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On the uniform boundedness of a class of
hypersingular integral operators on the Hardy

space

Yibiao Pan

Abstract. For a class of hypersingular integral operators, we establish optimal
uniform bounds for their norms on the Hardy space H!(R). Our results extend the
classical result of Fefferman-Stein for the phase function 1/y to phase functions of
the form 1/P(y) where P is an arbitrary real polynomial. It is revealed that the
presence and absence of a constant term in P play a crucial role in the outcome.

Keywords. Oscillatory integrals, singular integrals, Calderéon-Zygmund kernels, Hardy
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1 Introduction

We begin with the following classical hypersingular integral:

o Z‘ld
R

which was initially studied by Fefferman in [4] and subsequently shown to be a bounded operator
on the Hardy space H'(R) by Fefferman and Stein in [5]. For other related results see [3] and
[7], among others.

To introduce our main results, let us recall the definition of Calderén-Zygmund kernels used
in this paper.

Definition 1.1. A function K € C'(R\{0}) is called a Calderén-Zygmund kernel if it is odd
and there exists a positive constant B such that

K ()] + || K" (2)] < Blz| ™. (1.1)

For every nonzero polynomial P with real coefficients, we define the operator T ;,p by

Ti1/pf (@) = pov. /R P K () f(x — y)dy.
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Let P4 denote the collection of all polynomials with real coefficients and degree d. For every
A ER, let
Pd,A = {P € Pd : P(O) = A}

We begin with the following uniform (H!, H') estimates for \ # 0:

Theorem 1.1. Let K be a Calderén-Zygmund kernel and d € N.

(i) There exists a positive constant C(d, B) such that, for every A € R\ {0},

1
s [ Ticasellnom < Cla.5)| 115" (7| (12)

PcPa,x

The constant C(d, B) may depend on d and the bound B in (1.1), but is independent of A.

(i) If, in addition to (1.1), K also satisfies |K(z)| > Blz|~! for z € R\ {0} (a prominent
example of this being 1/(7rx), the kernel of the Hilbert transform), then there exists a
positive constant C'(B, B) such that, for every A\ € R\ {0},

1
sup [Ticaelin > O B)|1+106 (1) (13)

PePa,x
The constant C(B, B) may depend on B and B, but is independent of \ and d.

By Theorem 1.1, for any fixed d, we have

1
T 1 1N1 1
PS%P Ty z1/pll B + log (|)\|>

d,\

Allowing A — 0 shows that {1}/, 1/p : P € P4} are not uniformly bounded on H'(R).
Interestingly, the operators corresponding to A = 0 are themselves uniformly bounded on
H(R). The aforementioned result by Fefferman and Stein belongs to this case.

Theorem 1.2. Let K be a Calderén-Zygmund kernel and d € N. Then there exists a positive
constant C'(d, B) such that

PS%P | Tx /Pl = < C(d, B). (1.4)

d,0

We will prove Theorem 1.2 in Section 2. The upper bound part of Theorem 1.1 (Part (i))
will be addressed in Section 3, and the lower bound part (Part (ii)) in Section 4.

In the rest of the paper we shall use A < B (A 2 B) to mean that A < ¢B (A > ¢B) for
a certain constant ¢ whose actual value is not essential for the relevant arguments to work. We
shall also use A =~ B to means “A < B and B < A”.

2 Proof of Theorem 1.2

Recall that an H' atom is a function a(-) which is supported in an interval I, satisfies ||a||oo <

|7]7* and
/a(m)dm =0.
I
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Lemma 2.1. Let A > 1,d € N, pg,p1,...,pa € Rand pg # 0. Then there are m (1 < m < d+1)
disjoint open intervals G; = (L1, R1),...,Gm = (Lm, Rm) such that

(i) 0=L1 <R <Ly<Ry<: <Ly <Ry =x;
(ii) For each j € {1,...,m}, there exists a [; € {0,1,...,d} such that
pya] > A max{lpea| : b€ {0,1,...,dN\{;}}
for all x € Gj;

(iii) For 1 <j<m—1,

Lit1 _ gda+1)/2
R; — '

The above lemma is a slight extension of Lemma 2.1 of [1]. The same arguments work here
without any essential changes.

Let H denote the Hilbert transform. The following can be found in [2], [6] and [8].

Lemma 2.2. For every f € H'(R), we have

[Hf ey < (11l m) (2.1)
and
[y = 1 fll oy + 1Ml L wy- (2.2)
d
We now present the proof of Theorem 1.2. Let P € Py, ie., P(z) = Zpkxk where
k=1

P1,...,pq € Rand pg # 0.
We will begin by establishing the H' — L' bound of Tk 1,p. By the atomic decomposition
of H(R), it suffices to prove that, for any H' atom a(-),

Tk 1) pall ) < Cd, K), (2.3)

where C'(d, K) is independent of pq,...,pq and a(-).
For 6 > 0, let 65 denote the dilation operator given by

(O5f)(x) = 0f(6x).

