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A study on reaction-diffusion singular

perturbation problems with non-classical

conditions using collocation method

S. Ramya, A. Puvaneswari and V. Raja

Abstract. This article discuss about a numerical study to find the solution of sec-

ond order reaction diffusion singular perturbation problem with non-local boundary

conditions using cubic B-spline functions and collocation technique. Shishkin mesh

is used to construct layer adapted meshes. The non-local boundary conditions are

discretized using Trapezoidal rule. The study establishes that the discussed scheme’s

result is uniformly convergent up to second order in the supremum norm. To estab-

lish the efficiency of the discussed method, two numerical examples are presented

along with their results in the form of tables and figures.

Keywords. Singularly perturbed problems, cubic B-spline collocation, non-classical condi-
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1 Introduction

When a small positive parameter µ appears in the highest derivative, differential equations are
termed as singularly perturbed. Such problems arise in various fields of fluid dynamics, electro-
chemistry [8] and thermodynamics [9]. Typically, the solution to these problems exhibit boundary
layers leading to challenges in both analytical and numerical approaches. There are several stud-
ies available in the literature for singular perturbation problems with and without turning points
[3, 12] and for system of equations [23]. In the context of boundary conditions, one particular
type of boundary condition that has received attention is the integral boundary condition (IBC).
These conditions involve integrals over parts of the domain or its boundaries and their pres-
ence can significantly alter the mathematical structure and solution behavior of the differential
equation. Singularly perturbed problems with IBC require the use of a closely spaced grid of
mesh points in the layer regions. This requires parameter uniform convergence incorporating
layer-adapted meshes and developing appropriate numerical methods adapted for singular per-
turbation problems (SPPs). In the solutions of singularly perturbed problems, one solution varies
smoothly while the other varies rapidly illustrating multi-scale behavior. This complexity makes
the numerical analysis of the problems considered more difficult than that of typical problems.

In [5, 10, 11], the researchers examined the finite difference technique for SPPs with IBC.
Several authors, including Cen et al.[6], proposed a second-order adaptive grid technique for non
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linear SPPs with IBC. In [26, 27], Raja and Ayyadurai Tamilselvan adapted the finite difference
technique on a uniform mesh during their analysis of singularly perturbed convection-diffusion
equations with IBC. If we examine [25, 28, 32], researchers focused on singularly perturbed
reaction-diffusion equations with IBC using non uniform meshes. Regardless of this, [7] focused
on a synchronized difference approach for a reaction-diffusion problem that includes discontinuous
data that are singularly perturbed in second order. In [4, 24, 31, 33], the authors concentrated
on third-order SPPs using IBC. Moreover, several researchers [13, 19, 21, 22] concentrated on
singularly perturbed convection-diffusion equations of second order with IBC.

In this work, the Cubic B-spline Collocation Method (CBSCM) is applied to resolve the
singularly perturbed reaction-diffusion equations with IBC. The CBSCM provides enhanced flex-
ibility and precision, mainly for irregular domains, by approximating solutions with smooth cubic
functions.

The structure of the article is as follows: The problem description is given in Section 2. The
results like maximum principle, stability and derivative estimates are stated in the form of results
in Section 3. Section 4 explains the mesh discretization and mesh width along with the detailed
derivation of the Cubic B-spline scheme using collocation technique. Error estimates are derived
in Section 5. The numerical results are presented in Section 6 and the conclusion is found in
Section 7.

