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A new hybrid generalization of orthogonal

polynomials

Dorota Bród, Miros law Liana and Anetta Szynal-Liana

Abstract. In this paper, we introduce and study hybrinomials defined by applica-
tion of orthogonal polynomials. Using selected orthogonal polynomials and hybrid
numbers operators, we define Hermite, Laguerre, Legendre and Chebyshev type hy-
brinomials and present some properties of them.
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1 Introduction and preliminaries

Let L2[a, b] denote the family of square-integrable functions on the real interval [a, b]. Two func-
tions f(x) and g(x) in L2[a, b] are said to be orthogonal on the interval [a, b] with respect to a

given continuous and nonnegative weight function w(x) if
b∫
a

w(x)f(x)g(x)dx = 0 or, equivalently,

if ⟨f, g⟩ = 0, see [13]. Recall that ⟨f, g⟩ denote the inner product of the functions f and g. For
orthogonal functions basic concepts and results, see for example [4, 17]. In particular, if the
functions f and g are polynomials of degree n and m, respectively, we deal with orthogonal poly-
nomials. Among the well-known orthogonal polynomials, there are Hermite polynomials Hn(x),
Hen(x), Laguerre polynomials Ln(x) and Jacobi polynomials. The Jacobi polynomials include
Chebyshev polynomials Tn(x), Un(x), Vn(x), Wn(x) and the Legendre polynomials Pn(x) as spe-
cial cases. We will now recall the definitions and properties of selected orthogonal polynomials,
further properties can be found e.g. in [7, 10].

Let n ≥ 0 be an integer. The physicist’s Hermite polynomials Hn(x) are given by Hn(x) =

(−1)nex
2 dn

dxn e
−x2

and the probabilist’s Hermite polynomials Hen(x) are defined by Hen(x) =

(−1)ne
x2

2
dn

dxn e
− x2

2 . The Laguerre polynomials Ln(x) have the form Ln(x) = ex

n!
dn

dxn (e−xxn).
The Chebyshev polynomials of the first kind Tn(x), second kind Un(x), third kind Vn(x) and

fourth kind Wn(x) are defined by Tn(x) = cos(n arccosx), Un(x) = sin((n+1) arccos x)
sin(arccos x) , Vn(X) =

cos((n+ 1
2 ) arccos x)

cos( 1
2 arccos x)

and Wn(x) =
sin((n+ 1

2 ) arccos x)
sin( 1

2 arccos x)
, respectively. The Legendre polynomials Pn(x)

are given by Pn(x) = 1
2nn!

dn

dxn (x2 − 1)n.

The above polynomials may be also defined recursively. For n ≥ 2 we have

Hn(x) = 2xHn−1(x) − 2nHn−2(x)
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with
H0(x) = 1, H1(x) = 2x,

Hen(x) = xHen−1(x) − nHen−2(x)

with
He0(x) = 1, He1(x) = x,

Ln(x) =
2n− 1 − x

n
Ln−1(x) − n− 1

n
Ln−2(x)

with
L0(x) = 1, L1(x) = 1 − x,

Tn(x) = 2xTn−1(x) − Tn−2(x)

with
T0(x) = 1, T1(x) = x,

Un(x) = 2xUn−1(x) − Un−2(x)

with
U0(x) = 1, U1(x) = 2x,

Vn(x) = 2xVn−1(x) − Vn−2(x)

with
V0(x) = 1, V1(x) = 2x− 1,

and
Wn(x) = 2xWn−1(x) −Wn−2(x)

with
W0(x) = 1, W1(x) = 2x + 1,

and

Pn(x) =
(2n− 1)x

n
Pn−1(x) − n− 1

n
Pn−2(x)

with
P0(x) = 1, P1(x) = x.

The Table 1 includes initial terms of selected orthogonal polynomials for n = 0, 1, 2, 3, 4.

n 0 1 2 3 4
Hn(x) 1 2x 4x2 − 2 8x3 − 12x 16x4 − 48x2 + 12
Hen(x) 1 x x2 − 1 x3 − 3x x4 − 6x2 + 3

