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Blow-up results of a time fractional heat equation

with a nonlinear Neumann boundary condition

Hind Ghazi Hameed, Burhan Selcuk, Maan A. Rasheed

Abstract. The study of blow-up phenomena in fractional diffusion equations is

of great interest due to its numerous applications and the fact that these types of

problems are encountered in several areas of science and engineering. This article

is concerned with the blow-up solutions of a one-dimensional time-fractional heat

equation, where the time derivative is defined in the sense of the Caputo fractional

formula, subject to a nonlinear Neumann boundary condition of a power-type func-

tion. Firstly, global existence and blow-up are studied. Under a restricted condition

on the nonlinear boundary term, it is proved that every positive solution blows up in

finite time; otherwise, positive solutions are continued globally. Secondly, we prove

that the blow-up phenomenon can occur only on the boundary.

Keywords. Fractional heat equation, blow up, nonlinear boundary condition, maximum
principles.

1 Introduction

We consider the initial-boundary value problem of the Caputo time-fractional heat equation:
cDα

t u(x, t) = uxx(x, t), 0 < x < 1, 0 < t < T,
ux(0, t) = 0, ux(1, t) = up(1, t), 0 < t < T,
u(x, 0) = u0(x), 0 ≤ x ≤ 1.

(1.1)

where cDα
t u denotes Caputo fractional derivative operator, defined as

cDα
t u(x, t) =

1

Γ(1− α)

∫ t

0

(t− τ)−α ∂u(x, τ)

∂τ
dτ

and Γ is Gamma function with 0 < α < 1. Also, we assume that p > 1, and T is the maximal
existence time. The initial function u0(x) is nonnegative, smooth, and satisfies the compatibility
conditions:

u′
0 (0) = 0, u′

0 (1) = up
0(1).
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The blow-up phenomenon refers to the case where a solution to a partial differential equation
becomes unbounded or infinite within a finite time interval. In some Latin-derived languages,
blow-up is known as ”explosion”. We can generalize the concept of blowing up more broadly, as it
represents the phenomenon in which solutions cannot be globally continued over time, resulting
from the infinite growth of the nonlinear terms that show the evolutionary process.

The heat equation (diffusion equation) describes the physical processes that involve the
transfer of a given quantity (such as heat or matter) from a high concentration area to a low
concentration area due to diffusion. a physical phenomenon that appears to be widespread.
Diffusion arises from Brownian motion, which describes the random motion of atoms, particles,
or molecules suspended in a fluid, ultimately leading to their homogeneous mixing. At the macro-
level, it is defined by the famous Fick’s laws that describe diffusion or Fourier’s laws, also known
as the law of heat conduction [1]. This classical heat equation is linear and given by ut = c2uxx

where c is the diffusion coefficient and u is the temperature or concentration. It can be solved
easily. However, the problem becomes more complicated when a source term that depends on u
is added to the equation, as it becomes a semi-linear heat equation.

In physical problems [2], the time-fractional derivative presents the nonlocal nature. There-
fore, the Caputo time-fractional heat equation subject to Neumann boundary conditions can be
considered a partial differential equation (PDE) that incorporates fractional calculus in model-
ing the diffusion of heat over time. It is an extension of the classical heat equation, where the
presence of the Caputo fractional derivative in the time variable introduces memory effects and
nonlocal behavior. These types of problems can be used for modeling several real-life problems
involving memory, delay effects and non-local descriptions [3, 4, 5, 6, 7].

Although the classical diffusion equations have been widely studied in the literature, there
are still many open problems for fractional diffusion equations. The analytical complexity of the
properties of fractional operators and the theoretical and numerical difficulties encountered in
modeling real-world problems are some of the reasons for this limited interest in the abstract
mathematical properties of fractional differential equations.

The study of blow-up phenomena first appeared in the 1940s and 1950s. More comprehensive
studies on this subject were conducted in the 1960s, especially by [8, 9, 10, 11]. Many researchers
have studied the behavior and blow-up of solutions of linear and semilinear heat equations with
nonlinear boundary conditions (Neumann). In particular, the blow-up properties of the following
two problems have been studied in detail by many researchers [12, 13, 14, 15, 16, 17, 18]:

ut(x, t) = ∆u(x, t) + up, in Ω× (0, T ),
∂u
∂η = 0, on ∂Ω× (0, T ),

u(x, 0) = u0(x), in Ω.