2 Statement of the problem

Inspired by [34, 1, 5, 2, 16, 17, 15, 10, 11, 6], we consider the following SPP with IBC

Lϑ = −µϑ′′(t) + q(t)ϑ(t) = r(t), 0 < t < 1, (2.1)

ϑ(0) = A1, (2.2)

L1ϑ(1) = ϑ(1)− µ

∫ 1

0

f(t)ϑ(t) dt = A2. (2.3)

Here, 0 < µ < 1 is the perturbation parameter. A1 and A2 are constants. Further q(t) ≥ α >

0, t ∈ [0, 1], f(t) is non-negative with
∫ 1

0
f(t)dt < 1 and r(t), q(t) being sufficiently smooth

functions on Ω. Boundary layers at t = 0 and t = 1 are found in the solution ϑ(t) of the
problem (2.1) - (2.3). In this work,

√
µ ≤ CN−1 is taken into consideration and C is a general

positive constant. The convergence of the numerical solution to the exact solution of a singular
perturbation problem is analyzed using the supremum norm ||ϑ||D = sup

t∈D
|ϑ(t)|.

3 The continuous problem

The preliminary results which are derived in [25] are stated here.

Theorem 3.1. (Maximum Principle) Let ϑ(t) ∈ C2(Ω) be any function that satisfies ϑ(0) ≥
0, L1ϑ(t) ≥ 0, ∀t ∈ Ω. Then ϑ(t) ≥ 0, ∀t ∈ Ω̄.

Lemma 3.1. For 1 ≤ m ≤ 4, let ϑ(t) be the solution of (2.1) - (2.3). Then

∥ϑ(m)∥Ω ≤ C(1 + µ−m
2 ). (3.1)

To obtain error estimates, we separate the solution ϑ(t) into singular and smooth parts in
the following manner

ϑ(t) = u(t) + w(t).
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The derivative estimates for smooth and layer parts are given in the following lemma:

Lemma 3.2. For the problem (2.1) - (2.3), the singular components vL(t) and vR(t) and the
regular component u(t) of the solution ϑ(t) satisfy the following bounds:

|u(m)(t)| ≤ C(1 + e−
(k−2)

2 ),

|w(m)
L (t)| ≤ Ce−

m
2 (µ+ e−t

√
α
µ ),

|w(m)
R (t)| ≤ Ce−

m
2 e(1−t)

√
α
µ , 0 ≤ m ≤ 4, ∀ t ∈ Ω.

4 Cubic B-spline Collocation Method (CBSCM)

For mesh construction, the widely used Shishkin mesh is employed. Take the boundary value
problem (2.1) - (2.3) as an example. The boundary layers for the problem being examined are
located at each end of the interval [0, 1]. As a result, we split the interval into three smaller
segments

[0, ν], [ν, 1− ν] and [1− ν, 1]

where ν = min

(
1

4
, 2

√
µ

α
lnN

)
which indicates the width of the boundary layer. In the afore-

mentioned subdomains, each subinterval comprises n1, n2 and n3 points, so that n1+n2+n3 = N .
Define

tm =


mh̃, 0 ≤ m ≤ N/4,

tN/4 + (m−N/4)h̃, N/4 + 1 ≤ m ≤ 3N/4,

t3N/4 + (m− 3N/4)h̃, 3N/4 + 1 ≤ m ≤ N,

where

h̃ =


h̃1 = 4ν/N, 1 ≤ m ≤ N/4,

h̃2 = 2(1− 2ν)/N, N/4 + 1 ≤ m ≤ 3N/4,

h̃3 = 4ν/N, 3N/4 + 1 ≤ m ≤ N.

is the piecewise uniform mesh space and Ω̄N = {tm}Nm=0.

4.1 Difference Scheme Derivation

This section employs the cubic B-spline collocation strategy to approximate the solution of the
differential equations and the integral boundary conditions of the given problem (2.1)-(2.3).