Ln(x) 1 1− x 1
2

(
x2 − 4x+ 2

)
1
6

(
−x3 + 9x2 − 18x+ 6

)
1
24

(
x4 − 16x3 + 72x2 − 96x+ 24

)
Tn(x) 1 x 2x2 − 1 4x3 − 3x 8x4 − 8x2 + 1
Un(x) 1 2x 4x2 − 1 8x3 − 4x 16x4 − 12x2 + 1
Vn(x) 1 2x− 1 4x2 − 2x− 1 8x3 − 4x2 − 4x+ 1 16x4 − 8x3 − 12x2 + 4x+ 1
Wn(x) 1 2x+ 1 4x2 + 2x− 1 8x3 + 4x2 − 4x− 1 16x4 + 8x3 − 12x2 − 4x+ 1

Pn(x) 1 x 1
2

(
3x2 − 1

)
1
2

(
5x3 − 3x

)
1
8

(
35x4 − 30x2 + 3

)

Table 1: The orthogonal polynomials.

In the literature, we can find many books and papers concerning polynomials and their
properties, see, e.g. [1, 3, 5, 6, 11, 12, 13, 15]. In this paper, we use the concept of orthogonal
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polynomials in the theory of hybrid numbers. The hybrid numbers were introduced in [14] as
a generalization of complex, dual and hyperbolic numbers. A hybrid number Z has the form
Z = a + bi + cε + dh, where a, b, c, d ∈ R and i, ε, h are operators which satisfy the following
relations

i2 = −1, ε2 = 0, h2 = 1, ih = −hi = ε + i. (1.1)

The set of hybrid numbers is denoted by K. Let Z1 = a1 + b1i + c1ε + d1h and Z2 = a2 + b2i +
c2ε + d2h be any two hybrid numbers. Then

Z1 = Z2 if and only if a1 = a2, b1 = b2, c1 = c2, d1 = d2,
Z1 + Z2 = (a1 + a2) + (b1 + b2)i + (c1 + c2)ε + (d1 + d2)h,
Z1 − Z2 = (a1 − a2) + (b1 − b2)i + (c1 − c2)ε + (d1 − d2)h,
for α ∈ R αZ1 = αa1 + αb1i + αc1ε + αd1h.

Moreover, the conjugate of the hybrid number Z1 = a1 + b1i + c1ε + d1h, denoted by Z1, is
defined as Z1 = a1 − b1i − c1ε− d1h.

Using (1.1), we can multiply hybrid numbers. The Table 2 presents products of operators i,
ε, and h.

· i ε h

i −1 1 − h ε + i

ε 1 + h 0 −ε

h −(ε + i) ε 1

Table 2: The hybrid number multiplication.

It is easy to see that the multiplication of hybrid numbers can be done in the same way as
the multiplication of algebraic expressions. Other properties of hybrid numbers are given in [14].

The term ’hybrinomial’ was used for the first time in [18]. The authors defined, using
Fibonacci and Lucas polynomials, Fibonacci and Lucas hybrinomials. Some generalizations of
Fibonacci and Lucas hybrinomials, as well as properties of other hybrinomials, can be found in
[2, 8, 9, 16, 19].

Now, we will define selected hybrinomials as follows. For a nonnegative integer n and complex
x, the nth physicist’s Hermite hybrinomial HHn(x), probabilist’s Hermite hybrinomial HHen(x),
Laguerre hybrinomial HLn(x), Chebyshev hybrinomial of the first kind HTn(x), second kind
HUn(x), third kind HVn(x), fourth kind HWn(x) and Legendre hybrinomial HPn(x) is defined
by

HHn(x) = Hn(x) + Hn+1(x)i + Hn+2(x)ε + Hn+3(x)h,

HHen(x) = Hen(x) + Hen+1(x)i + Hen+2(x)ε + Hen+3(x)h,

HLn(x) = Ln(x) + Ln+1(x)i + Ln+2(x)ε + Ln+3(x)h, (1.2)

HTn(x) = Tn(x) + Tn+1(x)i + Tn+2(x)ε + Tn+3(x)h, (1.3)

HUn(x) = Un(x) + Un+1(x)i + Un+2(x)ε + Un+3(x)h, (1.4)

HVn(x) = Vn(x) + Vn+1(x)i + Vn+2(x)ε + Vn+3(x)h,

HWn(x) = Wn(x) + Wn+1(x)i + Wn+2(x)ε + Wn+3(x)h

and
HPn(x) = Pn(x) + Pn+1(x)i + Pn+2(x)ε + Pn+3(x)h,

respectively.
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2 Main results

At the beginning, we will focus on the properties of hybrinomials associated with Chebyshev
polynomials. First, let us recall the dependencies between the Chebyshev polynomials (see [13])

Tn(x) =
1

2
(Un(x) − Un−2(x)), n = 2, 3, . . .