Then 05 0 Tk 1/p = To;k,1/p; © 05, where Ps(z) = P(dx) and 5K is also a Calderén-Zygmund
kernel satisfying (1.1) with the same constant B. The class of polynomials Py ¢ is invariant under
the mapping P — Pj (as is Pg,» for every A € R\{0} which we will need later). Additionally, the
operator Tk 1/p is translation invariant. Thus, in order to prove that (2.3) holds uniformly in
the coefficients of P, we may further assume that the atom a(-) is supported in [—1, 1], satisfies

lalloo <1 and / a(z)dx = 0.
R

By the uniform L?-boundedness of Tr,1/ps

/|KHMWWWﬁNHMWM®SWM®§L (2.4)
z|<2
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For |z| > 2 and |y| < 1, we have
|K(z —y) — K(2)] < ]l

Thus,

/ dz < ( / |x|2d:c) lalle S1. (25)
|z]>2 |z|>2

By (2.4)-(2.5) and (1.1), the proof of (2.3) has now been reduced to the verification of the following

inequalities:
o0
/

/2
We shall present the proof of (2.6) only as (2.7) can be handled in a similar fashion.

Let A = 2%+ (d 4+ 1)° > 1 and G; = (Lj, R;), 1 < j < m be the disjoint open intervals
given as in Lemma 2.1. By Lemma 2.1(iii),

(T pa)(x) — K (x) / ¢ a(y)dy

dzx
— <1 2.6
gt (26)

e
R

/eiP(zlwa(y)dy‘dx < 1. (2.7)
R |z

. d
Lo o | acnal
2, 00 m o G; | JR €
(2,00\UJL, G (2.8)
§||GHL1(R)
<1.
Next we shall seek to establish that
1 d
/ /ezP(wlwa(y)dy‘x <1 (2.9)
(2,00)NG; | JR T

forj=1,...,m.

Clearly one only needs to consider those j’s for which (2, co) N G; # (). For any such fixed
je{l,...,m}, (2, 00) NG; = (max{2,L;}, R;) and there exists an [; € {1,...,d} such that
the inequality in part (ii) of Lemma 2.1 holds. To simplify our notations, let v = max{2, L;},
B=Rjandl=1; >1. Then o € R, a > 2, but § could possibly be co. Thus, for all z € («, ),

Ipr|a! > A-max{|pglz® : 1 <k <dand k #1}. (2.10)

We may further assume that 5 > 64a, for otherwise (2.9) becomes trivial.
For v € N, define the operator S, by

1

Sy f(z) :X[zv,zv+1](x)/ e f(y)dy.

—1
Then
555, f(x) = / Lo (2, 9) (v)dy

R

where
2u+1

& [ﬁ_ﬁ] dz.

L,(x,y) = X[71,1}($)X[71,1](y)/

v
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For any z,y € [—1, 1] and z € [2¥, 2¥T!] C (2a, 8/2), we have z —x, z—y € [2v7 L, 2v+2] C (o, ).
Thus
|P(z —2)| <|pt|(z — ) +d-max{|px|(z —2)*: 0 <k <dand k #1}
<(1+d/A)p| (> - 2) (2.11)
S22d+1|pl|2yl-

Similarly,
P(z - y)] < 220+ |py 2. (2.12)

d 1 1
For the purpose of estimating e < Pl ] - ( )> , we also have
z z—x z—y

(P(z = 2))*P'(z =) = (P(z = 9))*P'(z — )|

d d d
ST ST S kgp e ( — ) (= )R — ()R — g)fa]
k1=0ko=0k3=1
>p*|(z = 2)* (2 =)' = (2 = y)P(z —2)
- Z kSpk1pk2pk3[(z - ‘T)k1+k2 (Z - y)ks_l

0<k1,k2<d,1<k3<d
(k1,k2,k3)#(1, 1, 1)

— (z =yt (z — o))

2Pz =)z =) (2 - )T (2 - )Y

- > ks Pk, Do Pis | (2 — 2)F 1792 | (2 — )P — (2 — )|
0<k1,k2<d,2<k3<d
(k1,k2,k3)#(1, 1, 1)

- > K|y ProDis | (2 — 2) 537 (2 — )R — (2 — )RR
0<k1,ko<d, 1<ks<d
(k1,k2,k3)#(1, 1, 1) (213)
l
=lz -y {|Pl|3|(z —o) -y )z - )
s=0
ks—2
- Z k3|pk1pk2pk3|(z - w)kl+k2 Z (Z - y)k37278(z - x)s
0<k1,k2<d,2<k3<d 5=0
(k1,k2,ks3)#(1, 1, 1)
- Z k3‘pk1pk2pk3‘(z - ‘T)kgilx