Let Ω̄ be partitioned into N + 1 number of mesh points such as ψ = {t0, t1, ..., tN }. The
cubic B-splines Pm(t) are defined [18, 20, 22, 29] as

Pm(t) =
1

h̃3



(t− tm−2)
3, tm−2 ≤ t ≤ tm−1,

h̃3 + 3h̃2(t− tm−1) + 3h̃(t− tm−1)
2 − 3(t− tm−1)

3, tm−1 ≤ t ≤ tm,

h̃3 + 3h̃2(tm+1 − t) + 3h̃(tm+1 − t)2 − 3(tm+1 − t)3, tm ≤ t ≤ tm+1,

(tm+2 − t)3, tm+1 ≤ t ≤ tm+2,

0, otherwise,
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where each Pm(t) is continuously differentiable up to second order. By introducing three more
fictitious points at both side of the end points t0 and tN such as t−3 < t−2 < t−1 < t0 and
tN+3 > tN+2 > tN+1 > tN in order to define P−1(t) and PN+1(t). Let Ψ = {P−1, P0, ..., PN+1}
and let Span(Ψ) = ϕ3(ψ). The function Ψ is linearly independent on [0, 1] and hence ϕ3(ψ) is
(N + 3) dimensional. Let us define a linear operator L : X → X, where X is the linear subspace
of L2(Ω̄), a vector space of all square integrable function. Define

v(t) =

N+1∑
m=−1

dmPm(t) (4.1)

Here, d′ms are real coefficients that need to be determined. The problems (2.1)-(2.3) takes the
form.

Lv(tm) = r(tm), 0 < m < N, (4.2)

v(t0) = A1, (4.3)

v(tN )− µ

N∑
m=1

fm−1vm−1 + fmvm
2

hm = A2. (4.4)

After solving equations (4.2), we obtain a system of N +1 linear equations stated below in N +3
unknowns using the values of the B-spline functions Pm and their derivatives at the mesh points.(

−6µ

h2m
+ q(tm)

)
dm−1 +

(
12µ

h2m
+ 4q(tm)

)
dm +

(
−6µ

h2m
+ q(tm)

)
dm+1 = r(tm), 0 ≤ m ≤ N.

For simplicity, we represent the above system of equations in the form

Emdm−1 + Fmdm +Gmdm+1 = rm, 0 ≤ m ≤ N, (4.5)

where

Em =
−6µ

h2m
+ q(tm), Fm =

12µ

h2m
+ 4q(tm) and Gm =

−6µ

h2m
+ q(tm).

From (4.3), we have

d−1 + 4d0 + d1 = A1.

From the scheme (4.5), when m = 0, we have

E0d−1 + F0d0 +G0d1 = r0.

After simplifying the above two equations, we get

d0(−4E0 + F0) + d1(−E0 +G0) = r0 −A1E0. (4.6)

Similarly from Equation (4.4), we have

dN+1 = γA2 +
γµ

2
f0A1h1 +

γµ

2
{d0(f1h1 + f1h2) + d1(4f1h1 + 4f1h2 + f2h2 + f2h3)

+ d2(f1h1 + f1h2 + 4f2h2 + 4f2h3 + f3h3 + f3h4)

+
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...

+ dN−2(fN−3hN−3 + fN−3hN−2 + 4fN−2hN−2 + 4fN−2hN−1 + fN−1hN−1 + fN−1hN )}

+ γdN−1

(µ
2
(fN−2hN−2 + fN−2hN−1 + 4fN−1hN−1 + 4fN−1hN + fNhN )− 1

)
+ γdN

(µ
2
(fN−1hN−1 + fN−1hN + 4fNhN )− 4

)
where γ =

2

2− µfNhN
. Substituting the value of dN+1 in the Equation (4.5) when m = N , then

the resulting equation follows

ENdN−1 + FNdN +GN [A2γ +
γµ

2
[f0A1h1 + d0(f1h1 + f2h2) + d1(4f1h1 + 4f1h2 + f2h2 + f2h3)

+ d2(f1h1 + f1h2 + 4f2h2 + 4f2h3 + f3h3 + f3h4) + d3(f2h2 + f2h3 + 4f3h3 + 4f3h4 + f4h4 + f4h5)

+ ...

+ dN−2(fN−3hN−3 + fN−3hN−2 + 4fN−2hN−2 + 4fN−2hN−1 + fN−1hN−1 + fN−1hN )]

+ dN−1

(γµ
2
(fN−2hN−2 + fN−2hN−1 + 4fN−1hN−1 + 4fN−1hN + fNhN )− γ

)
+ dN

(γµ
2
(fN−1hN−1 + fN−1hN + 4fNhN )− 4γ

)
] = rN .