(1.2)


ut(x, t) = ∆u(x, t), in Ω× (0, T ),
∂u
∂η = up, on ∂Ω× (0, T ),

u(x, 0) = u0(x), in Ω.

(1.3)

Lin and Wang [19] focus on studying the blow up properties of the semi-linear heat equation
with Neumann boundary conditions; ut(x, t) = uxx(x, t) + up(x, t), 0 < x < 1, t > 0,

ux(0, t) = 0, ux(1, t) = uq(1, t), t > 0,
u(x, 0) = u0(x), 0 ≤ x ≤ 1.

(1.4)

The study clarified the interaction between the two nonlinear terms and the role of each in
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determining the properties, rate, and location of the blow-up. They used analytical methods,
including the comparison principle, energy methods, and integral equations, to reach the results.
They proved that the blow-up occurs in a finite time when max(p, q) > 1. They reach the blow-up
rates and concluded that the blow-up occurs at boundary only when x = 1.

Kawarada first introduced the concept of quenching in [20]. Kawarada has considered an
initial-boundary problem for the parabolic equation ut = uxx + 1

1−u . A solution u(x, t) of the
problem is said to quench if there exists a finite time T such that lim

t→T−
max{u(x, t) : 0 ≤ x ≤

1} → 1.

In the article [21], Levine focused on studying the phenomenon of quenching in solutions
of linear parabolic equations with nonlinear boundary conditions, where the study focused on
determining the conditions under which the solutions reach a critical value, where this condition
is called quenching.

 ut(x, t) = uxx(x, t), 0 < x < L, t > 0,
u(0, t) = 0, ux(L, t) = ϕ(u(L, t)), t > 0,
u(x, 0) = u0(x), 0 ≤ x ≤ L.

(1.5)

He used analytical methods, including the principles of maximum values, energy methods, and
Green’s function, to reach the results. The uniqueness of the solutions was proven, and the
conditions that allow their extension after quenching were established. He also proved that
quenching occurs in a finite time when L0 > L at the boundary point x = L and ut(L, t) becomes
unbounded, and concluded that quenching does not occur and the solutions remain globally when
L0 < L.

The concepts of blow-up and quenching can be transformed into each other by means of a
transformation [22]. Ozalp and Selcuk studied the behavior of solutions and determined standards
for blow-up and quenching to these equations. Later, they considered the heat equation with
nonlinear boundary conditions:

 ut(x, t) = uxx(x, t), 0 < x < 1, t > 0,
ux(0, t) = up(0, t), ux(1, t) = uq(1, t), t > 0,
u(x, 0) = u0(x), 0 ≤ x ≤ 1.

(1.6)

They studied this problem using both analytical and numerical tools. They developed stan-
dards for blowing up and putting out an blow up based on how similar the two phenomena used
to be. The study results include criteria for blowing up and cooling in the heat equation and
the non-linear parabolic equation with non-linear boundary conditions. The authors also showed
that blowing up and quenching are equivalent in these equations, and they used numerical models
to back up their claims.

Many studies have investigated blow-up and quenching phenomena under various initial and
boundary conditions across different types of equations [23, 24, 25, 26, 27, 28, 29, 30, 31, 32].
Furthermore, in recent years, increasing attention has been devoted to the analysis of blow-up
problems formulated with fractional derivatives instead of classical ones, leading to a significant
expansion of the literature in this direction [33, 34, 35, 36, 37, 38, 39, 40, 41].

Recently, studies have been focused on the behavior of blow-up solutions of time-fractional
diffusion equations. For instance, Subedi and Vatsala have studied in [42] some blow up properties
for time fractional one-dimensional semilinear reaction-diffusion equation subject to homogeneous
Dirichlet boundary conditions.
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
cDα

t u(x, t) = uxx(x, t) + up(x, t), 0 < x < 1, 0 < t < T,
u(0, t) = 0, u(L, t) = 0, 0 < t < T,
u(x, 0) = 0, 0 ≤ x ≤ 1.