Vn(x) = Un(x) − Un−1(x), n = 1, 2, . . .

Wn(x) = Un(x) + Un−1(x), n = 1, 2, . . . .

Using the above properties, it is easy to show relationships between Chebyshev hybrinomials

HTn(x) =
1

2
(HUn(x) −HUn−2(x)), n = 2, 3, . . .

HVn(x) = HUn(x) −HUn−1(x), n = 1, 2, . . .

HWn(x) = HUn(x) + HUn−1(x), n = 1, 2, . . . .

In the next part of this section we will study some properties of the Chebyshev hybrinomials of
the second kind; the properties of the remaining Chebyshev hybrinomials can be obtained using
the dependencies presented.

Theorem 2.1. For a nonnegative integer n and complex x, |x| ̸= 1, we have

HUn(x) = 2xHUn−1(x) −HUn−2(x) for n ≥ 2 (2.1)

with

HU0(x) = 1 + 2xi + (4x2 − 1)ε + (8x3 − 4x)h

HU1(x) = 2x + (4x2 − 1)i + (8x3 − 4x)ε + (16x4 − 12x2 + 1)h.
(2.2)

Proof. Let n = 2. Then

HU2(x) = 2xHU1(x) −HU0(x)

= 2x(2x + (4x2 − 1)i + (8x3 − 4x)ε + (16x4 − 12x2 + 1)h)

− 1 − 2xi − (4x2 − 1)ε− (8x3 − 4x)h

= (4x2 − 1) + (8x3 − 4x)i + (16x4 − 12x2 + 1)ε + (32x5 − 32x3 + 6x)h

= U2(x) + U3(x)i + U4(x)ε + U5(x)h.

Let n ≥ 3. Using the definition of Chebyshev polynomials, we get

HUn(x) = Un(x) + Un+1(x)i + Un+2(x)ε + Un+3(x)h

= (2xUn−1(x) − Un−2(x)) + (2xUn(x) − Un−1(x))i

+ (2xUn+1(x) − Un(x))ε + (2xUn+2(x) − Un+1(x))h

= 2x(Un−1(x) + Un(x)i + Un+1(x)ε + Un+2(x)h)

− (Un−2(x) + Un−1(x)i + Un(x)ε + Un+1(x)h)

= 2xHUn−1(x) −HUn−2(x),

which completes the proof.
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For a nonnegative integer n and complex x, |x| ̸= 1, we have

Un(x) =
αn+1(x) − βn+1(x)

α(x) − β(x)
, (2.3)

where
α(x) = x +

√
x2 − 1, β(x) = x−

√
x2 − 1, (2.4)

see [13].

Theorem 2.2. (Binet formula for Chebyshev hybrinomials of the second kind) For a nonnegative
integer n and complex x, |x| ̸= 1, we have

HUn(x) =
αn+1(x)

α(x) − β(x)

(
1 + α(x)i + α2(x)ε + α3(x)h

)
− βn+1(x)

α(x) − β(x)

(
1 + β(x)i + β2(x)ε + β3(x)h

)
,

(2.5)

where α(x), β(x) are given by (2.4).

Proof. Using (1.4) and (2.3), we have

HUn(x) =
αn+1(x) − βn+1(x)

α(x) − β(x)
+

αn+2(x) − βn+2(x)

α(x) − β(x)
i

+
αn+3(x) − βn+3(x)

α(x) − β(x)
ε +

αn+4(x) − βn+4(x)

α(x) − β(x)
h

=
αn+1(x)

α(x) − β(x)

(
1 + α(x)i + α2(x)ε + α3(x)h

)
− βn+1(x)

α(x) − β(x)

(
1 + β(x)i + β2(x)ε + β3(x)h

)
,

which ends the proof.

For simplicity of notation let

α̂(x) = 1 + α(x)i + α2(x)ε + α3(x)h,

β̂(x) = 1 + β(x)i + β2(x)ε + β3(x)h,
(2.6)

Then we can write (2.5) as

HUn(x) =
αn+1(x)α̂(x) − βn+1(x)β̂(x)

α(x) − β(x)
.

