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The Legendrian self-expander in the standard

contact Euclidean five-space

Liuyang Zhang and Qiuxia Zhang

Abstract. Based on the geometric correspondence between Lagrangian and Legen-
drian submanifolds, we construct Legendrian 2-submanifolds in the standard contact
Euclidean Five-space R5 satisfying the self-similarity equationH+θξ = αF⊥(α > 0),
with particular focus on their self-expander solutions under Legendrian mean curva-
ture flow. This paper mainly generalizes Theorem C of the work by Joyce-Lee-Tsui
[10].

Keywords. Sasaki-Einstein metric, Legendrian mean curvature flow, blow-up, Legendrian
self-expander

1 Introduction

The mean curvature flow of Legendrian submanifolds was introduced by K. Smoczyk in 2003
[13]. He proved that such flow will preserve Legendrian condition given the ambient space is
Sasakian pseudo-Einstein manifold. He also studied the 1 dimensional case and proved that
closed Legendrian curves in Sasakian spaces converge to closed Legendrian geodesics under this
flow. In 2024, Chang-Han-Wu [6] made further progress by proving the existence of long-time
solutions and asymptotic convergence properties along the Legendrian mean curvature flow in
(2n + 1)−dimensional η-Einstein Sasakian manifold under small energy condition. Recently,
Chang-Wu-Zhang classified Type-I Singularities of the Legendrian mean curvature flow by ap-
plying blow-up analysis [7].

It is well known that Type-I Singularities of the mean curvature flow are locally modeled
by self-similar solutions. For the Lagrangian case, Castro-Lerma [4] and Joyce-Lee-Tsui [10]
have constructed numerous examples of self-similar solutions and translating solitons for the
Lagrangian mean curvature flow.

In this paper, we particularly focus on self-expanders of the Legendrian mean curvature flow
and generalize Theorem C of Joyce-Lee-Tsui’s paper [10] to Legendrian case in the standard
contact Euclidean Five-space R5. From Theorems A and B in [10], we have already proven the
following conclusions in R5 [8].

Let λj , wj , rj , C, I, ϕ, ϕj as in Theorems A and B of [10] for j = 1, 2, and θ̃ : I → R or

θ̃ : I → R/2πZ.
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Proposition 1.1. Fix s0 ∈ I. Define u : I → R by

u(s) = 2

∫ s

s0

r1(t)r2(t) cos(ϕ(t)− θ̃(t))dt. (1.1)

For the above u, we have r2j (s) = αj + λju(s), j = 1, 2, s ∈ I, αj = r2j (s0). Define a degree 2

polynomial Q(u) by Q(u) =
∏2

j=1 (αj + λju). Suppose that

dw1

ds
= λ1e

iθ̃(s)w̄2,
dw2

ds
= λ2e

iθ̃(s)w̄1

dϕj
ds

= −λjQ(u)1/2 sin(ϕ− θ̃)

αj + λju
, j = 1, 2,

dz

ds
=
C

2
Q(u)1/2 sin(ϕ− θ̃)

(1.2)

hold in I. Then the submanifold L̃ in C2×R given by

L̃ =

(x1w1(s), x2w2(s), z(s)) : s ∈ I, xj ∈ R,
2∑

j=1

λjx
2
j = C

 , (1.3)

is Legendrian.

Proposition 1.2. In the situation of Proposition 1.1, let α̃ ∈ R be constant, and θ̃ is a linear
function of s. Suppose that

dθ̃

ds
= −

α̃Cr1r2 sin(θ̃ − ϕ)

4
(1.4)

hold in I, then L̃ with Legendrian angle θ̃(s) at (x1w1(s), x2w2(s), z(s)). Its position vector F̃
and mean curvature vector H̃ satisty the relation H̃ + θ̃ξ = α̃F⊥. This implies that L is a
self-expander when α̃ > 0 and a self-shrinker when α̃ < 0.

