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A new hybrid generalization of orthogonal

polynomials
Dorota Brod, Mirostaw Liana and Anetta Szynal-Liana

Abstract. In this paper, we introduce and study hybrinomials defined by applica-
tion of orthogonal polynomials. Using selected orthogonal polynomials and hybrid
numbers operators, we define Hermite, Laguerre, Legendre and Chebyshev type hy-
brinomials and present some properties of them.
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1 Introduction and preliminaries

Let L3[a,b] denote the family of square-integrable functions on the real interval [a, b]. Two func-
tions f(x) and g(z) in La]a,b] are said to be orthogonal on the interval [a,b] with respect to a

b
given continuous and nonnegative weight function w(z) if [w(x)f(x)g(z)dz = 0 or, equivalently,

if (f,g) =0, see [13]. Recall that (f,g) denote the inner product of the functions f and g. For
orthogonal functions basic concepts and results, see for example [4, 17]. In particular, if the
functions f and g are polynomials of degree n and m, respectively, we deal with orthogonal poly-
nomials. Among the well-known orthogonal polynomials, there are Hermite polynomials H, (z),
He,(x), Laguerre polynomials L,(z) and Jacobi polynomials. The Jacobi polynomials include
Chebyshev polynomials T), (), U, (x), Vy,(z), Wy, (z) and the Legendre polynomials P, (z) as spe-
cial cases. We will now recall the definitions and properties of selected orthogonal polynomials,
further properties can be found e.g. in [7, 10].

Let n > 0 be an integer. The physicist’s Hermite polynomials H,,(z) are given by H,(z) =
(—1)”6””2 d"_o—o* and the probabilist’s Hermite polynomials He, (z) are defined by He,(z) =

dm‘n
22 n 12 xT n
(-1)"e’T e~ . The Laguerre polynomials L,(z) have the form L,(z) = & 4= (e %am).

The Chebyshev polynomials of the first kind T,,(x), second kind U, (), third kind V,,(z) and
fourth kind W, (z) are defined by T}, (z) = cos(narccosz), U, (x) = Snlntbarcoss) y/xy

sin(arccos z)
1 - 1
% and W, (z) = M, respectively. The Legendre polynomials P, (z)

are given by P, (x) = 5t 4 (22 — 1)".

2nn! dzn

The above polynomials may be also defined recursively. For n > 2 we have

sin(3 arccos x)

Hy(z) =2xH,_1(z) — 2nH,_o(x)
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with
HO(J:) = 17 Hl(x) = 2$7
He,(x) =xHep_1(x) — nHep_o(x)
with
Heg(x) =1, Hey(z) =z,
2n—1—=x n—1
L,(x) TLn_l(x) - L, _o(x)
with
Lo(z) =1, Li(z) =1—u,
To(z) = 22T, 1(x) — Tr—a(x)
with
To(z) =1, Ti(z) = =z,
Un(z) =22Up_1(z) — Up_2(x)
with
Uo(z) =1, Ui(z) = 2,
Vi(z) =22V, _1(x) — Vy—a()
with
W(z) =1, Vi(x) =2z -1,
and
Wi () = 22eWy_1(x) — Wy_a(z)
with
Wo(z) =1, Wi(z) =22+ 1,
and ) . )
Pn(x) - wpn—l(x) - - Pn—Q(x)
with

Py(x) =1, Pi(z) ==.

The Table 1 includes initial terms of selected orthogonal polynomials for n =0,1,2,3,4.

n 0 1 2 3 4

H,(x) |1 2z 422 -2 8z3 — 122 16x% — 4822 + 12
Hep(z) | 1 T zZ -1 x5 — 3z % — 622 + 3

Ln(x) [1[1—a [1(@?—4a+2) [ I (—2®+92% — 182 +6) | 5; (zF — 162 + 7222 — 96 + 24)
To(z) |1 x 222 — 1 423 — 3z 8zt —8z2 +1

Un(z) |1 2z 4z7 —1 8x3 — 4z 162 — 1222 + 1

Val@) [1[20—1] 42?7 -22x—1 8x% —dx? —dz + 1 16z% — 823 — 1222 + 4z + 1
Wy(z) |1 [2c+1 | 42Z7+22 -1 8z +4x? —dx — 1 162% + 823 — 1222 — 4z + 1
Pa(z) |1 T (322 -1) % (52° — 3x) £ (352% — 3022 + 3)

Table 1: The orthogonal polynomials.

