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g-Analogue of the Karry-Kalim-Adnan transform

with applications to ¢g-differential equations

Ayat Al-Wshah and Shrideh Al-Omari

Abstract. This work analyzes certain features of the Karry-Kalim-Adnan transform
and discusses its g-analogues in a quantum calculus theory. It discusses a number
of characteristics of the g-Karry-Kalim-Adnan transform and its application to a
wide range of functions, including g-trigonometric, ¢g-hyperbolic and g-exponential
functions and some g-polynomials. Moreover, it utilizes first- and second-order g¢-
initial value problems to illustrate advantages of our proposed g-transform analogues.
Over and above, the paper proves the g-convolution theorem and provides a table
to further ease the g-transform technique in solving various g-initial value problems.

Keywords. Karry-Kalim-Adnan transform, g-special function, g-difference equation,g-initial
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1 Introduction

Several integral transformation techniques have been proven to help in solving various types of ini-
tial value problems. They provide useful solutions to many fields of science including engineering,
chemistry, biology, astronomy, and radio physics. They also make it easier to determine solu-
tions to differential equations with given initial conditions. One more advantage of the integral
transformation techniques is that they can offer accurate solutions without requiring complex
calculations [17]. Consequently, researchers have focused a great deal of attention on integral
transforms, which have resulted in the introduction of many new integral transforms including
Sumudu transform [6,8], N-transform [7,10,19], Laplace-type transform [4,13], Stieltjes transform
[2], Laplace transform [1,9,11,14], Karry Kalim Adnan and Kushare transform [15] and many
others which have been discussed in various time domains and differential equations.

Let P be a finite real number and ji, jo be finite or infinite natural numbers. Then, over the
set A of functions of exponential order,

m .
A= {h(x) 23P;j1, 42 > 0, |k (z)] < Pen ,ze (—1)' x [0,00) i = 1,2}, (1.1)

the Karry-Kalim-Adnan transform KKAT is introduced as a new integral transform defined by
[15]

K (h;a,p) = % /000 h(x) e‘gwda:, (1.2)
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where h € A and «, 8 are non-zero constants.

The Karry- Kalim- Adnan transformation (KKAT) has been employed in solving problems
in engineering, electrical and mechanical problems [15,17]. It has also been intricately linked to
a multitude of integral transformations including the Laplace transformation, Fourier transfor-
mation, Sumudu transformation, Elzaki transformation, Aboodh transformation, and Mahgoub
transformation, to mention but a few. The study of quantum calculus, also known as g-calculus,
is pioneered by [16] and has made substantial advances to the study of hydrogen atom symmetry
utilizing g-difference equations. Consequently, the g-integral transforms prompted approximately
a decade ago an abundance of investigations, including the g-Laplace transforms [1], the g-natural
transforms [7] and several others.

Although the KKAT creates additional opportunities for solving differential equations in
situations when conventional approaches might not be sufficient, the mathematical foundations
of the g-analogues of the KKAT are not yet examined in quantum calculus. In addition, the
integration of the KKAT in quantum calculus advances our understanding of ability of using
quantum calculus concepts in the g-difference and ¢-special functions.

In Section 2 of this paper we provide some fundamental information and notations utilized
in the upcoming chapters. The g-analogue of the KKAT and its general characteristics are given
in Section 3, which further covers several applications of the g-transform to numerous g-integral
equations and some first and second order g-initial value problems. Results pertaining to ¢-
polynomials, g-exponential functions, g-trigonometric functions, and g-hyperbolic functions are
presented in Section 4. Section 5 includes some counterexamples of g-difference equations (or
g-initial value problems) to demonstrate the usefulness of our findings, .

2 Basic definitions

Mathematicians and physicists are interested in studying g-analogues of different classical iden-
tities. In quantum calculus, also known as g-calculus, the parameter ¢, where 0 < ¢ < 1, is
commonly used to represent ”quantum.” In essence, ”g-analogue” describes a mathematical ex-
pression with a parameter ¢ that generalizes a known identity and returns to the identity when
g — 1. The g-calculus begins with the definition of the g-analogue d,h of the differential of the
function h, given as [3]

dgh (z) = h(gz) — h(x). (2.1)
Having said this we get the g-analogue of the derivative of h called the g-derivative of h [3]
dq (h(z)) _ h(z) — h(gz)
D = = 2.2
qh (.13) dqx (1 _ q) T » T ;&O? ( )

and Dgh (z) = b’ (0) at 2 = 0. The g-analogue of a factorial of a positive integer m is defined by
3]

it = {H%l il (2.3)
where o
ml =3 —qq (2.4)

is the g-analogue of the integer m. The higher order g-derivatives of a function h and the product
of two functions h and g are, respectively, given for m € N as [3]
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(Dgh) (z) = h(x), (D;”f) (x) = D, (D;”*lh) (x) (2.6)
and
Dy(h(z)g(z)) = h(z)Dyg(z) + g(qz)Doh(z). (2.7)

