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GEOMETRIC PROPERTIES OF SOME LINEAR OPERATORS
DEFINED BY CONVOLUTION

R. AGHALARY, A. EBADIAN AND S. SHAMS

Abstract. Let «/ denote the class of normalized analytic functions in the unit disc U and Py (a, ) consists of f € o

so that fl@)\a f'(2) (f(2)\@
z zf'(z z
z ) H’W( z ) 7ﬁ]}>0'

In the present paper we shall investigate the integral transform

IneR, %R{ei"[(l—)/)[

V/l,a(f)(z) = {[)1 A([)(f(fz)]adt}%‘

where A is a non-negative real valued function normalized by fol A(t)dt = 1. Actually we aim to find conditions on the
parameters a, 8,y, f1,71 such that V) ,(f) maps Py(a, f) into Py, (@, f1). As special cases, we study various choices
of A(#), related to classical integral transforms.

1. Introduction and Definitions

Let o/ denote the class of functions of the form
(o)
f@=z+) apz"
n=2

which are analytic in the open unit disc U = {z € C;|z| < 1}.
For f<1,a =z0andy =0, let Py(a, ) denote the class of all analytic functions f in </ such

that f r f

i (2o  zf'(2)(f(2)

R (- +
{e [( '}/)( z ) Y f(z) ( z
where power is taken to be principle value. Some properties of subclasses of this class has
known in the literature. It is obvious that P (a,0) with 7 = 0 is the subclass of Bazilevic func-
tions, which is known to be univalent in U. We refer the reader for more information on the
subclasses of Py (a, B) to previous works which have been studied by Singh [12], Liu [7], Ding
etal. [4].
The familiar hypergeometric function F(a, b; c; z) defined by the series

a
) —,B]}>0, (zeU,neR),

S (a,n)(b,n)
F(a,b;c;z)z Z m

n=0

z", (a,b,ceC,c¢{0,-1,-2,...}),
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is analytic in the unit disc U. Here (a,0) = 1 for a # 0, and (a, n) is the shifted factorial function
(a,n)=ala+1(a+2)---(a+n-1), (n=123,..)).

We use two different representations for this function, (see for more details [1], [6]).
If Rc > Rb > 0, then we have the Euler integral representation
I'(c) Yo -b-1 -
Fla,bjc;z) = ——— | t7'(1-0° 1-tz)"%dzr. 1.1
(a,b;c; 2) THITe—D Jo 1-17) (1-12) (1.1
On the other hand, if Ra > 0, Rb > 0, R(c+1) > R(a+ b), then we have the following represen-

tation .
o I'(c) 1
F(a,b;c;2) = @ bTe—b—a+D s )Ll(t)—l_ tzdr, (1.2)

where A1 (1) = !0 - 0% PF(c—al-a;c—a-b+1;1-1).
For f € o, we define the integral transform

Via(H(@) = (folw)(ﬂiz))adt)‘l”, (1.3)

where A() is a nonnegative real-valued weight function so that fol Andt=1.
We shall mainly discuss the following problems :
(i) For f € Py(a,p), find conditions so that V) 4 (f) € P1(a, B8).
(ii) For f € Py(a, B), find conditions so that V) 4(f) € Py(a, B).

We recall that the operator V) 4 (f) contain some of well-known operators such as Libera,
Bernardi, and Komatu operators as its special cases. This operator has been studied by a
number of authors for various choices of A(¢) (see e.g. [1], [3], [6], [8]).

For proving our main results we need to the following lemma.

Lemma 1.1.([10]) Let 1 < 1 and B2 < 1. Then, for p, q analytic in U with p(0) = q(0) =1,
the conditions Rp(z) > B1 and R[e™(q(z) — B1)] > 0 imply R[e™((p * q)(2) — 6)] > 0, where
1-6=2(1-61)1-pB).
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2. Main Results

Theorem 2.1. Leta >0, y < 1, u =1 be given, and define = f(a,y, 1) by

po1- i [ e (G-) [ao( [ —p)ar

If f e Py(a, B) then V) o(f) € P1(a,y). The value of B is sharp.

Proof.

(1-

AL FY

Then assumption f € Py(a, f) means that R(e(F(z) — B)) > 0, for some 1 € R. After some
algebraic calculations and in view of (2.1) we observe that

zf'(2) (@)a
fla) \ z

Now, we let G(z) = V) 4(f)(2), where V) o (f) is defined by (1.3). Then we can write

1 1
= ((1 - —)F(l,a/u;a/u+ 1;2)+ —F@2 alpmalu+ 1;z)) « F(2).
a a

(2
[y
ety [ 1o,
— F@ (1= 1R % S ) e 5 g [
:F(z)*{f ro(1-2 F(1 g —+1 tz)+éF(2,%,%+1;tz)]dt}

Since f € Py(a, B) it follows that R[e(F(z) — B)] > 0 for some 1 € R. Now for p = 1, we claim
that

1 1 1
R [[ )L(t)((l - —)F(l,a/,u;a/p+ 1;t2)+ —FQ,alalu+1; tz))dt]
0 a «a

>1-

LY eu 2.2)
) Z ) .
2(1-p)
which, by Lemma 1.1, implies G € P; (a,y) and it will complete the proof. Therefore, it suffices
to verify the inequality (2.2). Using the identity (which can be checked by comparing the
coefficients of z" on both side)