Theorem 2.3. (general bilinear index-reduction formula for Chebyshev hybrinomials of the sec-
ond kind) Let a ≥ 0, b ≥ 0, c ≥ 0, d ≥ 0 be integers such that a + b = c + d. Then for complex
x, |x| ̸= 1, we have

HUa(x) · HUb(x) −HUc(x) · HUd(x)

=
1

(α(x) − β(x))2

[(
αc(x)βd(x) − αa(x)βb(x)

)
α̂(x)β̂(x)

+
(
βc(x)αd(x) − βa(x)αb(x)

)
β̂(x)α̂(x)

]
,

where α(x), β(x) and α̂(x), β̂(x) are given by (2.4) and (2.6), respectively.
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Proof. By formula (2.5), we get

HUa(x) · HUb(x) −HUc(x) · HUd(x)

=
1

(α(x) − β(x))2
[(
αa+b+2(x) − αc+d+2(x)

)
α̂(x)α̂(x)

+
(
βa+b+2(x) − βc+d+2(x)

)
β̂(x)β̂(x)

+
(
αc(x)βd(x)α(x)β(x) − αa(x)βb(x)α(x)β(x)

)
α̂(x)β̂(x)

+
(
βc(x)αd(x)β(x)α(x) − βa(x)αb(x)β(x)α(x)

)
β̂(x)α̂(x)

]
.

Using a + b = c + d and the fact that α(x) · β(x) = 1, we get

HUa(x) · HUb(x) −HUc(x) · HUd(x)

=
1

(α(x) − β(x))2

[(
αc(x)βd(x) − αa(x)βb(x)

)
α̂(x)β̂(x)

+
(
βc(x)αd(x) − βa(x)αb(x)

)
β̂(x)α̂(x)

]
,

which ends the proof.

It is easily seen that for special values of a, b, c and d, by Theorem 2.3, we get some identities
for Chebyshev hybrinomials of the second kind.

Corollary 2.4. (d’Ocagne identity for Chebyshev hybrinomials of the second kind) Let n ≥ 0,
m ≥ 0 be integers. Then for complex x, |x| ̸= 1, we have

HUn(x) · HUm+1(x) −HUn+1(x) · HUm(x)

=
αn(x)βm(x)α̂(x)β̂(x) − βn(x)αm(x)β̂(x)α̂(x)

α(x) − β(x)
,

where α(x), β(x) and α̂(x), β̂(x) are given by (2.4) and (2.6), respectively.

Corollary 2.5. (Vajda identity for Chebyshev hybrinomials of the second kind) Let n ≥ 0, m ≥ 0,
r ≥ 0 be integers such that n ≥ r. Then for complex x, |x| ̸= 1, we have

HUm+r(x) · HUn−r(x) −HUm(x) · HUn(x)

=
1

(α(x) − β(x))2

[
αm(x)βn(x)

(
1 −

(
α(x)

β(x)

)r)
α̂(x)β̂(x)

+βm(x)αn(x)

(
1 −

(
β(x)

α(x)

)r)
β̂(x)α̂(x)

]
,

where α(x), β(x) and α̂(x), β̂(x) are given by (2.4) and (2.6), respectively.

Corollary 2.6. (first Halton identity for Chebyshev hybrinomials of the second kind) Let n ≥ 0,
m ≥ 0, r ≥ 0 be integers. Then for complex x, |x| ̸= 1, we have

HUm+r(x) · HUn(x) −HUr(x) · HUm+n(x)

=
βm(x) − αm(x)

(α(x) − β(x))2

[
αr(x)βn(x)α̂(x)β̂(x) − βr(x)αn(x)β̂(x)α̂(x)

]
,

where α(x), β(x) and α̂(x), β̂(x) are given by (2.4) and (2.6), respectively.
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Corollary 2.7. (second Halton identity for Chebyshev hybrinomials of the second kind) Let n ≥ 0,
k ≥ 0, s ≥ 0 be integers such that n ≥ k, n ≥ s. Then for complex x, |x| ̸= 1, we have

HUn+k(x) · HUn−k(x) −HUn+s(x) · HUn−s(x)

=
1

(α(x) − β(x))2

[((
α(x)

β(x)

)s

−
(
α(x)

β(x)

)k
)
α̂(x)β̂(x)

+

((
β(x)

α(x)

)s

−
(
β(x)

α(x)

)k
)
β̂(x)α̂(x)

]
,

where α(x), β(x) and α̂(x), β̂(x) are given by (2.4) and (2.6), respectively.