The g-derivative of a quotient of two functions h and g is given as [3]

h(z)\ _ g(gz) Dgh(z) — Deg (z) h (gz) ) o }
D < 9(9?)) B g () g (qz) » 9()#0 and g(gz)#0. (2.8)

For a function h, the ¢g-Jackson integrals over [0, 2] and [0, c0) are, respectively, determined as [3]

(oo}

[ h@dg=0-0s Y @ md [ h@de=0-0 3 @) (29
0 m=0

0

m=—0o0

The g-integral of the g-derivative of the function h, over an interval [a, b], is provided by [3]

/ Db (#) dyr = h (8) — ha). (2.10)

The definition of the g-integration by parts for the functions h and g is provided by [3]

b b
/ 9()(Dah (z) dgz = h (8) g (b) — 1 (a) g (a) — / h(qz) Dag () dy (2.11)

The g-exponential functions of first and second types and their ¢g-derivatives are, respectively,
given by [3]

eq ()= [;LT! (2.13)
n=0 q
and <n>
E,()=Y q[m]Q ™, (2.14)
m=0 q
where
Dyeq (mz) = meq (mz) , DgEq (mz) = mE, (mgz), where eq (0) = 1. (2.15)

Consequently, the g-analogues of the cosine function of first and second types are, respec-
tively, determined as [8]

_1)m

([Qm]q! 22m (2.16)

cosq (2) =

eq (iz) + eq(—iz) >
92 B Z

m=0

By (i2) + By(=2) _ 5 C1gle) Jom
|

Cosq (2) = 5

(2.17)
m=0
while the g-analogues of the sine function of first and second types are, respectively, determined

as

eq (iz) — eq(—iz) _ f: ﬂzzmﬂ (2.18)

sing (2) = 5



66 A. Al-Wshah and S. Al-Omari

0o m 77(71+1)

_ E, (iz (—i2) m
Sing (z) = q() Z 2m+1 Z2mHl (2.19)

m=0

The g-gamma and g-beta functions are consistent with the g-integral representations defined
respectively as

oo 1
r,(t) = /0 2'"1E, (—qz)d,z and B, (t;s) = /0 271 - qz)zfldqz, (t,s > 0). (20)

3 The ¢-KKAT of certain g-difference operators and inte-
gral equations

Here, we present a g-analogue of the KKAT and derive some general characteristics. We also
provide some applications of the g-transform to g¢-difference operators of the first and second
orders. Additionally, certain application of the g-transform to single, double, triple and n-th
g-integral equations is also provided.

Definition 3.1: Denote by A, the set of all functions such that

Aq—{h(x)|ElM,j1,j2>0,|h( )| < ME, (.m') € (- 1)k><[0,oo),k—1,2},

then the g-analogue of the Karry-Kalim-Adnan transform ¢-KKAT is defined over the set A, by

kg (h(2); 0, 8) = aﬂ/ h(z <Qﬂ>da: (3.1)

provided the transform variables a and /5 are non-negative. The inverse Karry-Kalim-Adnan
transform of the transform k, is denoted by k! satisfies the inversion formula

kgt (kg (h(2) 50, 8) = h (2)

for h (x) € Ag when it exists.

Remark 3.2: The kernel function E,(—¢fz/a) introduced in Definition 3.1 is motivated by
the idea of constructing a g-analogue of the classical KKAT kernel within the framework of the
g-calculus theory.