(1.7)

They employed various analytical techniques, including comparison principle methods, in which
the solutions of fractional equations are compared with those of classical (non-fractional) equa-
tions whose blow-up behavior is already well understood. They also used the construction of the
lower solution, where lower solutions of fractional equations are constructed using solutions of
classical equations. Moreover, Green’s function was used to achieve the results. They concluded
that for ordinary fractional equations, the lower solutions extracted from classical equations blow
up in a finite time. These lower solutions provide upper limits on the time in which the blow-up of
fractional equations occurs. As for fractional diffusion reaction equations, if solutions of classical
equations blow up, the solutions of fractional equations will also explode under suitable condi-
tions. Blow-up time in the fractional case depends on the blow-up time in the classical equations,
and it is modified using the fractional derivative. To summarize, the researchers demonstrated
that the blow-up behavior of time-fractional diffusion–reaction equations is closely analogous to
that of their non-fractional equations counterparts when similar conditions are satisfied.

Motivated by the studies in [19] and [42], this paper investigates the blow-up phenomenon
for time-fractional heat equations with a nonlinear Neumann boundary condition. Specifically,
the classical heat equation is extended to its fractional counterpart by incorporating a Caputo
time-fractional derivative, and a nonlinear Neumann boundary condition is considered instead of
the classical Dirichlet condition.

This paper is divided into four sections, in section two we recall some basic preliminaries.
In section three it is given the auxiliary lemmas. In the four section, global existence, blow up in
finite time, a limit for the blow up time and an blow up point are obtained. Finally, it is given
the main conclusions, theoretical and practical contributions, and possible directions for future
studies.

2 Preliminaries

In this section, we recall some basic definitions and Auxiliary lemma that we shall need to prove
the main results.

Definition 1. A solution u(x, t) ∈ C2,α([0, 1]× [0, T )) of the equation (1.1) blows up in a finite-
time, i.e, the existence of a T = T (u0) < ∞ such that

lim
t→T−

max{u(x, t) : 0 ≤ x ≤ 1} → ∞.

The blow up time of the equation (1.1) is denoted as T .

Definition 2. A solution v(x, t) ∈ C2,α([0, 1]× [0, T )) is said to be lower solution of the equation
(1.1), if 

cDα
t v(x, t)− vxx(x, t) ≤ 0, 0 < x < 1, 0 < t < T,

vx(0, t) ≤ 0, vx(a, t) ≤ (v(1, t))p, 0 < t < T,
v(x, 0) ≤ 0, 0 ≤ x ≤ 1.

(2.1)

and a solution w(x, t) ∈ C2,α([0, 1]× [0, T )) is said to be upper solution of the equation (2.1), if
reverse inequalities are satisfied.
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Definition 3. For two parameters, α, r > 0, the Mittag Leffler function is defined as follows:

Eα,r(z) =

∞∑
k=0

zk

Γ(αk + r)
.

Specially,

Eα,r(λ(t− t0)
α) =

∞∑
k=0

(λ(t− t0)
α)k

Γ(αk + r)

Also, for t0 = 0 and r = 1, we get,

Eα,1(λt
α) =

∞∑
k=0

(λtα)k

Γ(αk + 1)

and for t0 = 0 and r = α, we get,

Eα,α(λt
α) =

∞∑
k=0

(λtα)k

Γ(α(k + 1))

where 0 < α < 1. Further if α = 1, then Eα,α(λt
α) = Eα,1(λt

α) = eλt.

It is known that the Maximum principles and Hopf’s lemma are considered essential tools
to prove several qualitative properties of classical diffusion equations, including blow-up and
quenching problems. In this article, the Maximum principles and Hopf’s lemma for time-fractional
equations, obtained by some researchers, in [43, 44, 45], are employed to get the main results.

By following the logical process in section 2 of [21] proved for the quenching problem, the
following auxiliary theorems for the solution of problem (1.1) for u(x, t) can be easily obtained
using fractional maximum principles and the fractional Hopf’s lemma.