0<k1,k2<d,1<k3<d
ki+ka>1, (k1,k2,k3)#(, 1, 1)

(+Z< -ty

s=0
> — I [(p 277 D1)272042) — 241 d(d + 1)P(2d + 1) (|22 20 )
B y y d+ 1 529d+8
>2 (443142 )(‘pl|2 l)3 [1 _ (+ |.%‘ _ yl
22—(5+3d+2v)(|pl|21/l)3‘x _ y|
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It follows from (2.11)-(2.13) that

d 1 1
dZ<P(z—x) - P(z—y)>
_’ (P(z —2))*P'(z —y) — (P(z —9))*P'(z — x)

(P(z—2))2(P(z — y))? (2.14)
2(22d+1|pl|2ul)—42_(5+3d+2u)(lpl|2ul)3|x _ y|
2272 (Ipi|27) M — .

By (2.14) and van der Corput’s lemma,

|Ly(z,9)] S 2% (12" |z =y X1, (@)X -1, 1 (1) (2.15)

Trivially we also have
|y (2, y)] < 2"x(-1, (%)X (-1, 13 (1) (2.16)

By interpolating between (2.15) and (2.16),

232 (Ipy 29 2 1, g (2) X1, 1 ()

<
|Ly(2,y)] < P (2.17)
Thus,
sup / Ly (2, )| dy + sup / I (2, y)ldo S 272 (jpy|21)112. (2.18)
zeR JR yeR JR
By (2.18) and Schur’s test,
155 Sull2.2 < 2372 (|pi]27) /2,
which implies that
1Sy ll2,2 < 2374 (|py[21) /2. (2.19)
Additionally, for x € (2, 5/2) and |y| < 1,
1 1
P(x—y) P(x)
d k—1
<(1 - A7 ) 2(Ipule) (lonl(x — ) Zpky(zx’“-l-%x —y>5)\
k=1 =0 (2.20)

<22dd2|y| max{|pg|zF : 1 <k < d}
- (1 - A=1d)*(|pi|2t) 2z

|yl
~ ||ttt

Let u = [logy (4a)]. If 32a < |py| =Y/ (HY) < B/2, Tet v = |p;|~/+D) and w = [logy(7/2)]. By
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Holder’s inequality, (2.19) and (2.20),

. 1 dx
¢ T aly)dy|

Il

- / )] ; o,
v o 8/2
i1 dx
P(x—y) —_

[ emimapal

/(eil’(;y)—eil’(lﬂv)> ()dy

R

— 2+

w—1 ovt+l

<4+Z/

B/2
/
¥

<4+Z”S a||L2 R)(/

dx

el

dx

g2 B
%) +pl|1(/ 52 ) ([ wlatoyiay)

A+ Z 27223 (|pi]27) Y all 2wy + (1pely™) M lall 1 ey

54_‘_ |pl‘1/42w(l+1)/4 +1
<1.

If [p|~1/(+1) > 3/2 (this also implies that 8 < 00), let w = [logy(3/4)]. Then,

[l
-/

T )iy

/6 ey )dy|—

w

ey

dzx

§5 + |pl|1/42w l+1)/4

quw(l+1)/4
B+
~ ﬂ(l+1)/4

<l1.

~

If |p| =2/ (+D) < 32q, let v = 2a.. Then,

rl
-

<2+

ST ay)dy|

/B/2 /13/2 /e P aly Jy|—

dx

‘pllf}/l-‘rl

<24

<l1.

~

By (2.21)-(2.23), we obtain (2

1

[p1|(20)"+1

.9). Tt follows that, for all f € H'(R),

T/ pfllrw S 1l @)

(2.21)

(2.22)

(2.23)

(2.24)



46 Y. Pan

By the translation-invariance of T 1,p, (2.24) and (2.1),

I1H(Tx1/p)ller @) =I1Tx1/p(H) o w)
SIH | (w) (2.25)
Sl w)-

By combining (2.24), (2.25) and (2.2), we obtain (1.4). The proof of Theorem 1.2 is now
complete.