In the literature, we can find many books and papers concerning polynomials and their
properties, see, e.g. [1, 3, 5, 6, 11, 12, 13, 15]. In this paper, we use the concept of orthogonal
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polynomials in the theory of hybrid numbers. The hybrid numbers were introduced in [14] as
a generalization of complex, dual and hyperbolic numbers. A hybrid number Z has the form
Z = a + bi + ce + dh, where a,b,c,d € R and i, €, h are operators which satisfy the following
relations

iZ=-1,e2=0, h?=1, ih=—hi=¢+1i. (1.1)
The set of hybrid numbers is denoted by K. Let Z; = a1 + b1i + c1e + dih and Zy = as + boi +
c2€ + doh be any two hybrid numbers. Then

Zl = 22 if and only if ap = ag, bl = bg, C1 = Ca, dl = dg,
Zy +Zs = (a1 +az) + (by +b2)i+ (c1 + c2)e + (di + da)h,
Zy —Zy = (a1 —az) + (b1 — b2)i+ (c1 — c2)e + (di — da)h,
fora e R aZ; = aa; + abii+ acie + adih.

Moreover, the conjugate of the hybrid number Z; = ay + b1i + c1€ + d1h, denoted by Z,, is
defined as Z1 = a; — bli — C1€ — dlh

Using (1.1), we can multiply hybrid numbers. The Table 2 presents products of operators i,
€, and h.

i € h
-1 1—h|e+i
€ 1+h 0 —€
h|—(e+i)| € 1

Table 2: The hybrid number multiplication.

It is easy to see that the multiplication of hybrid numbers can be done in the same way as
the multiplication of algebraic expressions. Other properties of hybrid numbers are given in [14].

The term ’hybrinomial’ was used for the first time in [18]. The authors defined, using
Fibonacci and Lucas polynomials, Fibonacci and Lucas hybrinomials. Some generalizations of
Fibonacci and Lucas hybrinomials, as well as properties of other hybrinomials, can be found in
[2, 8,9, 16, 19].

Now, we will define selected hybrinomials as follows. For a nonnegative integer n and complex
x, the nth physicist’s Hermite hybrinomial H H,, (), probabilist’s Hermite hybrinomial HHe,, (z),
Laguerre hybrinomial H L, (z), Chebyshev hybrinomial of the first kind HT, (x), second kind
HU, (), third kind HV,,(x), fourth kind HW, (z) and Legendre hybrinomial H P, (x) is defined
by

HHy(z) = Hp(2) + Hy1(2)i+ Hypo(x)e + Hops(z)h,

HHe,(z) = Hep(z) + Hepq1(2)i+ Hepqo(x)e + Hepys(z)h,
HLn(z) = Ln(z) + L1 (2)i+ Loto(v)e + Lyya(z)h, (1.2)
HT(7) = To () + Toy1(2)i+ Thya(z)e + Trps(@)h,
HUn(2) = Un(z) + Upnt1(2)i + Unya(w)e + Unyz(z)h,
HV(2) = V() + Vi1 (2)i + Viya (2)e + Vg s (@)h,
HWy(z) = Wi (z) + Wiy (2)i+ Wigo(2)e + Wiis(z)h

and
HPy(x) = Po(x) + Pog1(2)i+ Poya(x)e + Poys(a)h,

respectively.
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2 Main results

At the beginning, we will focus on the properties of hybrinomials associated with Chebyshev
polynomials. First, let us recall the dependencies between the Chebyshev polynomials (see [13])

Valz) =Un(z) = Up—1(z), n=1,2,...
Wp(z) =Up(z) + Up—1(z), n=1,2,....

Using the above properties, it is easy to show relationships between Chebyshev hybrinomials
1
HT,(z) = g(HUn(x) —HU,—2(x)), n=2,3,...

HV,(x) = HU, (z) — HUp—1(x), n=1,2,...
HW,(2) = HUp(z) + HUp-1(z), n=1,2,....

In the next part of this section we will study some properties of the Chebyshev hybrinomials of
the second kind; the properties of the remaining Chebyshev hybrinomials can be obtained using
the dependencies presented.