Lemma 2.1. If u(x, t) solves the problem (1.1) in (0, 1)× (0, T ), then:

• u(x, t) > 0 in (0, 1)× (0, T ),

• ux(x, t) > 0 in (0, 1)× (0, T ), if ux(x, 0) ≥ 0 in (0, 1),

• cDα
t (u(x, t)) > 0 and ut(x, t) > 0 in (0, 1)× (0, T ), if uxx(x, 0) ≥ 0 in (0, 1).

3 Blow-up and global existence

In this section, the global existence of solutions to problem (1.1) is established, the occurrence of
blow-up is proven, and an upper bound for the blow-up time is derived.

Theorem 3.1. A solution of the problem (1.1) exists globally if p ≤ 1.

Proof. The sufficient condition must be proven first. We need to show that the solution exists
globally. The auxiliary function is v(x, t) = CE(Ktα)eLx2

where C,K and L sufficiently large con-
stants to be determined later and E(Ktα) is Mittag-Leffler function cDα

t (E(Ktα)) = KE(Ktα)).
The Direct calculations show that:

cDα
t (v(x, t)) = CKE(Ktα)eLx2

,
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vx(x, t) = 2CLxE(Ktα)eLx2

,

vxx(x, t) = (4L2x2 + 2L)CE(Ktα)eLx2

,

It follows that

cDα
t (v(x, t))− vxx(x, t) ≥ 0,

where K = 4L2 + 2L.
Apply boundary conditions:

vx(0, t) = 0,

vx(1, t) = 2CLE(Ktα)eL ≥ (2CLE(Ktα)eL)p = (v(1, t))p,

where p ≤ 1. Also, v(x, 0) ≥ 0 on the initial line. It is clear that v(x, t) = CE(Ktα)eLx2

is an
upper solution to the problem (1.1) with the help of Definition 2. So, the solutions of problem
(1.1) exist globally, where p ≤ 1.

Theorem 3.2. A solution of the problem (1.1) blows up in a finite time, and an upper limit for
the blow-up time is (

Γ(α+ 1)

p− 1

) 1
α
(

1

l(0)

) α
p−1

,

where p > 1, ux(x, 0) ≥ 0 and and l(0)(> 0) is the initial function of the following problem

lt = lp(t).

Proof. Now, suppose that p > 1 and show that the solution of problem (1.1) blows up in finite

time. Let m(t) =
∫ 1

0
u(x, t)dx.

CDα
t (m(t)) =

∫ 1

0

cDα
t u(x, t)dx =

∫ 1

0

uxx(x, t)dx = up(1, t).

From Lemma 2.1, u(1, t) ≥ u(x, t) where x ∈ [0, 1). Then, from the above equation and given
p > 1:

cDα
t (m(t)) ≥ mp(t). (3.1)

Vatsala and Subedi have investigated the solution of the following problem in [42];

cDα
t (n(t)) = np(t), n(0) = m(0) > 0. (3.2)

It is clear that the solution of (3.1) is an upper solution of (3.2). Unfortunately, problem (3.2)
does not have an explicit solution. The problem (3.2) with classical differentiation is expressed
as follows;

lt = lp(t), l(0) > 0. (3.3)

They showed that l( tα

Γ(α+1) ) is a lower solution of the problem (3.2) where p > 1. Also, they

obtained that the blow-up time of the problem (3.3) is

tl =

(
Γ(α+ 1)

p− 1

) 1
α
(

1

l(0)

) α
p−1

.
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As a result, the solution of problem (1.1) blows up in finite time. Since the solution of problem
(3.3) serves as a lower solution to problem (3.1) and exhibits blow-up, it follows that the solution of
problem (3.1) also blows up. Consequently, u(x, t) becomes unbounded in finite time. Moreover,
an upper bound for the blow-up time of problem (3.1) is given by:(

Γ(α+ 1)

p− 1

) 1
α
(

1

l(0)

) α
p−1

.

since tm ≤ tn ≤ tl from Definition 2. Here, tm, tn and tl are the blow-up times of problems
(3.1),(3.2) and (3.3), respectively.

For problem (1.1), the following results can be concluded with the help of Theorem 3.1 and
Theorem 3.2.

Corollary 3.3.

• If p > 1, the solution can blow up in finite time,

• If p ≤ 1, the solution exists globally.

4 Blow-up point

In this section, we consider the blow-up set of problem (1.1) and show that it can only be achieved
at a boundary point.