In this paper, our primary work generalizes Theorem C in [10] by extending the Lagrangian
framework in flat space R4 to Legendrian submanifolds in contact space (R5, ϕ, ξ, η, g).

For surfaces taking the form of (1.3), put λ1 = λ2 = C = 1 and let wj(y) = eiϕj(y)r(y) for
j = 1, 2, where

r1(y) = r2(y) = r(y) =

√
1

a
+ y2, ϕj = ψj(y) +

∫ y

0

dt

( 1a + t2)
√
P (t)

, (1.5)

with P (t) =
1

t2
((1 + at2)2eαt

2 − 1), a > 0, α > 0, then we have the main theorem:

Theorem 1.1. Suppose that 
dθ̃

dy
= − α√

P (y)

dz

dy
= −

1

2
√
p(y)

(1.6)
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holds in I. Then the submanifolds L̃ in C2 × R given by

L̃ =

(x1w1(y), x2w2(y), z(y)) : xj ∈ R,
2∑

j=1

x2j = 1

 (1.7)

is an embedded Legendrian diffeomorphic to S× R, with a Legendrian angle θ̃(y) at

(x1w1(y), x2w2(y), z(y)).

Its position vector F̃⊥ and mean curvature vector H̃ satisfy H̃ + θ̃ξ = 4αF̃⊥ with α > 0. This
implies that L̃ is a self-expander.

2 Preliminaries

In this section, we have provided the necessary background knowledge, laying the theoretical
foundation for the subsequent discussion. For the problem of the contact Euclidean five space,
we have constructed an adapted frame field {Ei}5i=1. This constitutes the essential foundation
for all computations in our work, without which subsequent procedures cannot proceed.

We consider the Sasakian space form (R5, ϕ, ξ, η, g) with coordinates (x1, y1, x2, y2, z), with

the standard contact form η =
1

2
dz −

1

4

∑2
i=1(yidxi − xidyi), the associated mertic g = η ⊗ η +

1
4

∑2
i=1((dxi)

2 + (dyi)
2), the Reeb vector fold ξ = 2 ∂

∂z and the (1, 1)−tensor ϕ which can be
respresented as

ϕ ∼


0 0 1 0 0
0 0 0 1 0
−1 0 0 0 0
0 −1 0 0 0
x1

2
x2

2
y1

2
y2

2 0

 . (2.1)

Definition 1. For any vector X orthogonal to the Reeb vector field ξ, the sectional curvature
K(X,ϕX) denoted by H(x) is called ϕ−sectional curvature.

Remark 1. ϕ−sectional curvature plays the role in Sasakian geometry that holomorphic sectional
curvtaure plays in Kähler geometry, and it determines the curvature tensor completely.

Remark 2. In other literatures, η form is chosn to be η̃ =
1

2
dz−

1

2

∑2
i=1 yidxi, with compatible

ϕ̃ tensor and associated metirc g̃ = η̃ ⊗ η̃ + 1
4

∑2
i=1((dxi)

2 + (dyi)
2), then (R5, ϕ̃, ξ, η̃, g̃) is called

the standard Sasakian space form with constant ϕ−sectional curvature −3.

The choice of ours is to use the symmetry of η for the convenience of computation. The next
proposition states that it is contactmorphism and isometric to the standard Sasakian space form
(R5, ϕ̃, ξ, η̃, g̃).

Proposition 2.1. (R5, ϕ, ξ, η, g) is a Sasaki manifold with ϕ−sectional curvature −3.

Proof. For details, we refer to [8].
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In our paper, on a Legendrian submanifold L̃, the mean curvature vector H̃ and the Legendre
pseudo angle θ̃ satisfy the relationship

H̃ = −ϕ∇θ̃, (2.2)

where ∇ is the gradient operator on L̃.

Remark 3. Formula (2.2) is equivalent to dη⌟H = dθ̃.

