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Application of Lipschitz viscosity solutions for
higher-order partial differential equations

containing the special Lagrangian operator

S.M.E. Hosseini and S. Saiedinezhad

Abstract. Using the Lipschitz continuity of a class of viscosity solutions, we find
a kind of viscosity solution for some higher-order partial differential equations con-
taining the special Lagrangian operator. Additionally, we extend this analysis to
equations that simultaneously contain the special Lagrangian and some other oper-
ators including Laplacian.

Keywords. Viscosity solutions to PDEs, Hamiltonian and Lagrangian structures, partial
differential operators

1 Introduction

We can apply the theory of viscosity solutions to many partial differential equations (for example
see [3], and [5]). Nevertheless, the theory of viscosity solutions is based on some versions of the
maximum principle that have a second-order nature. As a result, the direct application of the
theory is usually limited to the second-order partial differential equations (PDEs).

Recently, [2] introduced an approach to extend the application of the theory to higher-order
PDEs. This approach can be expanded to cover more complex higher-order PDEs. Indeed, the
main part of the approach uses a basic Holder continuity result (that can be found in earlier works
like [6] or [7]). Here, we use a strong, recently proven, theorem from [8]. Also, by investigating
a certain type of PDEs, we introduce a general method in the sense of change of variables,
and we prove some theorems to expand the application of viscosity solutions to a new range of
higher-order PDEs.

2 Preliminaries

For any natural number m, S™ is the set of symmetric mxm matrices. Also, for w : RV — R, the
symbol 7w denotes the gradient of w, and D?w represents the Hessian matrix of w. In addition,
for a function u(v,n, o,w) : R* — R, we use V(v,n,0)u for gradient vector, and Dg(v,n’g)u for
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Hessian matrix of u with respect to the variables (v, 7, ¢). In addition, tanh(.), and Aw represent
the hyperbolic tangent and the Laplacian of a function w, respectively.

For a symmetric n x n matrix H with eigenvalues {3; }?:1, the Special Lagrangian is
L(H)=> tan™'(8;) . (2.1)
j=1

We call a connected open set U C RY a smooth domain if its boundary OU can be locally viewed
as the graph of a smooth function. Also, for any n > 1, we use B"(R) as a ball of radius R in
R™. Note that these balls may not centered at the origin. Finally, to get familiar with the theory

of viscosity solutions, one can see [3], or [5].

3 main results

Here, by a same technique as the one introduced in [2], we expand the application of viscosity
solutions to some important types of higher-order PDEs, and specially to those that contain
Lagrangian, and Laplacian operators, simultaneously.

Indeed, our method for solving a higher-order PDE splits into two problems (in the sense of
change of variables), so that one of them contains a PDE that we can find a viscosity solution
for it (we call it the first problem), and the second one contains a PDE that admits a classical
solution which can be considered as a viscosity solution (so that it can merge with the viscosity
solution of the first problem). The outcome of this approach makes a generalized solution for the
main higher-order PDE that we call it (inspired from Definition 1 in [2]) the viscosity solution of
the higher-order PDE.

Definition 1. Let G : R® x §™ — R. The function v is called a (generalized) viscosity solution
of the PDE

Q (z,G(vv, D*v), vG(vv, D*v), D*G(vv, D*v)) =0,
if and only if, there exists a function w such that G(s7v, D?v) = @, in classical sense, where w

is a viscosity solution for the equation Q(z, @, Vw, D?(w)) = 0.

Now, to make a general formulation, we introduce a special type of functions.

Definition 2. Let n > 1, and w : B"(R) — R be Holder continuous (with an exponent v < 1).
The function G : R™ x S — R is in the set T(w, B™(R)) if and only if the following equation has
a classical solution, in B"(R):

G(vv, D*v)=w(s) , s € B"(R) . (3.1)

Also, the notation G € Y, means that for any Holder continuous function w, and any ball B"(R)
we have G € T(w, B"(R)).

Remark 1. As it is mentioned in Section 5 of [1] (Specifically, by Theorem 5.11 in [1]), when
G € YT(w, B"(R)), the classical solution of (3.1) is also a viscosity solution (note that G(s,-) is
non-increasing).

Example 1. Since For any Holder continuous function w, and any ball B"(R) C R", the
equation — A v = tanh(w(s)) has a classical solution (see Chapter 3 of [4]), thus G (v, D?v) :=
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—trace(D*v) = —Av € Y. Similarly, since tanh(.) is Lipschitz, and so Holder continuous, the
equation — A v = tanh(w(s)) has a classical solution, and therefore

Go(vv, D*v) := tanh ™ (—~trace(D*v)) = tanh™*(— Av) € T.

Definition 3. The function a : R — R is in the set AV, if and only if, for every ball B*(R) C R,
the following equation has a classical solution ¢ : R — R :

Also, we say that the function a belongs to the set A(?)| if and only if, the following equation has
a classical solution ¢ : R — R :

Remark 2. Some simple examples of the functions that satisfy the conditions of Definition 3
are exponential, polynomial, and constant functions that do not have any root.

Theorem 3.1. Let G € Y, and o € A, Also, for any i € {1,2,3}, consider b; : R> - R as a
real valued function. Then, there exist 7 € [0, 7/2), R > 0, and a function u(v,n, o,w) defined
on a ball B*(R) C R* such that for

Klul(v,n, 0,w) := (b1(v,n,0),b2(v,n, 0),b3(v,n,0),x(w)) .V u ,

we have
(K[U])w + L(D(2U7n7g) (G(V(’U,n,g)uv D(Zv,n,g)u))) =27 ’

in the viscosity sense in B*(R).