Theorem 4.1. If ux(x, 0) ≥ 0 and uxx(x, 0) ≥ 0 in [0, 1], then x = 1 is the only blow-up point
for problem (1.1).

Proof. Let d1 ∈ [0, 1), d2 ∈ [d1, 1), τ ∈ (0, T ) and ϵ > 0. Define

F (x, t) = ux(x, t)− ϵ(x− d1)u
p(x, t) in [d1, d2]× [τ, T ]

where p > 1 and ϵ is a sufficient small constant. The 1st and 2nd derivatives of the auxiliary
function F (x, t) with respect to x are obtained as follows;

Fx(x, t) = uxx(x, t)− ϵup(x, t)− ϵp(x− d1)u
p−1(x, t)ux(x, t),

Fxx(x, t) = uxxx(x, t)− 2ϵpup−1(x, t)ux(x, t)− ϵp(x− d1)u
p−1(x, t)uxx(x, t)

−ϵp(p− 1)(x− d1)u
p−2(x, t)u2

x(x, t).

On the other hand:

cDα
t u

p(x, t) =
p

Γ(1− α)

∫ t

0

up−1(x, s)us(x, s)

(t− τ)α
ds.

By generalized Leibinz rule, we have

cDα
t u

p(x, t) = pup−1(x, t)cDα
t u(x, t)−

p(p− 1)

Γ(1− α)

∫ t

0

up−2(x, s)(u(x, t)− u(x, s))us(x, s)

(t− τ)α
ds.
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cDα
t F (x, t) = cDα

t ux(x, t)− ϵ(x− d1)
cDα

t u
p(x, t)

= uxxx(x, t)− ϵ(x− d1)pu
p−1(x, t)cDα

t u(x, t)

+ϵ(x− d1)
p(p− 1)

Γ(1− α)

∫ t

0

up−2(x, s)(u(x, t)− u(x, s))us(x, s)

(t− τ)α
ds

By Lemma 2.1, u is positive and increases in t, it follows that:

cDα
t F (x, t) ≥ uxxx(x, t)− ϵ(x− d1)pu

p−1(x, t)cDα
t u(x, t)

and

cDα
t F (x, t)− Fxx(x, t) ≥ 2ϵpup−1(x, t)ux(x, t) + ϵp(p− 1)(x− d1)u

p−2(x, t)u2
x(x, t).

By Lemma 2.1, ux(x, t) > 0 and since p > 1, the following inequality is obtained:

cDα
t F (x, t)− Fxx(x, t) ≥ 0 in (d1, d2)× [τ, T ).

By choosing ϵ to be positive and small enough, the values at the boundary are obtained as follows:

F (d1, t) = ux(d1, t)− ϵ(d1 − d1)u
p(d1, t) = ux(d1, t) > 0,

and

F (d2, t) = ux(d2, t)− ϵ(d2 − d1) · up(d2, t) > 0.

Similarly, the following inequality is obtained based on the initial datum;

F (x, 0) = ux(x, 0)− ϵ(x− d1) · up(x, 0) > 0.

With the help of the maximum principle, we obtain that F (x, t) ≥ 0 in [d1, d2] × [τ, T ]. So,
ux(x, t) ≥ ϵ(x− d1)u

p(x, t) in [d1, d2]× [τ, T ].
Integrating the last inequality with respect to x from d1 to d2, the following inequality is obtained;

u(d1, t) ≤ (
2

ϵ(p− 1)(d2 − d1)2
)

1
(p−1) < ∞.

This means the solution u(x, t) remains finite for all x ∈ [0, 1) and t ∈ [0, T ]. Therefore, it does
not blow up in (0, 1) and a blow-up occurs only at x = 1.

5 Conclusions

This article is concerned with the blow-up solutions of the time-fractional heat equation subject to
a nonlinear Neumann boundary condition of power type. It is proven that every positive solution
blows up in finite time if the power of the non-linear term is larger than one; otherwise, global
existence holds. Moreover, the blow-up phenomenon can only occur at the boundary points x = 1.
In future studies, the theoretical results obtained in this study are planned to be supported by
numerical approaches. Another open problem is to study the quenching phenomenon in similar
equations.
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