Definition 2. Let F : L2 → M5 be a submanifold of a Sasakian manifold (M5, ϕ, ξ, η, g). It is
called isotropic if it is normal to the contact structure ξ, that is F ∗η = 0. Consequently, F ∗dη = 0
also holds. A Legendrian submanifold L is an isotropic submanifold of maximal dimension 2.

Definition 3. Let F : L2 → M5 be an n−dimensional Legendrian submanifold in Sasakian
manififold. We call the Legendrian immersed manifold L2 a self-similar solution if it satisfies the
quasilinear elliptic system

H + θξ = αF⊥, (2.3)

for some constant α in R, where F⊥ is the projection of the position vector F in M5 to the
normal bundle of L2, and H is the Legendrian mean curvature vector. It is called a self-shrinker
if α < 0 and self-expander if α > 0.

3 Proofs of Theorem

This section is the core part of the article, providing detailed proof of Theorem 1.1. Moreover,
the importance of the selected frame {Ei}5i=1 can be seen in the proof process.

Proof of Theorem 1.1. Firstly, we prove that L̃ is a Legendrian submanifold in R5. To facilitate
matters, we can express equation (1.7) in the following form with wj = r(y)eiϕj(y):

L̃ = (x1r(y) cosϕ1(y), x1r(y) sinϕ1(y), x2r(y) cosϕ2(y), x2r(y) sinϕ2(y), z(t, y)). (3.1)

Consider the standard contact form in R5 is η =
1

2
dz̄−

1

4

∑2
1(ȳidx̄i− x̄idȳi) with coordinates

(x̄1, ȳ1, x̄2, ȳ2, z̄). From the second equation of (1.5) we have

2dz = r cos t sinϕ1(−r sin t cosϕ1dt+ cos t cosϕ1dr − r cos t sinϕ1dϕ1)

− r cos t cosϕ1(−r sin t sinϕ1dt+ cos t sinϕ1dr + r cos t cosϕ1dϕ1)

+ r sin t sinϕ2(r cos t cosϕ2dt+ sin t cosϕ2dr − r sin t sinϕ2dϕ2)

− r sin t cosϕ2(r cos t sinϕ2dt+ sin t sinϕ2dr + r sin t cosϕ2dϕ2)

= −r2 cos2 tdϕ1 − r2 sin2 tdϕ2

= −r2 cos2 t 1

r2
√
P (y)

dy − r2 sin2 t
1

r2
√
P (y)

dy

= − 1√
P (y)

dy,

here dϕj =
1

r2P (y) . On the other hand, 2dz = 2zydy+2ztdt = − 1√
P (y)

dy follows from the second

equation of (1.6). Thus L̃∗η = 0, and it can be deduced that zt = 0. Hence L̃ is a Legendrian
submanifold in C2×R.
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We shall prove that L̃ is a self-expander and satisfies H̃ + θ̃ξ = 4αF̃⊥ as follows. Choosing
the orthonormal frame {Ei}4i=1, ξ and parameterizing the equation x21 + x22 = 1. Thus (1.7) can
be rewritten as

L̃ = (r cos t cosϕ1,r cos t sinϕ1, r sin t cosϕ2, r sin t sinϕ2)

= r cos t cosϕ1(
1

2
E1 −

r cos t sinϕ1

4
ξ) + r cos t sinϕ1(−

1

2
E3 +

r cos t cosϕ1

4
ξ)

+ r sin t cosϕ2(
1

2
E2 −

r sin t sinϕ2

4
ξ) + r sin t sinϕ2(−

1

2
E4 +

r sin t cosϕ2

4
ξ) +

z

2
ξ

=
r

2
cos t cosϕ1E1 +

r

2
sin t cosϕ2E2 −

r

2
cos t sinϕ1E3 −

r

2
sin t sinϕ2E4 +

z

2
ξ.