On simplification, we get

d0GN
γµ

2
(f1h1 + f1h2) + d1GN

γµ

2
(4f1h1 + 4f1h2 + f2h2 + f2h3)

+ d2GN
γµ

2
(f1h1 + f1h2 + 4f2h2 + 4f2h3 + f3h3 + f3h4)

+

...

+ dN−2GN
γµ

2
(fN−3hN−3 + fN−3hN−2 + 4fN−2hN−2 + 4fN−2hN−1 + fN−1hN−1 + fN−1hN )

+ dN−1(GN
γµ

2
(fN−2hN−2 + fN−2hN−1 + 4fN−1hN−1 + 4fN−1hN + fNhN + fN−1hN )− γGN + EN )

+ dN (GN
γµ

2
(fN−1hN−1 + fN−1hN + 4fNhN )− 4γGN + FN ) = rN −GNA2γ −GN

γµ

2
f0A1h1.

(4.7)

Equations (4.5) along with (4.6) and (4.7) together form a system of equations Ad = δ where
d = (d0, d1, d2, ..., dN )T and δ = (r0 −A1E0, r1, r2, ..., rN −GNA2γ −GNγµf0h1/2)

T . Further A
is a diagonally dominant matrix and hence we can solve the system of equations. After solving,
we can find the values of d0, d1, d2, ..., dN which are the solutions of the system of equations, from
which we may calculate the values of d−1 and dN+1. A unique solution v(t) to the collocation
technique with a basis of cubic B-splines applied to problems (2.1)-(2.3) is hence obtained from
(4.1).

5 Error Estimate

Lemma 5.1. The spline functions P−1, P0, P1, ..., PN+1 satisfy the inequality

N+1∑
m=−1

|Pm(t)| ≤ 10, t ∈ Ω̄.
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Theorem 5.1. For the problem (2.1)− (2.3) under consideration, let v(t) represent the colloca-
tion approximation from the cubic spline space ϕ3(ψ) to the solution ϑ(t). If r ∈ C2[0, 1], The
parameter uniform error estimate is given by

sup
0<µ≤1

max
0≤m≤N

|ϑ(tm)− v(tm)| ≤ CN−2(lnN)6

where C is a positive constant independent of µ and N .

Proof. V (t) represents the unique spline interpolation from ϕ3(ψ) to the BVP solution ϑ(t) of
(2.1)− (2.3), as defined by

V (t) =

N+1∑
m=−1

d̄mPm(t). (5.1)

If r(t) ∈ C2[0, 1], then ϑ(t) ∈ C4[0, 1] and according to de Boor and Hall error estimate [20] that

||Dj(ϑ− V )||∞ ≤ Cj ||ϑ(4)(t)||h̄4−j , j = 0, 1, 2, 3. (5.2)

where h̄ = max{h̃1, h̃2, h̃3} and Cj are constants independent of µ and N .

|Lϑ(tm)− LV (tm)| = | − µϑ′′(tm)− q(tm)ϑ(tm)− (−µV ′′(tm)− q(tm)V (tm))|,
≤ C(µh̃2 + ||q||∞h̄4)||ϑ4(tm)||,

≤ C(µh̄2 + ||q||∞h̄4)(1 + µ−4 exp(−tm
√
α/µ) + µ−4 exp(−(1− tm)

√
α/µ).
(5.3)

Two cases are now up for discussion: Case (i): Let ν = 1/4. Then 1/4 ≤ (2
√
µ/α) lnN which

gives µ−1 ≤ (C lnN)2 and h̄ = 1/N . From (5.3), we obtain

|Lϑ(tm)− LV (tm)| ≤ CN−2(lnN)6. (5.4)