Theorem 2.1. For a nonnegative integer n and complex x, |x| # 1, we have
HU, (z) = 20HU,—1(x) — HUp_2(z) for n > 2 (2.1)
with

HUo(z) = 1+ 221 + (4% — 1)e + (82° — 4z)h
HU, (x) = 22 + (42% — 1)i + (82 — 4z)e + (162 — 122% + 1)h.

Proof. Let n =2. Then

HUs(x) = 20 HU; (x) — HUp(z)
=22(2z + (42 — 1)i + (82% — 4x)e + (162" — 122% + 1)h)
—1—2xi — (427 — 1)e — (82 — 42)h
= (42% — 1) + (82® — 4x)i + (162* — 1227 + 1)e + (322° — 322> + 62)h
= Us(x) + Us(x)i+ Us(z)e + Us(z)h.

Let n > 3. Using the definition of Chebyshev polynomials, we get

HOE) = ) U 0+ s+ Ul
= (22Un-1(z) = Un—2(2)) + (22Un(2) — Un—1(2))i
T (20U (2) Un<z>>e T (20Upa(z) - Un+1<x>>h
=2z (Up—1(2) + Un(2)i+ Unt1(2)€ + Uny2(2)h)
— (Up—2(z) + Up—1(z)i+ Uy(z)e + Upy1(x)h)
= 20HUp_1(x) — HUp—2(z),

which completes the proof. O
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For a nonnegative integer n and complex z, |x| # 1, we have

0" () — )

T (23)
where
r)=z+Vaz-1, flz)=2— Va2 -1, (2.4)
see [13].

Theorem 2.2. (Binet formula for Chebyshev hybrinomials of the second kind) For a nonnegative
integer n and complex x, |x| # 1, we have

HUW (@) = @) (1 ¢ a(@)i + a(z)e + a*(a)h)
_ gl (x) 2)i 2(, 3(p '
o g (Lt A@i+ B (x)e+ 5 (o)h),
where o(x), B(x) are given by (2.4).
Proof. Using (1.4) and (2.3), we have
oy @ @) = (@) | a2 (a) — B (),
e B [ T R
@) = ) 0 a) - B @)
T s@ T e @
~ 9@ (1 4 a(@)i+ a2(@)e + a¥(w)h)
a(z) — B(x)
n+1
- f;(éﬂu+5<>+ﬁ<k+ﬂ%>)
which ends the proof. O
For simplicity of notation let
a(x) = 14 a(x)i+ o?(x)e + o®(x)h, (26)
Blx) = 1+ Ba)i+ B*(2)e + () '

Then we can write (2.5) as

amt(z)a(x) — BT (x)B(x)

a(z) — p(z) '
Theorem 2.3. (general bilinear indez-reduction formula for Chebyshev hybrinomials of the sec-
ond kind) Let a > 0, b >0, ¢ > 0, d > 0 be integers such that a +b = c+ d. Then for complex
x, x| # 1, we have

HU, () - HUy(x) — HU.(z) - HUq4()
:G@F%RHFU“@W”@—a%m@u»mmm@

+ (B (@)a’ (@) — B (w)a’(2)) Blw)a(a)]

where a(z), B(z) and é(z), B(x) are given by (2.4) and (2.6), respectively.

HU, () =
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Proof. By formula (2.5), we get

HUy(x) - HUp(x) — HU(x) - HU4()
1
~ (a(2) - B@))?
+ (6a+b+2 ) ,Bc+d+2 )6 T B(-T)
+ (a“(z) 8% (2)o(z) B(z) —
+ (5

(
B(x) Oéd (2)B(z)a(x) — B(x)a’ (z)B(x)a()) B@)d(ﬂf)} -
Using a + b = ¢+ d and the fact that a(z) - f(x) = 1, we get

HUy(x) - HUp(x) — HU () - HUqy4(x)
= m [(0°()8%(2) — 0 (@)8"(2)) () B(a)
+ (B(x)a’() - B (2)a (x)) B@)a(a) |

which ends the proof. O

[( a+b+2( c+d+2 ($)) ~

) —«

It is easily seen that for special values of a, b, c and d, by Theorem 2.3, we get some identities
for Chebyshev hybrinomials of the second kind.

