change of variables), so that one of them contains a PDE that we can find a viscosity solution
for it (we call it the first problem), and the second one contains a PDE that admits a classical
solution which can be considered as a viscosity solution (so that it can merge with the viscosity
solution of the first problem). The outcome of this approach makes a generalized solution for the
main higher-order PDE that we call it (inspired from Definition 1 in [2]) the viscosity solution of
the higher-order PDE.

Definition 1. Let G : Rn × Sn → R. The function υ is called a (generalized) viscosity solution
of the PDE

Q
(
x,G(▽υ,D2υ),▽G(▽υ,D2υ), D2G(▽υ,D2υ)

)
= 0,

if and only if, there exists a function ϖ such that G(▽υ,D2υ) = ϖ, in classical sense, where ϖ
is a viscosity solution for the equation Q(x,ϖ,▽ϖ,D2(ϖ)) = 0.

Now, to make a general formulation, we introduce a special type of functions.

Definition 2. Let n ≥ 1, and w : Bn(R) → R be Holder continuous (with an exponent γ ⩽ 1).
The function G : Rn×Sn → R is in the set Υ(w,Bn(R)) if and only if the following equation has
a classical solution, in Bn(R):

G(▽v,D2v)=w(s) , s ∈ Bn(R) . (3.1)

Also, the notation G ∈ Υ, means that for any Holder continuous function w, and any ball Bn(R)
we have G ∈ Υ(w,Bn(R)).

Remark 1. As it is mentioned in Section 5 of [1] (Specifically, by Theorem 5.11 in [1]), when
G ∈ Υ(w,Bn(R)), the classical solution of (3.1) is also a viscosity solution (note that G(s, ·) is
non-increasing).

Example 1. Since For any Holder continuous function w, and any ball Bn(R) ⊂ Rn, the
equation −△v = tanh(w(s)) has a classical solution (see Chapter 3 of [4]), thus G1(▽v,D2v) :=
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−trace(D2v) = −∆v ∈ Υ. Similarly, since tanh(.) is Lipschitz, and so Holder continuous, the
equation −△ v = tanh(w(s)) has a classical solution, and therefore

G2(▽v,D2v) := tanh−1(−trace(D2v)) = tanh−1(−△ v) ∈ Υ.

Definition 3. The function α : R → R is in the set Λ(1), if and only if, for every ball B1(R) ⊂ R,
the following equation has a classical solution φ : R → R :

φ
′
(ω) = (α(ω))−1ω .

Also, we say that the function α belongs to the set Λ(2), if and only if, the following equation has
a classical solution φ : R → R :

φ
′′
(ω) = (α(ω))−1ω .

Remark 2. Some simple examples of the functions that satisfy the conditions of Definition 3
are exponential, polynomial, and constant functions that do not have any root.

Theorem 3.1. Let G ∈ Υ, and α ∈ Λ(1). Also, for any i ∈ {1, 2, 3}, consider bi : R3 → R as a
real valued function. Then, there exist τ ∈ [0, π/2), R > 0, and a function u(υ, η, ϱ, ω) defined
on a ball B4(R) ⊂ R4 such that for

K[u](υ, η, ϱ, ω) := (b1(υ, η, ϱ), b2(υ, η, ϱ), b3(υ, η, ϱ), α(ω)) .▽ u ,

we have

(K[u])ω + L(D2
(υ,η,ϱ)(G(▽(υ,η,ϱ)u,D

2
(υ,η,ϱ)u))) = 2τ ,

in the viscosity sense in B4(R).

Proof. In [8], it is proved that there exist τ ∈ [0, π/2), and a smooth bounded domain Ω ⊂ R3

such that the equation L(D2v) = τ has a Lipschitz viscosity solution v, in Ω. Now, let R
′
> 0

such that B3(R
′
) ⊂ Ω. Since G ∈ Υ, G(▽ũ, D2ũ) = v admits a classical solution ũ, in B3(R

′
).

Therefore, the function ũ is a viscosity solution (based on our terminology) of the equation
L(D2(G(▽ũ, D2ũ))) = τ , in B3(R

′
) ⊂ R3.

Now, consider:

L(D2
(υ,η,ϱ)(G(▽(υ,η,ϱ)u,D

2
(υ,η,ϱ)u))) = τ ,

as an equation in R3. We have proved that we can find τ ∈ [0, π/2), R
′
> 0 so that the above

equation has a viscosity solution ũ(υ, η, ϱ), in a set D := B3(R
′
) ⊂ R3. Now, choose R > 0 such

that there exists a ball B4(R) ⊂ D × R. Note that for φ ∈ Λ(1), we have

(
b1(υ, η, ϱ), b2(υ, η, ϱ), b3(υ, η, ϱ), α(ω)).(

∂ũ

∂υ
,
∂ũ

∂η
,
∂ũ

∂ϱ
, τ.φ

′
(ω))

)
ω

= τ.(α(ω).φ
′
(ω))

′
= τ .