Proof. In [8], it is proved that there exist 7 € [0, 7/2), and a smooth bounded domain Q C R3
such that the equation L(D?v) = 7 has a Lipschitz viscosity solution v, in 2. Now, let R > 0
such that B3(R') C Q. Since G € T, G(v1, D*%) = v admits a classical solution @, in B3(R).
Therefore, the function @ is a viscosity solution (based on our terminology) of the equation
L(D?*(G(vu, D?*u))) = 7, in B3(R') C R3.
Now, consider:
L(D(2vm7@)(G(V(v,n,9)uvD(Zv,n,g)u))) =T,

as an equation in R3. We have proved that we can find 7 € [0, 7/2), R’ > 0 so that the above
equation has a viscosity solution (v, 7, 0), in a set D := B3(R') C R3. Now, choose R > 0 such
that there exists a ball B4(R) C D x R. Note that for ¢ € A, we have

ou ou Ou /
(bl(v,na Q)ab2(va77a 0)763(7),77, g),a(w)).(%, 877], 87937_'90 (w)))w

=7(a(w).p (W) =7.

Therefore, the function u(v,n, o,w) = @(v,n, 0) + T.¢(w), where ¢ € AW is a viscosity solution
of our main equation in the ball B*(R) C R*. O

In addition, this method can be generalized to many PDEs, and specially, to those that contain
Laplacian. In this regard, we prove the following theorem.
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Theorem 3.2. Let G € Y, and a € A®). Also, for anyi € {1,2,3}, suppose that b; : R® — R is
a real valued function. Then, there exist T € [0, 7/2), R > 0, and a function u(v,n, o,w) defined
on a ball B*(R) C R* such that for

J[u](’U,T], 0, W) = (bl(UJ]y Q),bg(’l},’l’h Q)7b3(U77]a Q),Oé(W)) ‘(uvvvun’r]7ugg7uww) )

we have
(J[UDUJ + L(D(zv,n,g) (G(V(v,n,g)uv D%y,q,g)u))) =27,

in the viscosity sense, in B*(R).
Proof. First, consider:

L(D(2U~,77’Q) (G<v(vana9)u’D(Qv,n,g)u))) =T.

as an equation in R®. We have discussed in the proof of Theorem 3.1 that we can find 7 € [0, 7/2),
and R > 0 so that the above equation has a viscosity solution @(v,7,0) in D := B3(R) C R3.
Now, choose R > 0 such that there exists a ball B*(R) C D x R. Note that for ¢ € A we have

1"

((bl (U’ n, Q)a bQ(U, m, 9)7 bS(Ua , Q)a a(w)) -(ﬁvva ﬁnna '&gga 2 (w)))w
— (@) @) =7

Therefore, the function u(v, 7, 0,w) = (v, n, 0) + ¢(w), where ¢ € AP is a viscosity solution
of our main equation in the ball B*(R) C R*. O

Now, we can prove many corollaries, and examples by the above theorems, and we provide
some of them, here.

Corollary 3.3. Let G € Y. There exist T € [0, w/2), R > 0, and a function u(v,n, o,w) defined
on a ball B*(R) C R* such that

(Au)w + L(D%v,n,g) (G(V(U,n,g)uﬂ D?q;,n,g)u))) =27,

in the viscosity sense, in B4(R).

Proof. By choosing b;(v,n,0) = 1 (for i = 1,2,3), and a(w) = 1, Theorem 3.2 asserts that we
can find 7 € [0, 7/2), and R > 0 so that the above equation has a viscosity solution, in a ball
B*(R). O

Corollary 3.4. Let G € Y. There exist T € [0, w/2), R > 0, and a function u(v,n, o,w) defined
on a ball B*(R) C R* such that

€ (U + Uy ) + L(D2 (G(V (v,m,0) s D(Qv’n’g)u))) =27,

(v,m,0)
in the viscosity sense, in B*(R).
Proof. By choosing b;(v,n,0) = 0 (for : = 1,2,3), and a(w) = ¢¥, Theorem 3.1 asserts that we

can find 7 € [0, 7/2), and R > 0 so that the above equation has a viscosity solution, in a ball
B*(R). O



Application of Lipschitz viscosity solutions for. . . 5

Example 2. There exist 7 € [0, 7/2), R > 0, and a function u(v,n, o,w) defined on a ball
B*(R) C R* such that

e” (U + Upw) + L(D?U’n’g)(— Ao (1)) =27,

in the viscosity sense, in B4(R).

Proof. Choose G(V(Um@)u,D(QU%Q)u) = — A0 (u). Now, from Corollary 3.4, we can find
7€ [0, 7/2), and R > 0 so that the above equation has a viscosity solution, in a ball B*(R). O

Example 3. There exist 7 € [0, 7/2), R > 0, and a function u(v,n, o,w) defined on a ball
B*(R) C R* such that

(Au), + L(D(QWM) (tanhil(A(Uﬂhg)(u))) =27,

in the viscosity sense, in B4(R).

Proof. Choose G( (v,y,0)U: D, ,) 1) := tanh ™" (A p,0)(u)). Now, from Corollary 3.3, we can

find 7 € [0, 7/2), and R > 0 so that the above equation has a viscosity solution, in a ball
B(R). O
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