In this context, the classical exponential function is naturally replaced by the g-exponential
function Ey4(-), being compatible with the Jackson g-integral that frequently arises in the study
of g-integral transforms. The presence of the term E,(—gfBz/c) assures that the kernel keeps its
decaying properties analogous to those of the classical KKAT kernel. Furthermore, the proposed
definition is consistent with the classical theory. Indeed, by using the standard limit

lim E,(z) = €7,

q—1-
together with the facts that the Jackson g-analogues of the integral and the Gamma function
reduce to their classical ones as ¢ — 17, we see that the ¢-KKAT kernel converges to the classi-

cal KKAT kernel. Consequently, the ¢-KKAT operator defined in Definition 3.1 reduces to the
classical KKAT operator as ¢ — 17. Now, we discuss the linearity and scaling properties of the
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provided g-analogue of the KKAT.
Theorem 3.3: (Linearity). If h, g are in A,, then the following formula holds

kq (nh (z) + mg (z);a, B) = nky (h(x); o, B) + mky(g (x) ; 0, §). (3.2)

Proof. By using (3.1) we have

by (0 o)+ mg (05008 = 2 [ @)+ g ) B, (T2 dye

_ 9Pz m
= aﬂ/ h(x ( )dqx+a5

= nkq(h(2);0a,B) +mkq (g (x);0,8).

/Ooog(x)Eq<_Lffx)dqx

Theorem 3.4: (Scaling) If h belongs to A4, then the following formula holds
kq (h(6z);0,8) = kg (h(x);ad, B), (3.3)

where ¢ is a non-zero constant.

Proof. By using Definition (3.1) we have

Next, employing (2.12) implies

b (9 60)i0.8) = 5oz [ 9 By (520 ) dye = by 9 0)360,6).

This completes the proof.

Theorem 3.5: If h, D h and Dgh belong to A,, then the g-transform of the g-derivative of the
first and second degrees of h are, respectively, given as

L0 L0 kb w505, (3.5)

(ii) kg (Dgh () s, B) =

Proof. (i) By using Definition (3.1) and following simple computations we have

kg (Dgh (2) 30, B) = aﬁ/ Dyh (x ( qﬁx)dqx
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& (s (2] [ wom (25)o)

- "“O)ﬁk( h(z):a.B).

af «

(ii) Applying the result of (3.4), we get

b (D2 (x) 0..5) =M+§q< h@)ia9)
_ B(=hO) B,
N +a( af a (z); ’ﬂ)>
_ 2
- ’;ﬁ(o’ MO D ke (b)),
This finishes the proof. O

Theorem 3.6: If h belongs to A,, then the following formulas hold true:

(i)kq (/Oth(x) dqx;a,ﬁ> - %kq(h (t);a, B) (3.6)

k(//h( sodm,ﬁ> Bi 2 (B ();0,8). (3.7)
(/// sod:cldm,ﬂ> ﬁz (h(t);a. ).
(// / h(ws)dyzs ..y 1dgzn: o ,5) SO, G

Proof.: Proof of (i). By using (2.11) and (2.12), we get

kq </0th(:c)dqx;a,ﬂ) = alﬁ/ooo E, <‘iﬂt> /Oth(a:)dqxdqt.(?).Z)

If 0 (¢ fo z)d,x, then we write

/Ooo@) DE( >dt - [@(t)Eq<5t>]:o—/oooEq(iﬂt)pq@(t)dqt_

Hence, motivating the previous equation yields

B/ 0 (t ( qm)dt—/OmEq<_iﬁt>h(t)dqt.

Consequently, we get
t
a
b ([ 1) dyria ) = hyth 01,5,
0
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Proof of (iz). Let 0 (x) = for h(p)dye, then from using the first part we get

kq(/ot/owh(so)dqwdqw;a,ﬁ) (/@ dmﬁ)

Ch0 (050,59

= gk(/m )y 5)
)

- g—k (h(t);a,8).

Proof of (iii) Let ¢1 ( fo 1) dgp1dgx1. Then, we obtain

(/ / / ) dgp1dqm1dg; aﬁ) kq (/Ot gpl(m)dqsc;a,ﬁ>

2

- %kqm ©); e, 8)

2 t
— %kq </O h(@l)dqwl;ayﬁ)

a3

= @kq(h (t);a,B)
Likewise, by employing the principle of mathematical induction and following the proofs presented
in parts (i)-(iii), Part (iv) can be easily proved. Hence, we delete the details. Therefore, the proof
is completed. O

4 The ¢-KKAT of special functions

In this section, we review some conclusions pertaining to the ¢-KKAT of the first kind and examine
various fundamental functions, such as g-polynomials, g-exponential functions, g-trigonometric
function and ¢-hyperbolic functions as well.

