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The Legendrian self-expander in the standard

contact Euclidean five-space

Liuyang Zhang and Qiuxia Zhang

Abstract. Based on the geometric correspondence between Lagrangian and Legen-
drian submanifolds, we construct Legendrian 2-submanifolds in the standard contact
Euclidean Five-space R? satisfying the self-similarity equation H+60¢ = aF+(a > 0),
with particular focus on their self-expander solutions under Legendrian mean curva-
ture flow. This paper mainly generalizes Theorem C of the work by Joyce-Lee-Tsui
[10].
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1 Introduction

The mean curvature flow of Legendrian submanifolds was introduced by K. Smoczyk in 2003
[13]. He proved that such flow will preserve Legendrian condition given the ambient space is
Sasakian pseudo-Einstein manifold. He also studied the 1 dimensional case and proved that
closed Legendrian curves in Sasakian spaces converge to closed Legendrian geodesics under this
flow. In 2024, Chang-Han-Wu [6] made further progress by proving the existence of long-time
solutions and asymptotic convergence properties along the Legendrian mean curvature flow in
(2n + 1)—dimensional n-Einstein Sasakian manifold under small energy condition. Recently,
Chang-Wu-Zhang classified Type-I Singularities of the Legendrian mean curvature flow by ap-
plying blow-up analysis [7].

It is well known that Type-I Singularities of the mean curvature flow are locally modeled
by self-similar solutions. For the Lagrangian case, Castro-Lerma [4] and Joyce-Lee-Tsui [10]
have constructed numerous examples of self-similar solutions and translating solitons for the
Lagrangian mean curvature flow.

In this paper, we particularly focus on self-expanders of the Legendrian mean curvature flow
and generalize Theorem C of Joyce-Lee-Tsui’s paper [10] to Legendrian case in the standard
contact Euclidean Five-space R®. From Theorems A and B in [10], we have already proven the
following conclusions in R® [8].

Let X\j,wj,r;,C,I,¢,¢; as in Theorems A and B of [10] for j = 1,2, and 6:1 - Ror
0:1—R/2rZ.
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Proposition 1.1. Fiz sqg € I. Defineu:1 — R by

u(s) = 2/8 1 ()72 (t) cos(p(t) — O(t))dt. (1.1)

S0

For the above u, we have 73(s) = aj + Aju(s),j = 1,2,5 € I,aj = 13 (s9). Define a degree 2

polynomial Q(u) by Q(u) = H§:1 (aj + Aju). Suppose that

dw 0 dw .~
T; _ )\1610(5)1172, d782 :N)\Qezﬁ(s)wl
do; _ NQW)'?sin(¢—0) . Lo
df - ] /\ ) = 1,4, ( . )
S a; + Aju
dz C 1 ~
-~z /2 g _
T = S0 2sin(o ~ d)
hold in I. Then the submanifold L in C2xR given by
. 2
L =< (x1wi(s), zawa(s),2(s)) :s € l,x; € R,Z)\jx? =C;, (1.3)
j=1

18 Legendrian.

Proposition 1.2. In the situation of Proposition 1.1, let & € R be constant, and 0 is a linear
function of s. Suppose that
dé ~aCriry sin(f — ¢)

== ; (1.4)

hold in I, then L with Legendrian angle 0(s) at (z1w1(s), T2wa(s), 2(s)). Its position vector F
and mean curvature vector H satisty the relation H + 66 = &FL. This implies that L is a
self-expander when & > 0 and a self-shrinker when & < 0.

In this paper, our primary work generalizes Theorem C in [10] by extending the Lagrangian
framework in flat space R* to Legendrian submanifolds in contact space (R, ¢,£,7,g).

For surfaces taking the form of (1.3), put \; = Ao = C' = 1 and let w;(y) = €% Wr(y) for
j = 1,2, where

L2 g =y, oAb
) =rw) =0 =\ pht s =bw s 9

1
with P(t) = t—z((l + at?)2¢*”” —1),a > 0, > 0, then we have the main theorem:

Theorem 1.1. Suppose that

@ o
dy P(y) (1.6)
% 1
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holds in I. Then the submanifolds L in C2 x R given by
} 2
L= ¢ (z1w1(y), m2wa(y), 2(y)) : x5 € RZLU? =1 (1.7)
j=1

1s an embedded Legendrian diffeomorphic to S x R, with a Legendrian angle é(y) at

(z1w1(y), T2w2(Y), 2(y)).