Corollary 2.4. (d’Ocagne identity for Chebyshev hybrinomials of the second kind) Let n > 0,
m > 0 be integers. Then for complex x, |x| # 1, we have

HU, (z) - HUpng1(x) — HUpy1(2) - HUp ()
a"(x) ™ (x)d(x) B(x) — B (x)a™ () B(x)d(x)
az) — (fU) ’

where a(z), B(z) and &(x), B(z) are given by (2.4) and (2.6), respectively.

Corollary 2.5. (Vajda identity for Chebyshev hybrinomials of the second kind) Let n > 0, m > 0,
r > 0 be integers such that n > r. Then for complex x, |x| # 1, we have

MU (2) - MUy () = HUn (&) HU(2)
o e (1- (59) ) dwit)

rom@ane) (1- (22 )) )]
)

where a(z), B(z) and &(x), B(z) are given by (2.4) and (2.6

respectively.

Corollary 2.6. (first Halton identity for Chebyshev hybrinomials of the second kind) Let n > 0,
m >0, r > 0 be integers. Then for complex x, |x| # 1, we have

HUppir () - HUp(2) — HU(2) - HU g ()

_B@) (@) [ an s ae N am e
—(M@_ﬁmw[ (2)8"(@)a(@)3(x) — BT (2)a"(2)A(x)a(x)]

where a(z), B(z) and é(z), B(x) are given by (2.4) and (2.6), respectively.
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Corollary 2.7. (second Halton identity for Chebyshev hybrinomials of the second kind) Letn > 0,
k>0, s >0 be integers such that n >k, n > s. Then for complex x, |x| # 1, we have

HUpk(x) - HUp—p(x) — HUpgs(x) - HUp—s()

- G K(gEmg) ) (gg;)k) S@Pte)

() -2 o]

where a(z), B(z) and é(z), B(x) are given by (2.4) and (2.6), respectively.

Corollary 2.8. (Catalan identity for Chebyshev hybrinomials of the second kind) Let n > 0,
r > 0 be integers such that n > r. Then for complex x, |x| # 1, we have

Hmﬂwymh4@—ﬁm@y?m@)
- oo (- () ) awie

+(1- (ﬁggg;)) fa)aa)]

where a(z), B(z) and é(z), B(x) are given by (2.4) and (2.6), respectively.

Corollary 2.9. (Cassini identity for Chebyshev hybrinomials of the second kind) Let n > 1 be
an integer. Then for complex x, |x| # 1, we have

HUn i1 (2) - HU 1 (2) — HU, () - HU (2)
= ger (1 i) @i + (1 20 ) deie).

where a(z), B(z) and &(x), B(z) are given by (2.4) and (2.6), respectively.

The next theorem presents the generating function for Chebyshev hybrinomials of the second
kind.

Theorem 2.10. The generating function for the sequence of the Chebyshev hybrinomials of the
second kind {HU, ()} is

ﬂw:%%@%ﬂﬁggtﬁﬂuu@%

where HUp(x) and HU;(x) are given by (2.2).

Proof. Assume that the generating function of the sequence of the Chebyshev hybrinomials of
the second kind {HU,, ()} has the form ¢(¢t) = > HU,(x)t". Then
n=0

g(t) = HUo(x) + HU (2)t + HU(2)t* + . ..
Hence we get
—2xt - g(t) = —22HUp (x)t — 20HU, (x)t* — 20HU(x)t> — ...
t2- g(t) = HUy(2)t* + HUy (2)t® + HUz (z)t* + . ..
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By adding these three equalities above, we get
g(t)(1 = 2zt +1%) = HUo(z) + (HU; () — 20HUy(2))t

since HU,, (z) = 2aHU,—1(x) — HU,—2(x) (see (2.1)) and the coefficients of t" for n > 2 are equal
to zero. Moreover, by simple calculations we have

HU, (x) — 20HUy(x) = —i — 22€ + (—42% + 1)h.

O
Now, we give a matrix representation of Chebyshev hybrinomials of the second kind.
Theorem 2.11. For a positive integer n and complezx x, |x| # 1, we have
[ HUp11(x) Un(z
Uy () —HU —1(x)
(2.7)
(
(

)
(
[ HU(x) —HUl(x§ } [ 2¢ -1 ]"‘1.