Theorem 4.1: Let h(z) =1,z € (0,00) and 8 be a non-zero constant. Then, we have

1

Kq (Laaﬂ) = @

Proof. By using the definition of the g-analogue of the Karry-Kalim-Adnan transform (3.1) and
the results given by (2.15) we get

ytsa = 5 (22) [0y () e »

Therefore, integrating the preceding equation (4.1) implies

Katsos = (52) s [m (22)] 42

0
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Note that as a, 8 > 0, the g-exponential function satisfies

lim E ( ﬁx) =0,
T—00 «

which follows from the monotone decay of E,(—t) for ¢ > 0, see also [30]. Hence, the proof is

completed.

Theorem 4.2: Let h(z) = z,z € (0,00). Then, for non-zero constants 5 and «, we have

«
@ .

Proof. Assume the hypothesis of the theorem be correct. Then, utilizing (3.1), we write

kq (z;0,8) = % (—ﬁa) /0ij tE, (_aqﬂx) dgz.

Using the differential results given by (2.15) implies

—1 [ _
kg (z;0,8) = ﬁ/o tDyE, (fl’) dqx.

Next, following the idea of the g-integration by parts (2.11) reveals

kg (x50, 8) = 512 (— /Ooo E, ((Z%) dqx>.

Hence, the preceding equation yields

by (230, 8) = = <O‘> -

kl] (I,OL,B) =

The proof is completed.

Theorem 4.3: Let h(z) = 2™, m € N and x € (0,00). Then, we have

m

ke (@™ a,8) = qu(m +1).

Proof. By using (3.1) and changing variables, we establish that

m—+1 (%)
by (a7 0, ) ﬂ/ mE( )M_alﬁ@) | e o

Using (2.20) gives

m

K ( oy ,5) 6m+21—‘ (m—l—l).

O
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Corollary 4.4: Let h(xz) =2™, m € Nand « € (0,00). Then, we have

am

Kq (2™ 0,8) = B2 [m] !, m € N.
The proof follows from (4.4) and the properties of the ¢g-gamma function.
Theorem 4.5: Let h(x) =e, (bz),z € (0,00) and b be a constant. Then, we have

kg (eq (bz) ; 5/ <qf$>dqm.

Proof. Using (3.1) and the results obtained in (2.13) imply

> pm 00 P
kq (eq (bz); 00, B) = Z W/O " Ey (iﬂ) dgz.
m=0 q:

Therefore, (2.15) and (4.4) results in a geometric series expansion form as

o W™ a™[m],!
kq(eq (bz);0,8) = mz::()[m]q! BLJQ

1 = (b \™
- ﬁ2m_0<5)

1 B
~ PB—ta

1

- B2 —bap

Hence, the proof is completed.

Theorem 4.6: Let h(x) = E,(bz), z € (0,00) and b be a constant. Then, we have
& ( ) (ba)m
bx); — .
g (Bq ( =5 mX::
Proof. By considering (3.1) and employing (2.14) we write

kg (Eq (bz);0,8) = 1/000 L (bz) E, (‘ff‘””)dqx

af
o (D e
= Z qaﬁ / :rmEq( qaﬁx>dq:17.

Hence, applying (4.5) reveals
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Hence, the proof is completed. O

Theorem 4.7: If h (x) = sin, (bz) and b be a constant. Then, we have

. ba
kq (sing (bz) s o, B) = 3% + 2ol (4.9)
Proof. By using (3.1) we obtain
. L[~ —qpz
kq (sing (bz); o0, B) = @/0 sing (bz) E, ( o ) dgz. (4.10)
By invoking (2.18) into (4.10), we derive
ky (sing (b) 0, 8) = — i Ul /OO g, (2208 g
q (SIg af “ 2m+ ; a o a
By taking into account (4.5) we derive
: 1 o (=" 2mt1 7T [2m 4 1)l
. - b
kq (Slnq (bfl?) 70(,6) O[/B TnZ:O [2m + 1}'(1 ( ) 52m+2
ab oo . boy 2m+1
- S e (5)
m=0
_ e B
B B3 52 +b2a2’
That is,
. ba
kq (sing (bz);a, B) = m
Hence, the proof is completed. O
Theorem 4.8: If h (x) = cos, (bz) and b be a constant. Then, we have
1
kq (COSh ( ) ,/8) m
Proof. By using (3.1) we get
kq (cosq (bz) ; of / cos, (bz) E < qﬁx) 4L (4.11)
By substituting (2.16) into (4.11), we infer that
1 e 1)mp2m e8] _
kq (cosq (bz);a, B) = of Z )7/ x2mEq( iﬁm> dgz. (4.12)
m—0 e Jo

Using (3.13) gives

mb2m 2m—+1

1 o0
kq (cosq (bz) ;5 o = 2 Z T

m=0




g-Analogue of the Karry-Kalim-Adnan transform 73

b

m=0
_ 1P
- B2 52 + b2a?
That is,
1
kq (cos, (bz);a, B) = P
Hence, the proof is completed. O

In a similar manner, the hyperbolic g-sine and g-cosine function are given by

ey (2) + ¢4 (~a)

5 €q (ZL‘) —&q (7‘T) (413)

h —
coshy () 5

,sinhy(z) =
Therefore, we have the following consequences.