Its position vector FL and mean curvature vector H satisfy H+ éf = 4aF+ with o > 0. This
implies that L is a self-expander.

2 Preliminaries

In this section, we have provided the necessary background knowledge, laying the theoretical
foundation for the subsequent discussion. For the problem of the contact Euclidean five space,
we have constructed an adapted frame field {E;}?_;. This constitutes the essential foundation
for all computations in our work, without which subsequent procedures cannot proceed.

We consider the Sasakian space form (R®, ¢, &,n, g) with coordinates (x1,y1, T2, y2, 2), with

1 1
the standard contact form n = idz — ZZ?:l(yidxi — x;dy;), the associated mertic ¢ = n® n +

%Zle((dxi)z + (dy;)?), the Reeb vector fold & = 2% and the (1,1)—tensor ¢ which can be
respresented as

0 0 1 0 0
0 0 0 1 0
6~ -1 0 0 0 0 (2.1)
-1 0 0 O
Z1 2 M Y2
2 2 2 2

Definition 1. For any vector X orthogonal to the Reeb vector field £, the sectional curvature
K(X,¢$X) denoted by H(x) is called ¢p—sectional curvature.

Remark 1. ¢—sectional curvature plays the role in Sasakian geometry that holomorphic sectional
curvtaure plays in Kéhler geometry, and it determines the curvature tensor completely.

1 1
Remark 2. In other literatures, 5 form is chosn to be 77 = §dz — 52?:1 y;dx;, with compatible

¢ tensor and associated metirc § = 7 ® 7] + iZle((d:ri)g + (dy;)?), then (R®, ¢, €,1,§) is called
the standard Sasakian space form with constant ¢—sectional curvature —3.

The choice of ours is to use the symmetry of n for the convenience of computation. The next
proposition states that it is contactmorphism and isometric to the standard Sasakian space form

(R®,¢,¢,7,§).

Proposition 2.1. (R5,¢,&,n,9) is a Sasaki manifold with ¢—sectional curvature —3.

Proof. For details, we refer to [8]. O



30 L. Zhang, Q. Zhang

In our paper, on a Legendrian submanifold L, the mean curvature vector H and the Legendre
pseudo angle 6 satisfy the relationship

H = —¢V0, (2.2)
where V is the gradient operator on L.
Remark 3. Formula (2.2) is equivalent to dn.H = df.

Definition 2. Let F': L? — M?® be a submanifold of a Sasakian manifold (M?®,¢,£,n,g). It is
called isotropic if it is normal to the contact structure &, that is F*n = 0. Consequently, F*dn = 0
also holds. A Legendrian submanifold L is an isotropic submanifold of maximal dimension 2.

Definition 3. Let F : L? — M?° be an n—dimensional Legendrian submanifold in Sasakian
manififold. We call the Legendrian immersed manifold L? a self-similar solution if it satisfies the

quasilinear elliptic system
H + 0¢ = aF ™+, (2.3)

for some constant a in R, where F* is the projection of the position vector F' in M® to the
normal bundle of L2, and H is the Legendrian mean curvature vector. It is called a self-shrinker
if @ < 0 and self-expander if a > 0.

3 Proofs of Theorem

This section is the core part of the article, providing detailed proof of Theorem 1.1. Moreover,
the importance of the selected frame {F;}?_; can be seen in the proof process.

Proof of Theorem 1.1. Firstly, we prove that L is a Legendrian submanifold in R5. To facilitate
matters, we can express equation (1.7) in the following form with w; = r(y)e® W)

L = (217(y) cos p1(y), w17 (y) sin ¢1(y), war(y) cos da(y), w2r(y) sin ¢2(y), 2(¢, ). (3.1)

1 1
Consider the standard contact form in R® is n = §d2 — ZZ%(yld@ — z;dy;) with coordinates

(Z1,71, T2, Y2, Z). From the second equation of (1.5) we have

2dz = rcostsin ¢ (—rsint cos ¢1dt + cost cos ¢prdr — r cost sin ¢1depy)
— 1 costcos ¢ (—rsintsin ¢ydt + costsin ¢rdr + r cost cos ¢1dedy)
+ 7 sint sin ¢a (1 cos t cos gadt + sint cos godr — rsint sin padgps)
— rsint cos ¢a(r cost sin gadt + sin t sin podr + 7 sint cos gadps)
= —r2cos? tdpy — r?sin® tdos

1 1
= —r?cos? t———dy — r’sin® t———dy

2/ P(y) 2/ P(y)

here dg; On the other hand, 2dz = 2z,dy +22z,dt = — L__ dy follows from the second

vV P(y)

equation of (1.6). Thus L*n =0, and it can be deduced that z; = 0. Hence L is a Legendrian
submanifold in C?xR.