Case (ii): Let ν = 2
√
µ/α lnN . If m satisfies N/4 ≤ m ≤ 3N/4, we have Then (5.3) becomes

|Lϑ(tm)− LV (tm)| ≤ CN−2. (5.5)

Further, if m satisfies 1 ≤ m ≤ N/4 and 3N/4 + 1 ≤ m ≤ N , h̃ = 4ν/N = CN−1(
√
µ) lnN , and

hence
h̃
√
µ

= CN−1 lnN . subsequently by applying the lemma covered in [14], we can obtain

from (5.3)

|Lϑ(tm)− LV (tm)| ≤ CN−2(lnN)2. (5.6)

From the above three equations, we get

|Lϑ(tm)− LV (tm)| ≤ CN−2(lnN)6. (5.7)

and hence we have

|Lv(tm)− LV (tm)| = |r(tm)− LV (tm)| = |Lϑ(tm)− LV (tm)| ≤ CN−2(lnN)6. (5.8)
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Suppose that LV (tm) = h̃2r̄(tm), ∀ 0 ≤ m ≤ N with the boundary conditions V (t0) = 0,

V (tN ) = A2 + µ
∫ 1

0
f(t)ϑ(t)dt leads to the linear system Ad̄ = δ̄, which in turn results into

A(d− d̄) = δ − δ̄, (5.9)

where d− d̄ = (d0 − d̄0, d1 − d̄1, ..., dN − d̄N )T ,

δ − δ̄ = (h̃2(r(t0)− r̄(t0)), h̃
2(r(t1)− r̄(t1)), ..., h̃

2(r(tN )− r̄(tN )))T .

Using the equation (5.8), we get

||δ − δ̄||∞ ≤ CN−2(lnN)6. (5.10)

Using (5.9) and (5.10) and using the result in [30], we have

|dm − d̄m| ≤ CN−2(lnN)6, 0 ≤ m ≤ N.

Also from the boundary condition and from the above bounds, |d−1 − d̄−1| and |dN+1 − d̄N+1|
provide the same estimates as above. Hence, we have

max
−1≤m≤N+1

|dm − d̄m| ≤ CN−2(lnN)6.

From the above result and Lemma 5.1, we have

|v(t)− V (t)| ≤ max
−1≤m≤N+1

|dm − d̄m|
N+1∑
m=−1

|Pm(t)| ≤ CN−2(lnN)6,

which gives

max
0≤m≤N

|v(tm)− V (tm)| ≤ CN−2(lnN)6.

Then, by the triangle inequality, we get

sup
0<µ≤1

max
0≤m≤N

|ϑ(tm)− v(tm)| ≤ CN−2(lnN)6.

6 Numerical Results

Example 1. [25]

−µϑ′′(t) + ϑ(t) = 1, 0 < t < 1,

with boundary conditions

ϑ(0) = 0, ϑ(1)− µ

1∫
0

t

2
ϑ(t)dt = 0.
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Its exact solution is provided by

ϑ =
(µ− 2µ2 − 4 + 4e

−1√
µ (1 + µ3/2

2 + µ2

2 ))e
t√
µ

4e
1√
µ (1− µ3/2

2 + µ2

2 )− 4e
−1√

µ (1 + µ3/2

2 + µ2

2 )
+

(2µ2 − µ+ 4− 4e
1√
µ (1− µ3/2

2 + µ2

2 ))e
−t√
µ

4e
1√
µ (1− µ3/2

2 + µ2

2 )− 4e
−1√

µ (1 + µ3/2

2 + µ2

2 )
+ 1.

Given that an analytical solution exists for the problem, the maximum pointwise errors for
each µ are approximated as follows:

EN
µ = max

ti∈Ω̄
|ϑ(tm)− vN (tm)| and EN = max

µ
EN

µ

, where vN represents the numerical solution. The parameter uniform convergence order is
determined by

RN
µ = log2(

EN
µ

E2N
µ

) and RN = log2(
EN

E2N ).