Theorem 4.9 Let h (z) = cosh, (bz) and b be a constant. Then, we have

1
B2 — h2a2’

Proof. By virtue of the definitions presented in (4.13) and the preceding analysis, we derive

kq (coshy (bz) 5, ) =

ko (coshy (b2) 0, 8) = 3 [y (eq (b) 30, 8) + b (e (b) s 0, 5]
1 1 1
T2 <B2—baﬁ+62+baﬂ>'
That is,
ky (coshy (be) s @, B) = m.
Hence, the proof is completed. O

Similar results involving kg (sinhg (bz) ; i, §) can be easily obtained. Below is a table includ-
ing certain values of the ¢-KKAT of special functions.

S.N Function h(x) First kind kq(h(x);a,ﬂ)
1
1 1 —
32
2 T %
3 ™ meN w
m—+2
4 ™, méeN M
ﬂm+2
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S.N Function h(z) First kind kg(h(z); o, 8)
5 sing (bx) b
33 1 b2a28
1
6 cosq (bz) e
7 sinhy (bz) ’bia
3% _ b2a2B
1
8 coshg (bx) e
1
9 eq(bx -
A (02) -
10 E,(bz) LS~ (7) (ba)"™
q 72" \5
m=0

Table 1: ¢-KKAT transforms of known functions.

5 Application to ¢-initial value problems

In the following examples, we demonstrate the efficiency of the first kind ¢-KKAT in resolving
specific g-initial value problems with constant coefficients. Next, we solve first and second order
g-initial value problems (¢-IVPs) with constant variable coefficients using the ¢-KKAT. For con-
stants b; € R, i = 1,2...,m,m € N, the generic form of the ¢-IVP is taken into consideration
as

Di'y (x) + le;“*ly (@)+... +bpy(z) =G (x), (5.1)
where the initial conditions are given as
y(o):y07qu(0):y17"-aD(7ln71y(O):ym—l- (52)

In the subsequent, two cases of the order of the g-difference equations for m = 1 and m = 2
are examined.

Case 1: Let us discuss first the case where m = 1. This indeed simplifies (5.1) to the generic
form

Day (x) + b1y (z) = G (). (5.3)
Utilizing the initial conditions (5.2) and applying the k, transform to both sides of (5.3) yield
kq (Dgy () + b1y () ; v, B) = ke(G (x) ; 00, B). (5.4)

Consequently, using (3.4) demonstrates

YO B () 100 B) + biky (y () 10 B) = koG (2) 0, B). (5.5)

af «

Thus, simplifying (5.5) gives

afkq (G (2); 0, B)
(572 + blOéﬂ) + whﬁ’#m.

kq (y (7);0,B) = (5.6)
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The exact solution is thus obtained by applying the inverse transform of &, to both sides of (5.6)

Example 1: Consider the g-Cauchy problem
Dgy (z) + 4y(z) = 0, (5.8)

where the initial condition is given by y (0) = 2.

Solution. Going back to (5.3), we have G (x) = 0, by = 4, while the initial condition becomes
yo = 2. Therefore, by inserting the preceding values in the the general solution presented in (5.7),
the solution of the g¢-differential equation given by (5.8) yields

_ 2
y(x)—kq1<ﬁ2+4a6>~

y (z) = 2eq4 (—4zx) .

This finishes the solution of our example.

Hence, employing Table 1 gives

Example 2: Consider the first order g-initial value problem,
Dgy (v) +y () = €q (z), (5.9)

with the initial condition y(0) = 1.