(3.2)

From (1.5) we have dr
dy = y

r ,
dϕj

dy = 1

r2
√

P (y)
. So the tangent vectors to be

∂L̃

∂t
= −

r

2
sin t cosϕ1E1 +

r

2
cos t cosϕ2E2 +

r

2
sin t sinϕ1E3 −

r

2
cos t sinϕ2E4, (3.3)

and
∂L̃

∂y
=(
y

r
cos t cosϕ1 −

cos t sinϕ1

r
√
P (y)

,
y

r
cos t sinϕ1 +

cos t cosϕ1

r
√
P (y)

,

y

r
sin t cosϕ2 −

sin t sinϕ2

r
√
P (y)

,
y

r
sin t sinϕ2 +

sin t cosϕ2

r
√
P (y)

,−
1

2
√
P (y)

)

=
cos t

2r
(y cosϕ1 −

sinϕ1√
P (y)

)E1 +
sin t

2r
(y cosϕ2 −

sinϕ2√
P (y)

)E2

−
cos t

2r
(y sinϕ1 +

cosϕ1√
P (y)

)E3 −
sin t

2r
(y sinϕ2 +

cosϕ2√
P (y)

)E4.

(3.4)

We write ψ2(y) =
1

4
r2, and h2(y) =

1

P (y)
+ y2. Then the associated metric is

||∂L̃
∂t

||2 = ψ2, ||∂L̃
∂y

||2 =
ψ2h2

r4
.

Hence, we choose the orthonormal basis to be

e1 = −
r

2ψ
sin t cosϕ1E1 +

r

2ψ
cos t cosϕ2E2 +

r

2ψ
sin t sinϕ1E3 −

r

2ψ
cos t sinϕ2E4, (3.5)

and

e2 =
r cos t

2ψh
(y cosϕ1 −

sinϕ1√
P (y)

)E1 +
r sin t

2ψh
(y cosϕ2 −

sinϕ2√
P (y)

)E2

−
r cos t

2ψh
(y sinϕ1 +

cosϕ1√
P (y)

)E3 −
r sin t

2ψh
(y sinϕ2 +

cosϕ2√
P (y)

)E4.

(3.6)

Thus

Φe1 = −
r

2ψ
sin t sinϕ1E1 +

r

2ψ
cos t sinϕ2E2 −

r

2ψ
sin t cosϕ1E3 +

r

2ψ
cos t cosϕ2E4, (3.7)
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and

Φe2 =
r cos t

2ψh
(y sinϕ1 +

cosϕ1√
P (y)

)E1 +
r sin t

2ψh
(y sinϕ2 +

cosϕ2√
P (y)

)E2

+
r cos t

2ψh
(y cosϕ1 −

sinϕ1√
P (y)

)E3 +
r sin t

2ψh
(y cosϕ2 −

sinϕ2√
P (y)

)E4.

(3.8)

Thus we have

∇e1e1 = −
r cos t cosϕ1

2ψ2
E1 +

r2 sin2 t sinϕ1 cosϕ1

4ψ2
ξ −

r sin t cosϕ2

2ψ2
E2 +

r2 cos2 t sinϕ2 cosϕ2

4ψ2
ξ

+
r cos t sinϕ1

2ψ2
E3 −

r2 sin2 t sinϕ1 cosϕ1

4ψ2
ξ +

r sin t sinϕ2

2ψ2
E4 −

r2 cos2 t sinϕ2 cosϕ2

4ψ2
ξ

= −
r cos t cosϕ1

2ψ2
E1 −

r sin t cosϕ2

2ψ2
E2 +

r cos t sinϕ1

2ψ2
E3 +

r sin t sinϕ2

2ψ2
E4,

Denote

ν1(y, t) =
r cos t

2ψh
(y cosϕ1 −

sinϕ1√
P (y)

), ν2(y, t) =
r sin t

2ψh
(y cosϕ2 −

sinϕ2√
P (y)

),

and

ν3(y, t) =
r cos t

2ψh
(y sinϕ1 +

cosϕ1√
P (y)