Example 2. [25]

−µϑ′′(t) + (5 + t)ϑ(t) = 1, 0 < t < 1,

with boundary conditions

ϑ(0) = 0, ϑ(1)− µ

1∫
0

t

2
ϑ(t)dt = 0.

For Example 2, the exact solution is not known and hence we employ the double mesh
principle to estimate the error and find the experimental rate of convergence for the solution
obtained. Let the double mesh difference be defined as EN

µ = maxtm∈ΩN |vN (tm) − v2N (tm)|
and let EN = maxµD

N
µ where U2N (tm) represents the piecewise linear interpolate of the mesh

function U2N (tm) on the interval [0,1]. The order of convergence is determined from these
quantities.

PN
µ = log2(

EN
µ

E2N
µ

) and PN = log2(
EN

E2N )

7 Discussion

The reaction-diffusion singular perturbation problem with non-local boundary conditions is stud-
ied using the CBSCM, resulting in a solution that shows boundary layers at t = 0 and t = 1. The
layer adapted mesh namely Shishkin mesh is used to capture the layer behavior. The developed
scheme resolves the problem arises due to the small perturbation parameter µ. The error of the
scheme is determined through the discrete maximum norm. The numerical method is illustrated
through two examples. Our numerical findings confirm the theoretical predictions. Tables 1,2 and
3 present the convergence rate and maximum pointwise errors for Examples 1 and 2 respectively.
The error plots for Examples 1 and 2 are shown in Figure 3 and 4 to visually demonstrate how the
maximum error EN and DN varies with the number of mesh points N for different values of µ.
These plots confirm the theoretical convergence behaviour and enhance the clarity of results.Also
the convergence rate of both examples are shown in Figure 5 .Based on the data, we can infer
that this method is effective and indicates a superior rate of convergence.
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Table 1: Numerical estimates for Example 1

Number of mesh points N

64 128 256 512 1024 2048

2−1 1.8987e-05 4.7465e-06 1.1866e-06 2.9666e-07 7.4164e-08 1.8541e-08
2−2 4.6190e-05 1.1547e-05 2.8867e-06 7.2166e-07 1.8042e-07 4.5105e-08
2−3 8.2934e-05 2.0729e-05 5.1819e-06 1.2955e-06 3.2386e-07 8.0966e-08
2−4 1.3216e-04 3.3025e-05 8.2553e-06 2.0638e-06 5.1595e-07 1.2899e-07
2−5 2.4327e-04 6.0752e-05 1.5185e-05 3.7964e-06 9.4907e-07 2.3727e-07
2−6 4.7992e-04 1.1988e-04 2.9963e-05 7.4905e-06 1.8726e-06 4.6815e-07
2−7 9.6355e-04 2.3985e-04 5.9898e-05 1.4971e-05 3.7424e-06 9.3558e-07
2−8 1.9345e-03 4.7952e-04 1.1979e-04 2.9939e-05 7.4847e-06 1.8711e-06
2−9 3.9220e-03 9.6354e-04 2.3985e-04 5.9898e-05 1.4970e-05 3.7423e-06
2−10 4.2436e-03 1.4157e-03 4.6119e-04 1.1979e-04 2.9939e-05 7.4847e-06
2−11 4.2436e-03 1.4157e-03 4.6119e-04 1.4572e-04 4.4947e-05 1.3597e-05
2−12 4.2436e-03 1.4157e-03 4.6119e-04 1.4572e-04 4.4947e-05 1.3597e-05
2−13 4.2436e-03 1.4157e-03 4.6119e-04 1.4572e-04 4.4947e-05 1.3597e-05
2−14 4.2437e-03 1.4157e-03 4.6119e-04 1.4572e-04 4.4947e-05 1.3597e-05
2−15 4.2437e-03 1.4157e-03 4.6119e-04 1.4572e-04 4.4947e-05 1.3597e-05
2−16 4.2437e-03 1.4157e-03 4.6119e-04 1.4572e-04 4.4947e-05 1.3597e-05
2−17 4.2437e-03 1.4157e-03 4.6119e-04 1.4572e-04 4.4947e-05 1.3597e-05
2−18 4.2437e-03 1.4157e-03 4.6119e-04 1.4572e-04 4.4947e-05 1.3597e-05