Corollary 2.8. (Catalan identity for Chebyshev hybrinomials of the second kind) Let n ≥ 0,
r ≥ 0 be integers such that n ≥ r. Then for complex x, |x| ̸= 1, we have

HUn+r(x) · HUn−r(x) −HUn(x) · HUn(x)

=
1

(α(x) − β(x))2

[(
1 −

(
α(x)

β(x)

)r)
α̂(x)β̂(x)

+

(
1 −

(
β(x)

α(x)

)r)
β̂(x)α̂(x)

]
,

where α(x), β(x) and α̂(x), β̂(x) are given by (2.4) and (2.6), respectively.

Corollary 2.9. (Cassini identity for Chebyshev hybrinomials of the second kind) Let n ≥ 1 be
an integer. Then for complex x, |x| ̸= 1, we have

HUn+1(x) · HUn−1(x) −HUn(x) · HUn(x)

=
1

(α(x) − β(x))2

[(
1 − α(x)

β(x)

)
α̂(x)β̂(x) +

(
1 − β(x)

α(x)

)
β̂(x)α̂(x)

]
,

where α(x), β(x) and α̂(x), β̂(x) are given by (2.4) and (2.6), respectively.

The next theorem presents the generating function for Chebyshev hybrinomials of the second
kind.

Theorem 2.10. The generating function for the sequence of the Chebyshev hybrinomials of the
second kind {HUn(x)} is

g(t) =
HU0(x) + (HU1(x) − 2xHU0(x))t

1 − 2xt + t2
,

where HU0(x) and HU1(x) are given by (2.2).

Proof. Assume that the generating function of the sequence of the Chebyshev hybrinomials of

the second kind {HUn(x)} has the form g(t) =
∞∑

n=0
HUn(x)tn. Then

g(t) = HU0(x) + HU1(x)t + HU2(x)t2 + . . .

Hence we get

−2xt · g(t) = −2xHU0(x)t− 2xHU1(x)t2 − 2xHU2(x)t3 − . . .

t2 · g(t) = HU0(x)t2 + HU1(x)t3 + HU2(x)t4 + . . .
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By adding these three equalities above, we get

g(t)(1 − 2xt + t2) = HU0(x) + (HU1(x) − 2xHU0(x))t

since HUn(x) = 2xHUn−1(x)−HUn−2(x) (see (2.1)) and the coefficients of tn for n ≥ 2 are equal
to zero. Moreover, by simple calculations we have

HU1(x) − 2xHU0(x) = −i − 2xε + (−4x2 + 1)h.

Now, we give a matrix representation of Chebyshev hybrinomials of the second kind.

Theorem 2.11. For a positive integer n and complex x, |x| ̸= 1, we have[
HUn+1(x) −HUn(x)
HUn(x) −HUn−1(x)

]
=

[
HU2(x) −HU1(x)
HU1(x) −HU0(x)

]
·
[

2x −1
1 0

]n−1

.

(2.7)

Proof. (by induction on n) If n = 1, then assuming that the matrix to the power of 0 is the
identity matrix, the result is obvious. Assuming the formula (2.7) holds for n ≥ 1, we shall prove
it for n + 1. Using induction’s hypothesis and formula (2.1), we have[

HU2(x) −HU1(x)
HU1(x) −HU0(x)

]
·
[

2x −1
1 0

]n

=

[
HUn+1(x) −HUn(x)
HUn(x) −HUn−1(x)

]
·
[

2x −1
1 0

]
=

[
2xHUn+1(x) −HUn(x) −HUn+1(x)
2xHUn(x) −HUn−1(x) −HUn(x)

]
=

[
HUn+2(x) −HUn+1(x)
HUn+1(x) −HUn(x)

]
,

which ends the proof.

Using some properties of orthogonal polynomials, we can also obtain their hybrid versions.
For example, using Tn(x)+Tn−1(x) = (1+x)Vn−1(x), n = 1, 2, . . . (see [13]), we obtain HTn(x)+
HTn−1(x) = (1 + x)HVn−1(x), n = 1, 2, . . .. Using (1.3), we have

HTn(x) + HTn−1(x) = Tn(x) + Tn+1(x)i + Tn+2(x)ε + Tn+3(x)h

+ Tn−1(x) + Tn(x)i + Tn+1(x)ε + Tn+2(x)h

= (1 + x)Vn−1(x) + (1 + x)Vn(x)i + (1 + x)Vn+1(x)ε + (1 + x)Vn+2(x)h

= (1 + x)HVn−1(x).