), ν4(y, t) =
r sin t

2ψh
(y sinϕ2 +

cosϕ2√
P (y)

),

then

∇e2e2 =
r2

ψh

∂ν1
∂y

E1 +
r2

ψh

∂ν2
∂y

E2 −
r2

ψh

∂ν3
∂y

E3 −
r2

ψh

∂ν4
∂y

E4,

where

∂ν1
∂y

=
cos t

2

∂

∂y
(
ry cosϕ1
ψh

− r sinϕ1

ψh
√
P (y)

)

=
y2 cos t cosϕ1

2ψhr
+
r cos t cosϕ1

2ψh
− y cos t sinϕ1

2ψhr
√
P (y)

− ry cos t cosϕ1ψy

2ψ2h
− ry cos t cosϕ1h

′

2ψh2

− y cos t sinϕ1

2ψhr
√
P (y)

− cos t cosϕ1
2ψhrP (y)

+
r cos t sinϕ1ψy

2ψ2h
√
P (y)

+
r cos t sinϕ1h

′

2ψh2
√
P (y)

+
r cos t sinϕ1P

′(y)

4ψhP (y)
√
P (y)

,

∂ν2
∂y

=
sint

2

∂

∂y
(
ry cosϕ2
ψh

− r sinϕ2

ψh
√
P (y)

)

=
y2 sin t cosϕ2

2ψhr
+
r sin t cosϕ2

2ψh
− y sin t sinϕ2

2ψhr
√
P (y)

− ry sin t cosϕ2ψy

2ψ2h
− ry sin t cosϕ2h

′

2ψh2

− y sin t sinϕ2

2ψhr
√
P (y)

− sin t cosϕ2
2ψhrP (y)

+
r sin t sinϕ2ψy

2ψ2h
√
P (y)

+
r sin t sinϕ2h

′

2ψh2
√
P (y)

+
r sin t sinϕ2P

′(y)

4ψhP (y)
√
P (y)

,

∂ν3
∂y

=
cos t

2

∂

∂y
(
ry sinϕ1
ψh

+
rcosϕ1

ψh
√
P (y)

)

=
y2 cos t sinϕ1

2ψhr
+
r cos t sinϕ1

2ψh
+
y cos t cosϕ1

2ψhr
√
P (y)

− ry cos t sinϕ1ψy

2ψ2h
− ry cos t sinϕ1h

′

2ψh2

+
y cos t cosϕ1

2ψhr
√
P (y)

− cos t sinϕ1
2ψhrP (y)

− r cos t cosϕ1ψy

2ψ2h
√
P (y)

− r cos t cosϕ1h
′

2ψh2
√
P (y)

− r cos t cosϕ1P
′(y)

4ψhP (y)
√
P (y)

,
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∂ν4
∂y

=
sin t

2

∂

∂y
(
ry sinϕ2
ψh

+
r cosϕ2

ψh
√
P (y)

)

=
y2 sin t sinϕ2

2ψhr
+
r sin t sinϕ2

2ψh
+
y sin t cosϕ2

2ψhr
√
P (y)

− ry sin t sinϕ2ψy

2ψ2h
− ry sin t sinϕ2h

′

2ψh2

+
y sin t cosϕ2

2ψhr
√
P (y)

− sin t sinϕ2
2ψhrP (y)

− r sin t cosϕ2ψy

2ψ2h
√
P (y)

− r sin t cosϕ2h
′

2ψh2
√
P (y)

− r sin t cosϕ2P
′(y)

4ψhP (y)
√
P (y)

,

and ψy =
y

4ψ
,ψt =

sin t cos t

4ψ
(r2 − r2) = 0, h′ =

1

2h
(2y −

P ′(y)

P 2(y)
).