EN 1.8366e-02 5.7106e-03 1.8600e-03 5.8440e-04 1.7993e-04 5.4402e-05

RN 1.6853 1.6183 1.6703 1.6995 1.7257 —

Figure 1: Solution graph of Example 1 using CBSCM for µ = 2−14 with N = 256.
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Table 2: Numerical estimates for Example 2

Number of mesh points N

64 128 256 512 1024 2048

2−1 1.0202e-04 4.8916e-05 2.3936e-05 1.1837e-05 5.8860e-06 2.9348e-06
2−2 1.6798e-04 8.0617e-05 3.9465e-05 1.9522e-05 9.7084e-06 4.8411e-06
2−3 2.2522e-04 1.0874e-04 5.3404e-05 2.6461e-05 1.3171e-05 6.5703e-06
2−4 2.5884e-04 1.2575e-04 6.2031e-05 3.0810e-05 1.5354e-05 7.6645e-06
2−5 2.8524e-04 1.3518e-04 6.6482e-05 3.3017e-05 1.6458e-05 8.2165e-06
2−6 3.4882e-04 1.4584e-04 6.9874e-05 3.4528e-05 1.7184e-05 8.5739e-06
2−7 5.1288e-04 1.7586e-04 7.4226e-05 3.5866e-05 1.7780e-05 8.8607e-06
2−8 8.8498e-04 2.5776e-04 8.8472e-05 3.7628e-05 1.8305e-05 9.0956e-06
2−9 1.6518e-03 4.3737e-04 1.2895e-04 4.4454e-05 1.9014e-05 9.2988e-06
2−10 3.4701e-03 8.1285e-04 2.1737e-04 6.4532e-05 2.2304e-05 9.5826e-06
2−11 6.8747e-03 1.6054e-03 3.9889e-04 1.0852e-04 3.2302e-05 1.1181e-05
2−12 1.3313e-02 3.4075e-03 7.7634e-04 1.9879e-04 5.4168e-05 1.6164e-05
2−13 1.4743e-02 6.7181e-03 2.4590e-03 4.6303e-04 9.8741e-05 2.7103e-05
2−14 1.4707e-02 6.7033e-03 2.4535e-03 8.5349e-04 2.9548e-04 9.6002e-05
2−15 1.4683e-02 6.6928e-03 2.4497e-03 8.5096e-04 2.9465e-04 9.5616e-05
2−16 1.4665e-02 6.6854e-03 2.4469e-03 8.4917e-04 2.9407e-04 9.5343e-05
2−17 1.4653e-02 6.6801e-03 2.4450e-03 8.4790e-04 2.9365e-04 9.5150e-05
2−18 1.4644e-02 6.6764e-03 2.4436e-03 8.4700e-04 2.9336e-04 9.5014e-05

DN 1.4743e-02 6.7181e-03 2.4590e-03 8.5349e-04 2.9548e-04 9.6002e-05

PN 1.1339 1.4500 1.5266 1.5303 1.6219 —

Table 3: Error estimates for Examples 1 and 2

Number of mesh points N

64 128 256 512 1024 2048

EN 1.8366e-02 5.7106e-03 1.8600e-03 5.8440e-04 1.7993e-04 5.4402e-05

RN 1.6853 1.6183 1.6703 1.6995 1.7257 —

DN 1.4743e-02 6.7181e-03 2.4590e-03 8.5349e-04 2.9548e-04 9.6002e-05

PN 1.1339 1.4500 1.5266 1.5303 1.6219 —
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Figure 2: Solution graph of Example 2 using CBSCM for µ = 2−14 with N = 256.

Figure 3: Error plot for Example 1
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Figure 4: Error plot for Example 2

Figure 5: Convergence rate for Example 1 and 2
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