In the same way, using Theorem 2.12, we can prove Theorem 2.13.

Theorem 2.12. [13] For a nonnegative integer n and complex x, |x| ̸= 1, we have

(i) Vn(x) + Wn(x) = 2Un(x),
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(ii) Vn(x) + Vn−1(x) = 2Tn(x), n = 1, 2, . . .

(iii) Wn(x) −Wn−1(x) = 2Tn(x), n = 1, 2, . . .

(iv) Tn(x) − Tn−1(x) = (x− 1)Wn−1(x), n = 1, 2, . . .

(v) Tn(x) − Tn−2(x) = 2(x2 − 1)Un−2(x), n = 2, 3, . . .

Theorem 2.13. For a nonnegative integer n and complex x, |x| ̸= 1, we have

(i) HVn(x) + HWn(x) = 2HUn(x),

(ii) HVn(x) + HVn−1(x) = 2HTn(x), n = 1, 2, . . .

(iii) HWn(x) −HWn−1(x) = 2HTn(x), n = 1, 2, . . .

(iv) HTn(x) −HTn−1(x) = (x− 1)HWn−1(x), n = 1, 2, . . .

(v) HTn(x) −HTn−2(x) = 2(x2 − 1)HUn−2(x), n = 2, 3, . . .

In the next part of this paper, we focus on Hermite, Laguerre and Legendre hybrinomials.
Explicit expressions for these orthogonal polynomials have the forms

Hn(x) = n!

⌊n
2 ⌋∑

m=0

(−1)m

m!(n− 2m)!
(2x)n−2m, (2.8)

Hen(x) = n!

⌊n
2 ⌋∑

m=0

(−1)m

m!(n− 2m)!

xn−2m

2m
, (2.9)

Ln(x) =

n∑
m=0

(
n

m

)
(−1)m

m!
xm, (2.10)

and

Pn(x) = 2n
n∑

m=0

(
n

m

)(n+m−1
2

n

)
xm, (2.11)

respectively.

For example, using (2.10), we obtain the explicit formula for the nth Laguerre hybrinomial.
For a nonnegative integer n and complex x, we have

HLn(x) = Ln(x) + Ln+1(x)i + Ln+2(x)ε + Ln+3(x)h

=

n∑
m=0

(
n

m

)
(−1)m

m!
xm +

n+1∑
m=0

(
n + 1

m

)
(−1)m

m!
xmi

+

n+2∑
m=0

(
n + 2

m

)
(−1)m

m!
xmε +

n+3∑
m=0

(
n + 3

m

)
(−1)m

m!
xmh.

(2.12)

In a similar way, we can obtain explicit formulas for the remaining hybrinomials. We can also
use the fact that the Hermite polynomials can be expressed as a special case of the Laguerre
polynomials, i.e.

H2n(x) = (−1)n22nn!L
(− 1

2 )
n (x2),

H2n+1(x) = (−1)n22n+1n!xL
( 1

2 )
n (x2),

Hen(x) = 2−
n
2 Hn

(
x√
2

)
.
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The Legendre polynomials can also be defined using the generating function

∞∑
n=0

Pn(x)tn =
1√

1 − 2xt + t2
. (2.13)

Using (2.13), we have

∞∑
n=0

HPn(x)tn =

∞∑
n=0

(Pn(x) + Pn+1(x)i + Pn+2(x)ε + Pn+3(x)h)

=

∞∑
n=0

Pn(x) +

∞∑
n=0

Pn(x)i − P0(x)i +

∞∑
n=0

Pn(x)ε− P0(x)ε− P1(x)ε

+

∞∑
n=0

Pn(x)h − P0(x)h − P1(x)h − P2(x)h

=
1 + i + ε + h√

1 − 2xt + t2
− i − (1 + x)ε−

(
3

2
x2 + x +

1

2

)
h

and we get

∞∑
n=0

HPn(x)tn =
1√

1 − 2xt + t2
+

1 −
√

1 − 2xt + t2√
1 − 2xt + t2

i

+
1 − (1 + x)

√
1 − 2xt + t2√

1 − 2xt + t2
ε +

1 −
(
3
2x

2 + x + 1
2

)√
1 − 2xt + t2

√
1 − 2xt + t2

h.

The use of other properties of polynomials presented will allow us to obtain new properties of
the corresponding hybrinomials.
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