Solution. From (5.3), we see that by =1, yo = 1, G (z) = ¢, (x) and yo = 1. Therefore, inserting
the given values in the general solution proposed in (5.7) and simplifying the result imply

o1 ((aBkg (eq(z); 2, B) -1 Yo _ -1 aﬁﬂ(ﬁl—a) —1 1
o =i (P ) vl (s = (w +5" (5rvas)

(5.10)
Hence, simplifying (5.10) suggests to have
1 « 1 1
0= (=) +7" () 40
Hence, by referring to Part (7) and Part (9) of Table 1, we infer that
y (z) = sinhy (z) + eq(—x).
This ends the solution of the given problem.
Example 3: Consider the first order g-initial value problem that is given in the from
D,y (z) = cosh (2x), (5.12)

with the initial condition y(0) = 1.
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Solution. Here, we have by = 0 and G(x) = cosh(2x). Therefore, by using (5.8), we obtain

y(x) = k;l (aﬁkq (COSEz(ZIE);OZ,ﬂ)) N k;l <g2> ’

By using Table (1) we derive

_ -1 O‘ﬁm 11
y(z) =k, <62> + k. <ﬁ2> (5.13)

1
v =4 (57=s) +157 (7).

By employing Table (1) we establish that

Simplify (5.13) to get

y (z) = sinh (2z) + 1.

Case 2: Let’s talk about the situation when m = 2. Tt is true that this reduces (5.1) to the
form

D3y (x) + b1 Dgy () + bay (z) = G (), (5.14)

with initial conditions D,y (0) = y1 and y (0) = yo.
Now, apply the k, transform to both sides of (5.14) and use the above initial conditions to have

kq(Dgy ()0, B) + blkq(qu ()0, ) + b2kq(y ();a,B) = kq(G ()50, p).

Utilizing (3.4) implies

B k@) 8) - bly;>+b1ﬁk (v(@)5B) +

bokq (y () 50, B) = kp,o(G (2) 5, B).

Modifying this will provide

2
<ﬂ+b15+b2>k (y (ﬂf);avﬁ)Z’fMG(“’);o"ﬁHaﬂﬁJr (0}"’+leﬂ) "

When the equation above is simplified, it yields
B (G (2)30,8) + 25 + (2 + 2 ) wo

kq (y ()50, B8) =
I @+b15+b2

The exact solution is finally obtained by applying the inverse k, transform to both sides of the
previous equation, as shown in the form

1 (K (G(2);0,8) - of
—k 1 q [nd) + ok 1
T <$+‘2ﬂ’1+b2 AL+t

a? «a

+ kY 0 4k —2 .
a (f;+ﬁ§1+bz TG By
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Example 4: Consider the second order ¢-initial value problem D2y () + 4y (x) = 0, with
the initial condition D,y (0) = 0 and y (0) = 1.

Solution. Here, we have by = 0,bs = 4,y9 = 1,41 = 0 and G(x) = 0. Thus, by using (5.16) we

get
a1
y(x) =kt =2— ).
=5 (g5)

Putting the equation above in a more straightforward format yields

_ 1
v =4 (gam)

Employing Table 1 gives the solution

y (z) = cosq (2z) .

Example 5: Consider the second order g-initial value problem Dgy () —y (z) = 0, with the
initial conditions Dyy (0) = 1 and y (0) = 0.
Solution. Starting from (5.16) and simplifying reveals

Hence, employing Table (1) leads to the solution y (z) = sinh,(z).

6 Conclusions and future research

In this study, we provided an overview of the historical development of quantum calculus theory,
followed by an explanation of its fundamental principles. Additionally, we explained the concept
of the ¢-KKAT and its properties, which are later explained by using the g-calculus concept.
We also established the g-definition, g-convolution theory, and various properties of the first
kind ¢-KKAT. Furthermore, we employed the g-transform properties to solve first- and second-
order g-differential and g¢-initial value problems (IVPs) with constant coefficients, illustrating the
advantages of the proposed transformation. Furthermore, the ¢-KKAT transform is declared
to be more general than the g-Laplace and ¢-Sumudu transforms as its multi-parameter kernel
allows the transform to represent a wider class of functions and operators, whilethe ¢-Laplace
and g-Sumudu transforms arise as special cases under suitable parameter choices. Although the
g-Laplace and ¢-Sumudu transforms are computationally more efficient and are well suited for
solving standard g-difference equations and initial value problems, the ¢-KKAT transform is par-
ticularly effective for generalized models and problems involving special functions, though this
generality comes at the expense of more complicated inversion formulas and increased computa-
tional effort. So, the future research directions include extensions of the ¢-KKAT transform to
the fractional g-calculus, its application to g-partial differential equations, and the development
of efficient symbolic and numerical algorithms to enhance its applicability.
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