__1
T rPP(y)”
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We shall prove that L is a self-expander and satisfies H 4 0¢ = 40zF L as follows. Choosing
the orthonormal frame {E;}}_,,¢ and parameterizing the equation 2 + 3 = 1. Thus (1.7) can
be rewritten as

L = (rcostcos ¢y, rcostsin gy, rsintcos ¢o, rsintsin ¢g)

r costsin 1 r costcos
= rcostcos ¢1(§E1 - %5) -+ rcostsin ¢1(—§E3 + fqﬁlf)
. 1 rsintsin ¢ . . 1 rsint cos ¢ z (3.2)
+rsintcosgo(zFy — ————&) + rsintsingo(—=Fs + ———&) + =£
2 4 2 4 2
r ro. r . o . z
= icostcos o1 FE1 + ismtcosqﬁgEQ — icostsmgﬁlEg — §SIHt81n¢)2E4 + 5{.
From (1.5) we have & = ¥, % = —L—. So the tangent vectors to be
v o ma 24/ P(y)
oL . T o . T .
— = ——sintcos ¢1 E1 + —costcos poFy + —sintsin ¢p1 E3 — —costsin ¢poFy, (3.3)
ot 2 2 2 2
and ~
oL (y Feosé costsin (;51 Fsin oy + costcos ¢
— =(=costcos cos sin _—
oy r /Py /P
Y. Feosd smtsmgb Lsin s + sin t cos ¢a 1 )
—sintcos ¢g — fsm sin ¢ ,—
r r/P r/Ply)  2y/P(y) (3.4)
cost nqﬁl sint sin ¢o '
= cos VEq1 + (ycospg — ——)E
o (ycos ¢1 — \/W 1+ 5 b2 P(y)) 2
cost 08 @1 sint COS ¢g
VE5 — (y si ———)Ey.
o (ysin gy + \/7 3 o (ysings + P(y)) 4
. 1 1 . .
We write 1% (y) = ZT2, and h2(y) = ) + 2%, Then the associated metric is
Y
2 2 oL 2 V2h?
|| H =v 15 || R
Hence, we choose the orthonormal basis to be
" sintcos ¢y Fy + — cost cos g Fy + — sin t sin ¢y Fs — — cost sin ¢ E (3.5)
e = 2’(# S T COS @1 L1 2/¢ COS1COS Q0o Lo 21[} SNt S @1 iy 2¢ COS T SIn Qg Ly, .
and
rcost sin ¢ rsint sin ¢o
e 0sp1 — ——)F1 + ———(ycos g — ——) F
2= 20n (y cos ¢1 P(y)) L Son (y cos ¢2 P(y)) 2
t ; - ) (3.
_ Tcos coSs ¢1 7 sin COS ¢
— 5 (ysingy + 3 — in¢s + Ey.
Zyh P(y)) B P(y))
Thus
r r
Pey = ——sintsin ¢y By + —costsin pa By — —sint cos ¢y B3 + —cost cos po Fy, (3.7)

2y 2¢ 2y 2¢
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and
rcost COS (1 rsint COS P2
Pey =——(ysin gy + B+ (ysin ¢pg + ———)E>
20h COMSET PG)
t " . " (33)
7 COS sin ¢ 7 sin sin ¢o
4+ ——(ycos¢py — ——=)FE3 + ———(ycos pg — —=) Ey.
20h P(y)) 20n P(y))
Thus we have
— r cost cos ¢ r2 sin? t sin ¢ cos ¢4 rsint cos ¢g r2 cos? t sin ¢ cos ¢o
velel - - 2 1 2 5 - 2 E2 + 2 g
2¢ 49 21 41
7 cos t sin ¢y 2 sin® ¢ sin ¢ cos ¢ . rsintsin ¢2E r2 cos? t sin ¢ cos ¢o .
22 3 442 > 22 442 >
t int t si in t si
__Tcostcos b1 . rsint cos ¢2E2 n rcostsin ¢1E3 n rsintsin ¢2E4,
212 212 212 21)2
Denote
rcost sin ¢ rsint sin ¢o
vi(y,t) = 1 COS P1 , (y,t) = Y COS @3 ,
(0:1) = Sl ) ) =5 =)
and
rcost Cos ¢ rsint COS @2
v3 y>t = Yy (b + ) 4\Y, = ys ¢2 + )
(0:0) = g wsinon + 7o, vl t) = =)
then ) ) ) )
= e o =0 Uale, r2 9
Ve, €2 = UL B+ v2 o — U3 3 — v Ey,
h Oy h Oy wh Oy Ph Jy
where
%7cost2(rycos¢1 __rsing )
dy 2 9y Yh VYhy/P(y)
B y?costcosg; 7 costcos o _ ycostsing;  rycostcospip,  rycostcos o1l
2¢hr 2¢h 2¢hr/P(y) 2120 21ph?