3 Proof of Theorem 1.1(i)
Let A € R\{0} and P € Py, i.e.,
d
Plx)=X+ Zpk:vk
k=1

where p1,...,pq € R and pg # 0. Let a(-) be an arbitrary function which satisfies supp(a) C
[—1, 1], [lalle < 1 and

/ a(x)dz = 0. (3.1)
R
By a reduction used in the proof of Theorem 1.2, it suffices to prove that
1
||TK,1/PG/HL1(R) S C(d,B) |:1 —f—log+ <)\|>:| (32)

A quick examination of the proof of Theorem 1.2 reveals that all but one of its steps remain
valid when P(0) = 0 is replaced by P(0) = A # 0. The exception is (2.9), which holds for all
1 < j < m under the condition P(0) = 0. However, this step is valid only for 2 < j < m when
P(0) = X\ # 0. The reason for this discrepancy lies in the argument leading to (2.9), which fails
for j = 1 because the exponent [ in (2.10) becomes 0 for G;. In contrast, the corresponding

exponents for G, ..., G, remain positive. Thus, we have
i 1 dﬁU
1Tk 1 pallLy@) ST+ e Penaly)dy| —
(2,00)NG; | JR € (3.3)
i 1 dx '
" 7T ay)dy| 2,
(=00, =2)N(~=G1) | /R Ed
where
\ [k
G1—<O,min{ :1§k§dandpk7é0}),
Apx
with A = 290441 (4 4 1)®. Thus, it suffices to prove that
; d 1
/ / ele’lwa(y)dy‘x <1+logt () (3.4)
(2, 001G | JR T Al
and J )
/ /eiP(mly)a(y)dy’x <14log" () (3.5)
(~o0, ~2)(~G1) | JR ] Al
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We will provide the proof of (3.4) only, as the proof of (3.5) can be obtained in a similar fashion.
Let o = max{2, |\|7!} and

1/k

ﬁ:min{

‘A :1§k§dandpk7é0}.
Apy,

If B <2, then (2, 00) N G1 = 0, in which case (3.4) holds trivially. If 2 < 8 < |A|7!, then

(3.4) follows from
oy d P
/ /ewulwa(y)dy‘x §a||1</ x)
(2,00)NG; | JR T 2 T
1
<1+ logt ()
RY

In the remaining case we have 8 > a. Let z € (2, co) NGy = (2, ) and y € [-1, 1]. Then
|z — y| < 2|x| and |pg|z* < |A|/A for 1 < k < d. Thus,

= (2
Py > =0 (50 2 (36)
k=1
Similarly, we have
[P(x)] Z Al (3.7)

On the other hand,

d
|[P(2) = Pl =)l < lpelle® — (z —y)*|
k=1

d
sx—l(zmm)
k=1

<Azt

(3.8)

By (3.1) and (3.6)-(3.8),

/ [ e Tatay
(2, 00)NG1 R
o q B , o
<||a||1( / ””)+ Il (elpdw—elw)a(y)dy
2 T « R

B 1 xXr) — Xr — X
<lalhiosta/2) + [ ([ | T me i)

a B dx
<llally log(a/2) + |||>\||1 (/ d
Slog(ar/2) + (|AJa) ™

1
<1 +log+ <|)\>,

which completes the proof of Part (i) of Theorem 1.1.

dzx

T
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4 Proof of Theorem 1.1(ii)

We now assume that K satisfies (1.

for z € R\ {0}.

1) and

|K ()| > Bla| ™! (4.1)

To establish the desired lower bound (1.3), it suffices to consider |A| — 0 only. Without loss

of generality we may assume that 0 < A < (16e
(1/2) sgn(y)x(1,1)(y) and P-(x) = 2% + X2z + X for 7 > 0. Then,

Let ao(y) =

sup ||Tx,1/pa0l ()
d,\

403/5})—1

>5up||TK 1/P. 0ol m1 (R)

>sup [Tk 1/p. a0l L1 ()
e>0

e (4.2)
zsup [ [ K = panly)dy|da
e>0J2 -1
eyt
> [T ] TR - panl)dyda.
2 -1
For 2 <x < (2\)~!and |y| <1, let
1 Y
A) = .
1[1(95,1/» ) )\—F)\Q.’,E + (1 —|—)\£E)2
Then,
1 \y?
_ YN = A
Ry )’ T A~ o)1+ o)
for 2 <z < (2\)7! and |y| < 1. Thus,
(2an) ! 1 1
/ / ( =9 — Z“/’(myx))ao dy’ < )\log( ) (4.3)
2 -1 4\
It follows from (1.1) and (4.1)-(4.3) that
(2)) 1
sup [Tk 1/paol m(r) >/ e ao(y dy‘|K )|dx
G'Pd,,\ —
@
-/ / ~ y)lao(y)ldyd
N
EB ’/ e v ap(y dy‘—QB
~ (2,\) ! 1
>B / eV @Y g0 (y) dy‘ — BAlog <4A> — 2B

\Y

/
/

v

M‘CU!

(7
<

(exn)~t I
Y 1
[/ sin <(1 ACE)z)dy}—BAlog <4>\> - 2B

in(2/9) 1 - 1
) log (4>\> — B\log (4)\> — 2B

)i (3)
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This completes the proof of Theorem 1.1(ii).
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