From above equations we find that

⟨∇e1e1,Φe1⟩ =
r2 sin t cos t sinϕ1 cosϕ1

4ψ3
−
r2 sin t cos t sinϕ2 cosϕ2

4ψ3

−
r2 sin t cos t sinϕ1 cosϕ1

4ψ3
+
r2 sin t cos t sinϕ2 cosϕ2

4ψ3

=0,

(3.9)

and

⟨∇e2e2,Φe1⟩ =
r2y sin t cos t

4ψ3h2
√
P (y)

+
r2y sin t cos t

4ψ3h2
√
P (y)

− r4y sin t cos t

16ψ5h2
√
P (y)

− r4 sin t cos t

8ψ3h4
√
P (y)

(2y − P ′(y)

P 2(y)
)− r4 sin t cos tP ′(y)

8ψ3h2P (y)
√
P (y)

− r2y sin t cos t

4ψ3h2
√
P (y)

− r2y sin t cos t

4ψ3h2
√
P (y)

+
r4y sin t cos t

16ψ5h2
√
P (y)

+
r4 sin t cos t

8ψ3h4
√
P (y)

(2y − P ′(y)

P 2(y)
) +

r4 sin t cos tP ′(y)

8ψ3h2P (y)
√
P (y)

= 0.

(3.10)

Hence,

⟨∇e1e1,Φe2⟩ = −
r2 cos2 t cosϕ1

4ψ3h
(y sinϕ1 +

cosϕ1√
P (y)

)−
r2 sin2 t cosϕ2

4ψ3h
(y sinϕ2 +

cosϕ2√
P (y)

)

+
r2 cos2 t sinϕ1

4ψ3h
(y cosϕ1 −

sinϕ1√
P (y)

) +
r2 sin2 t sinϕ2

4ψ3h
(y cosϕ2 −

sinϕ2√
P (y)

)

= −
r2 cos2 t

4ψ3h
√
P (y)

−
r2 sin2 t

4ψ3h
√
P (y)

= −
r2

4ψ3h
√
P (y)

,

(3.11)
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⟨∇e2e2,Φe2⟩ = − r2y2 cos2 t

4ψ3h3
√
P (y)

− r2y2 cos2 t

4ψ3h3
√
P (y)

+
r4y cos2 tψy

4ψ4h3
√
P (y)

+
r4y cos2 th′

4ψ3h4
√
P (y)

+
r4y cos2 tP ′(y)

8ψ3h3P (y)
√
P (y)

+
r2y2 cos2 t

4ψ3h3
√
P (y)

+
r4 cos2 t

4ψ3h3
√
P (y)

− r4y cos2 tψy

4ψ4h3
√
P (y)

− r4y cos2 th′

4ψ3h4
√
P (y)

− r2 cos2 t

4ψ3h3P (y)
√
Py)

− r2y2 sin2 t

4ψ3h3
√
P (y)

− r2y2 sin2 t

4ψ3h3
√
P (y)

+
r4y sin2 tψy

4ψ4h3
√
P (y)

+
r4y sin2 th′

4ψ3h4
√
P (y)

+
r4y sin2 tP ′(y)

8ψ3h3P (y)
√
P (y)

+
r2y2 sin2 t

4ψ3h3
√
P (y)

+
r4 sin2 t

4ψ3h3
√
P (y)

− r4y sin2 tψy

4ψ4h3
√
P (y)

− r4y sin2 th′

4ψ3h4
√
P (y)

− r2 sin2 t

4ψ3h3P (y)
√
P (y)

=
r2yP ′(y)

2ψ3h3P (y)
√
P (y)

(
r2 sin2 t

4
+
r2 cos2 t

4
) +

r2

ψ3h3
√
P (y)

(
r2 sin2 t

4
+
r2 cos2 t

4
)

− r2

4ψ3h3
√
P (y)

(y2 +
1

P (y)
)(sin2 t+ cos2 t)

=
r2yP ′(y)

2ψh3P (y)
√
P (y)

+
r2

ψh3
√
P (y)

− r2

4ψ3h
√
P (y)

.