HU(z) —HUy(z 1 0

Proof. (by induction on n) If n = 1, then assuming that the matrix to the power of 0 is the
identity matrix, the result is obvious. Assuming the formula (2.7) holds for n > 1, we shall prove
it for n + 1. Using induction’s hypothesis and formula (2.1), we have

e e [ ]

LRl St |1

_ [ 20HUp 11 () — HU () —HUpy1(x) }
20HU, (x) — HUp—1(x) —HU,(z)

— |: 7-ujﬂ-l-Q(x) 7HUn+1($) :|
HUps1(z) —HUn(z) |’

which ends the proof. O

Using some properties of orthogonal polynomials, we can also obtain their hybrid versions.
For example, using T, (z)+T,—1(x) = (14+2)V,—1(x), n=1,2,... (see [13]), we obtain HT,,(z)+
HT—1(z) = (1 4+ 2)HV,—1(z), n=1,2,.... Using (1.3), we have
HTw(2) + HT -1 (x) = Tn(z) + Toy1 ()i + Thy2(2)e + Thys(z)h
+ To-1(x ) T (2)i+ Tht1(2)e + Thio(z)h
=1 +2)Voa(z) + (1 +2)Va(@)i+ (1+2)Vasi(z)e + (1+2)Voi2(z)h
=1+ x)HVn 1(x).

In the same way, using Theorem 2.12, we can prove Theorem 2.13.
Theorem 2.12. [13] For a nonnegative integer n and complex x, |x| # 1, we have

(i) Vi(z) + Wy(z) = 2U,(2),
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(i) Vi(x) + Vio1(x) = 2T, (x), n=1,2,...

(iil) Wy(z) = Wy_1(z) = 2T, (x), n=1,2,...

(iv) Th(z) = Tho1(z) = (x = DWho1(x), n=1,2,...
(v) To(x) — Tp—o(z) = 2(2% — 1)Up—2(z), n=2,3,...

Theorem 2.13. For a nonnegative integer n and complex x, |x| # 1, we have

(i) HVy(z) + HW,(x) = 2HU, (2),
(il) HVp(z) + HVy1(z) = 2HT,(z), n=1,2,...
(il)) HWp(z) = HWn_1(z) = 2HT o (x), n=1,2,...
(iv) HT(z) — HT—1(z) = (x — D)HW,_1(z), n=1,2,...
(v) HTp(x) — HTp_o(z) = 2(2 — 1)HU,_2(x), n=2,3,...

In the next part of this paper, we focus on Hermite, Laguerre and Legendre hybrinomials.
Explicit expressions for these orthogonal polynomials have the forms
3] _1ym

m!(n — 2m)! (20)"7, (28)

Hen(x)=n!'y. ( ™ zhm (2.9)

m=0
Z( ) m (2.10)
m=0
and 0 S
P,(z)=2" ( ) < 2 )xm, (2.11)
= \m n
respectively.

For example, using (2.10), we obtain the explicit formula for the nth Laguerre hybrinomial.
For a nonnegative integer n and complex x, we have

HL,(z) = Ly(x) + Lpy1(2)i+ Lyyo(z)e + Lyys(x)h
-5 () B ()
+%(n;2>(3m +7§<"+3><m? Z™h.

m=0

(2.12)

In a similar way, we can obtain explicit formulas for the remaining hybrinomials. We can also
use the fact that the Hermite polynomials can be expressed as a special case of the Laguerre
polynomials, i.e.

Hon(z) = (—1)"2221 L83 (22),

Hypyq(x) = (—1)”22”+1n!a:L7(1%) (z?),
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The Legendre polynomials can also be defined using the generating function

1

nz%P Vi) (2.13)
Using (2.13), we have
Z HP (2)t" = Z (Pn(2) + Poy1(2)i+ Poy2(w)e + Poys(z)h)
n=0
:ZP +ZP )i— Py(z)i+ ZPn(x)s—Po(x)e—Pl(x)e
n=0

+ZP )h — Py(x)h — Pi(z)h — Py(z)h

1+ +e+h 3, 1)
=———— —i-(1+2)e—(2°+2+ 2 ]h
V1= 2zt + t2 (1+2) <2 2
and we get
1 1—+/1—2xt + t2
S HP S

\/1—2xt+t2 V1= 2xt +t2
L= (L ao)VI -2t +17 1—(3x2+z+ )\/1f2xt+t2h
V1= 2zt + 12 V1= 2zt + 2 ’

The use of other properties of polynomials presented will allow us to obtain new properties of
the corresponding hybrinomials.

n=0

+
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