ycostsing;  costcos¢y = rcostsingiy, rcostsingih’  rcostsing P'(y)

T 2l Pl 200 P(y) | 2020 /P() 22/ P(y) T WP )P

)

Jvy  sint 0 (ry COS o 7 sin ¢g

9y 2 9y vh  yh P(y))
_ y?sintcos¢y rsintcosge  ysintsings  rysintcos $2thy  rysintcos poh/
T 2¢hr 2h  2hr/Py) 202h B 20h?

ysintsing,  sintcosgs  rsintsingath,  rsintsingoh’  rsintsin g P (y)

20hr/Ply)  20hrP(y) | 202 /Ply) | 20h2/P(y) | AhP(y)y/P(y)

)

dvs _ cost 0 (ry sin ¢ rCoSP )

dy 2 Oy h ha/P(y)
_ y?costsing; rcostsing; ycostcos¢;  rycostsin $1y  rycostsing b/
T 20hr 2h 2hr\/P(y) 202h B 20h?

ycostcos¢y  costsingy  rcostcosgitp, rcostcosgrh’  rcostcos g P(y)

20hr/Ply)  20hrP(y)  202h/P(y)  20h2/Ply)  4whP(y)\/P(y) |
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Ovy  sint 0 (ry sin @9 7 COS ¢

By 2 oy oh  oh Pl
_ y?sintsingy  rsintsin¢o n y sint cos g2 Ty sint sin 210, oy sintsin ¢oh’
2¢phr 2¢h 2¢hr+/P(y) 212h 2ph?

ysintcos¢gy  sintsings rsintcos¢qy, rsintcosgah’  rsintcosgoP'(y)

- 20hr/P(y)  20hrP(y)  22h/P(y)  20h2\/P(y)  4hP(y)\/P(y)

y _ sintcost . o o, 1 P'(y)
47#”1/%7 4¢ (r r )707h’ - 2h(2y Pg(y)

From above equations we find that

and ¢, = ).

r?sintcostsin g cos¢r  r2sintcostsin o cos do
413 43
r2sint costsin @1 cos ¢1 N r2 sint cos t sin ¢o cos ¢o (3.9)

44)3 44)3

<ﬁ@1 €1, (I)€1> =

and

r?ysintcost  r?ysintcost rdysintcost
WPy | 4P P(y) | 1665k Py)
_ r*sintcost (2y P'(y) - rtsint costP'(y)
8y3ht\/P(y) P2(y)" 8y3h2P(y)\/P(y)
r2ysintcost rysintcost rysintcost (3.10)
T W2 /Ply)  4h2Ply) | 160°h2/P(y)
n rdsintcost (2y P'(y) )+ rtsintcostP’(y)
8¢3ht\/P(y) P2(y)”  8¢3h2P(y)\/P(y)
=0.