(3.12)
From equations (3.9)-(3.12) the mean curvature vector H̃ is determined to be

H̃ = (∇eiei)
⊥

= ⟨∇e1e1,Φe1⟩Φe1 + ⟨∇e1e1,Φe2⟩Φe2 + ⟨∇e2e2,Φe1⟩Φe1 + ⟨∇e2e2,Φe2⟩Φe2

= [
r2yP ′(y)

2ψh3P (y)
√
P (y)

+
r2

ψh3
√
P (y)

− r2

2ψ3h
√
P (y)

]Φe2.

(3.13)

Using (3.2), (3.7) and (3.8), it follows that

⟨F̃ ,Φe1⟩ = 0, (3.14)

and

⟨F̃ ,Φe2⟩ =
r2 cos2 t cosϕ1

4ψh
(y sinϕ1 +

cosϕ1√
P (y)

) +
r2 sin2 t cosϕ2

4ψh
(y sinϕ2 +

cosϕ2√
P (y)

)

−
r2 cos2 t sinϕ1

4ψh
(y cosϕ1 −

sinϕ1√
P (y)

)−
r2 sin2 t sinϕ2

4ψh
(y cosϕ2 −

sinϕ2√
P (y)

)

=
r2 cos2 t cos2 ϕ1

4ψh
√
P (y)

+
r2 sin2 t cos2 ϕ2

4ψh
√
P (y)

+
r2 cos2 t sin2 ϕ1

4ψh
√
P (y)

+
r2 sin2 t sin2 ϕ2

4ψh
√
P (y)

=
r2

4ψh
√
P (y)

,

(3.15)
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and ⟨F̃ , ξ⟩ =
z

2
. Thus the normal projection of the position vector is

F̃⊥ =
r2

4ψh
√
P (y)

Φe2 +
z

2
ξ. (3.16)

From P (t) =
1

t2
((1 + at2)2eαt

2 − 1), we have

P ′(y) =
4a

y
(1 + ay2)eαy

2

+
2α

y
(1 + ay2)2eαy

2

−
2

y3
(1 + ay2)2eαy

2

+
2

y3
,

and

h2 =
1

P (y)
+ y2 =

y2(1 + ay2)2eαy
2

(1 + ay2)2eαy2 − 1
.

It was obtained
y

h2
=

(1 + ay2)2eαy
2 − 1

y(1 + ay2)2eαy2 ,

and

P ′(y)

P (y)
=

4ay(1 + ay2)eαy
2

(1 + ay2)2eαy2 − 1
+

2αy(1 + ay2)2eαy
2

(1 + ay2)2eαy2 − 1
−

2(1 + ay2)2eαy
2

y[(1 + ay2)2eαy2 − 1]
+

2

y[(1 + ay2)2eαy2 − 1]
.

It follows that

−
1

ψ2
+

2

h2
+
yP ′(y)

h2P (y)

= −
4a

1 + ay2
+

2(1 + ay2)2eαy
2 − 2

y2(1 + ay2)2eαy2 +
4a

1 + ay2
+ 2α−

2

y2
+

2

y2(1 + ay2)2eαy2

= 2α,

(3.17)

Thus (1.6), (3.13), (3.16) and (3.17) give

H̃ + θ̃ξ = (− 2

ψ2
+

4

h2
+

2yP ′(y)

h2P (y)
)F̃⊥ = 4αF̃⊥.

On the other hand, since the frames e1, e2 are orthonormal, locally the metric tensor g is the
identity matrix. Thus,

dθ̃ = (∇e1 θ̃)e1 + (∇e2 θ̃)e2 = −
αr2

ψh
√
P (y)

e2,

and Φ∇θ̃ = Φ(g−1dθ̃) = −H. In summary, when α > 0, L̃ is a self-expander and satisfies
H̃+ θ̃ξ = 4αF̃⊥. And it follows from equation (3.3) that L̃ is embedded Legendrian diffeomorphic
to S× R, which is similar to the proof in [10].
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