Therefore, the function u(υ, η, ϱ, ω) := ũ(υ, η, ϱ) + τ.φ(ω), where φ ∈ Λ(1), is a viscosity solution
of our main equation in the ball B4(R) ⊂ R4.

In addition, this method can be generalized to many PDEs, and specially, to those that contain
Laplacian. In this regard, we prove the following theorem.
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Theorem 3.2. Let G ∈ Υ, and α ∈ Λ(2). Also, for any i ∈ {1, 2, 3}, suppose that bi : R3 → R is
a real valued function. Then, there exist τ ∈ [0, π/2), R > 0, and a function u(υ, η, ϱ, ω) defined
on a ball B4(R) ⊂ R4 such that for

J [u](υ, η, ϱ, ω) := (b1(υ, η, ϱ), b2(υ, η, ϱ), b3(υ, η, ϱ), α(ω)) .(uυυ, uηη, uϱϱ, uωω) ,

we have

(J [u])ω + L(D2
(υ,η,ϱ)(G(▽(υ,η,ϱ)u,D

2
(υ,η,ϱ)u))) = 2τ ,

in the viscosity sense, in B4(R).

Proof. First, consider:

L(D2
(υ,η,ϱ)(G(▽(υ,η,ϱ)u,D

2
(υ,η,ϱ)u))) = τ .

as an equation in R3. We have discussed in the proof of Theorem 3.1 that we can find τ ∈ [0, π/2),
and R

′
> 0 so that the above equation has a viscosity solution û(υ, η, ϱ) in D := B3(R

′
) ⊂ R3.

Now, choose R > 0 such that there exists a ball B4(R) ⊂ D×R. Note that for φ ∈ Λ(2), we have(
(b1(υ, η, ϱ), b2(υ, η, ϱ), b3(υ, η, ϱ), α(ω)) .(ûυυ, ûηη, ûϱϱ, φ

′′
(ω))

)
ω

= τ.(α(ω)φ
′′
(ω))

′
= τ .

Therefore, the function u(υ, η, ϱ, ω) := û(υ, η, ϱ) + φ(ω), where φ ∈ Λ(2), is a viscosity solution
of our main equation in the ball B4(R) ⊂ R4.

Now, we can prove many corollaries, and examples by the above theorems, and we provide
some of them, here.

Corollary 3.3. Let G ∈ Υ. There exist τ ∈ [0, π/2), R > 0, and a function u(υ, η, ϱ, ω) defined
on a ball B4(R) ⊂ R4 such that

(△u)ω + L(D2
(υ,η,ϱ)(G(▽(υ,η,ϱ)u,D

2
(υ,η,ϱ)u))) = 2τ ,

in the viscosity sense, in B4(R).

Proof. By choosing bi(υ, η, ϱ) = 1 (for i = 1, 2, 3), and α(ω) = 1, Theorem 3.2 asserts that we
can find τ ∈ [0, π/2), and R > 0 so that the above equation has a viscosity solution, in a ball
B4(R).

Corollary 3.4. Let G ∈ Υ. There exist τ ∈ [0, π/2), R > 0, and a function u(υ, η, ϱ, ω) defined
on a ball B4(R) ⊂ R4 such that

eω.(uω + uωω) + L(D2
(υ,η,ϱ)(G(▽(υ,η,ϱ)u,D

2
(υ,η,ϱ)u))) = 2τ ,

in the viscosity sense, in B4(R).

Proof. By choosing bi(υ, η, ϱ) = 0 (for i = 1, 2, 3), and α(ω) = eω, Theorem 3.1 asserts that we
can find τ ∈ [0, π/2), and R > 0 so that the above equation has a viscosity solution, in a ball
B4(R).
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Example 2. There exist τ ∈ [0, π/2), R > 0, and a function u(υ, η, ϱ, ω) defined on a ball
B4(R) ⊂ R4 such that

eω.(uω + uωω) + L(D2
(υ,η,ϱ)(−△(υ,η,ϱ) (u))) = 2τ ,

in the viscosity sense, in B4(R).

Proof. Choose G(▽(υ,η,ϱ)u,D
2
(υ,η,ϱ)u) := − △(υ,η,ϱ) (u). Now, from Corollary 3.4, we can find

τ ∈ [0, π/2), and R > 0 so that the above equation has a viscosity solution, in a ball B4(R).

Example 3. There exist τ ∈ [0, π/2), R > 0, and a function u(υ, η, ϱ, ω) defined on a ball
B4(R) ⊂ R4 such that

(△u)ω + L(D2
(υ,η,ϱ)(tanh

−1(△(υ,η,ϱ)(u))) = 2τ ,

in the viscosity sense, in B4(R).

Proof. Choose G(▽(υ,η,ϱ)u,D
2
(υ,η,ϱ)u) := tanh−1(△(υ,η,ϱ)(u)). Now, from Corollary 3.3, we can

find τ ∈ [0, π/2), and R > 0 so that the above equation has a viscosity solution, in a ball
B4(R).
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