<§ez €a, ‘I’el> =

Hence,

_ r2cos?tcosor cos 1 r2sin?tcos gy COS (g
(Ve e1,Per) = —W(y sin ¢ + P(y)) - D) (ysin ¢g + Z0
r2 cos? tsin ¢ sin ¢ 72 sin? t sin ¢y sin ¢o
————(ycos ¢y — ) + (y cos g — )
43R P(y) 43h P(y)

r2cos?t r2sin? ¢

© 43hy/P(y)  43hy/P(y)

)

(3.11)
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(.00, Dea) = — r’y’cos’t  r’y’cos’t N rhy cos? tiy, N riy cos? th’
’ 49p3h3 m 4a)3 b3 \/@ 4apAh3 m 4a)3 hA m
rty cos? tP'(y) r2y? cos?t n r* cos? t B rty cos?® ti,
8Y*h3P(y)y/Ply)  40h\/P(y)  403h*\/Py)  4*h3\/P(y)
rdy cos® th/ r? cos? t r2y? sin? t r2y? sin?t
4y3hi\/P(y)  4Y3h3P(y)\/Py) 4¢3h3\/P(y) 4y3h3\/P(y)
riy sin? t1h, rtysin® th! . rtysin® tP’ (1) r2y? sin? t
4pih3\/Ply)  40*hi/Ply) - 8U3h3P(y)/Ply)  40°h3/Ply)
n rtsin?t B 4y sin? t1hy _ rdy sin? th/ B r2sin?t
43 /Ply)  4ih3/Ply)  4p3hi\/P(y)  43h3P(y)y/P(y)
_ r2yP'(y) (7"2 sin?t n 72 cos? t) n r? (7"2 sin?t 72 cos? t)
203h3P(y)\/P(y) 4 4 Uh3/Ply) 4
2

e E— L)(sin2 t + cos? t)
4y3h3\/P(y) P(y)

r?yP'(y) r’ ’

T 2Py P) | ORE)  4Shn/Ply)

From equations (3.9)-(3.12) the mean curvature vector H is determined to be

H=(Veei)t
= (Ve e1,Pe1)®e; + (Ve,e1, Pea)Pes + (Ve,e2, Per)Pey + (Ve,e2, Pea) ey
Py o o

2003 P(y)\/P(y)  ¢h3\/Ply)  2¢3h/P(y)

@62.

Using (3.2), (3.7) and (3.8), it follows that

<F, q)el> = 0,
and
(P Bey) r2c0s2tcos¢1( in gy + cos¢1)+r2sin2tcos¢2/ s + cosd)g)
,Peg) = ———— (ysin sin
2 Abh Y 1 ) Aph \y 2 Ply)
r? cos? tsin ¢1( p sin ¢ ) 2 sin? ¢ sin ¢2{ s sin ¢o )
— —————(ycos¢py — — coS g —
wh TRy kT R

r2cos?tcos? ¢y risin®tcos? ¢y r2cos?tsin® ¢y r?sin®tsin? ¢

WinPe) | aoh/Ply) | deh/Ply) | dvhy/P()
= P

(3.12)

(3.13)

(3.14)

(3.15)
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- z
and (F, &) = 5 Thus the normal projection of the position vector is

2
o A gg. (3.16)

4Yh+/P(y)
1
From P(t) = t—z((l + at?)2e®t” — 1), we have
4a 2 2 2 2
P/y:71_|_ay2€o¢y+ +ay2ay _"_ayQay_"_i
(v) y( ) y( ) " —(1 ) 7
and

1 2 y? (1 + ay?)2ev”
P(y) y ( +ay?)2e® — 1’

It was obtained
y  (L+ay?)?e” —1

R y(l+ ay?)eey’

and
P'(y)  day(1+ay®)e™  2ay(l + ay?)2e®V’ 2(1 + ay?)2ev’ 2

Ply)  (I+ay?Pes —1' (I+ay?2e’ —1 y[(1+ay?)?e™ —1] ' y[(1+ ay?ess” — 1]
It follows that
1 2 P
1 2 vl
2 h? o h2P(y)
4a 1+ ay?)2ev” —2 da 2 2 (3.17)
=~ 2+ 2 v + ;20— 5+ 3 2)2p0y?
1+ ay y2(1 + ay?)2ev? 1+ ay ¥ Y21+ ay?)Zey
= 2aq,

Thus (1.6), (3.13), (3.16) and (3.17) give
4 2yP’
T yP'(y)
1/)2 h2P(y)
On the other hand, since the frames e, es are orthonormal, locally the metric tensor g is the
identity matrix. Thus,

H+6¢ = (— VFL =4aFt.

~ ar?

dézveée—l—veé)e:—ie,
(Ve,0)er + (Ve,b)en N
and V0 = D(g ’1d9~) = —H. In summary, when o > 0, L is a self-expander and satisfies
H+0¢ = 4aF+. And it follows from equation (3.3) that L is embedded Legendrian diffeomorphic
to S x R, which is similar to the proof in [10]. O
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