F2,b;c;2)=(c-1)f(1,b;c—1;2) = (c=2)F(1, b; c; 2),
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we have

(l—l)F(l e %+1;z)+éF(2,%;%+l;z)
(1,

al

(=)
1

_5(5_1)F(1,a/p;a/u+1;Z)

almalp+l;z)+ 1(“)F(1 s al s 2)
IJ) IJ ) a Il ) H’ I’t’

Ll aima -z)+(1— LN 1)F(1 alalu+1;2)
_u ’ IJ) IJ) a a IJ ’ I,t, I,t ’

11 1\ ! du
== +(1——)f -, 2.3)
pl-z KJo 1-zua
Hence, in view of (2.3), and R—— > - we obtain

1- tz T+t

1 1 1
§R[ A(t)((l - —)F(l,a/u;a/u+ 1;t2) + —FQ,almalp+1; tz))dt
0 a a

1 A 1 1 d
:%{i[e lf?zdn(l—i)fo Mt)(fo l_—uﬂ)dt}

tzua

ll 1 1 d
zﬁfo %d +(1—i)f0 /m)(fo 1+;;%)dt.

The stated condition on  shows that the right-hand side of the last expression is 1 — 2(11;_7;3)
To prove the sharpness, let f € P, (a, f) be the function defined by
f(2) zf'(2) (f(2) 1+z
1- 1 . 2.4
a-p( ) e () =pra-pi 2.4)
Using a series expansion we see that
X 2(1-
(f(z))w:1+ 5 ( ﬂ) -
Z n=1 1+% I’l
Then we can write
% X 2(1-
(G(t))w :( A,a(f)(z))“ 143 ( ﬁ)kn 2 2.5)
z z

n=1 1+ n

where k;, = fol A(®)t"dt. From the given value of § in the Theorem, it follows that

1) 1 1 4
e b M o[

:% i( D™ ey (1 + (1= 1/p) :H)]

n=1
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nil, ltna
1—1/[2( D E+1]'

Finally from (2.5) we obtain

2k,,(1+na)(1 B sy
n +1

G'(2) (G(z)
zG(Z? ( z )

i

¥4

which for z = —1 takes the value

e 1+n
1+2(1— )"k,
+20-p) 2 0"k

a

1‘1 2t _ﬁ)(z(l Yﬁ)) v

This shows that the result is sharp.

We note that by putting @ = 1 in Theorem 2.1, we obtain the result of Barnard et al. [3] and
upon setting ¢ = 1 in Theorem 2.1 we deduce the following result.

Corollary 2.1. Leta > 0, y < 1 be given and define § = B(a,y) by

1y LA -1
p=1-— {1—[0 1+tdt}
Iff e Pi(a, B) then V) o f € P1(a,y). The value of B is sharp.

The special case of Corollary 2.1 has been obtained by Fournier and Ruscheweyh [5].

Theorem 2.2. Leta >0,y < 1,0 < u <1 be given, and define = 5(y) by

1-[1+p/A-pIit
1- /3 fM) 1+t at.

Iff € Pu(a, B) then V) o f € Py(a,y). The value of B is sharp.

Proof. Define
(1-

"

The assumption f € P,(a,f) imply that %(ei”(p#(z) — ) > 0 for some n € R. Let F(z) =
V1,2 (f)(2), then it is easy to see that

F(z)\a  zF'(z) (F(2)\a _ LA
(1_“)( z ) TH F(2) ( z ) —Py(Z)*j(; l—tzdt' (2.7)

= pu(2). 2.6)

Using §R1 = > T ” and Lemma 1.1 on (2.7) we obtain the result. The proof of sharpness fol-
lows much the same method in the proof of Theorem 2.1 for function which is defined by (2.4)
and we omit the details.

Upon setting A(#) = (1+¢)t%, (-1 < ¢ < 0) we have
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Corollary 2.2. Let a > 0 and —1 < ¢ < 0 be given and G(z) is defined by

1+c [} 3
G(Z):{Wfo uc_afa(U)du} .
Suppose that f € Py(a, ) then G € Py(a,0), where

B 21+ c)F(1,2+c¢;3+c¢c,-1)—(2+¢)
B 2(1+¢)F(1,2+¢;3+¢,—-1)

The constant B is sharp.

Theorem2.3. Let0<y<1,a>0,0<a=min{l,a/y},0<b<c-a<land H=H,yq be
the convolution operator defined by

Q=

H(f) = Hopea(f(2) = ()" 5 2°F(a b: ;2)) .
Suppose that f € Py(a, B). Then we have H(f) € Py(a, 1), where f; =1-2(1 - f)(1 - ') with
B = (1 - Za)F(a, bic,-1) + ﬂF(a+ 1,b;c;-1)
a a
The result is sharp.
Proof. We let H%(z) = f(2)% * z%F(a, b: c; z). Differentiating this, we get

< HEe (S

H(z) z
where )
M(Z)=F(a,b;c;z)+%zF(a+1,b+1;c+1;z).
Therefore, ,
H(z)\a zH'(2) (H(2)\a _(f(2)\«
() vy () = () e,
where

b
M, (2) = F(a, b c; 2) + %zF(cH Lb+1;c+1;2).

Using the relation (which may be verified by comparing the coefficient of z” on both sides )
cF(a+1,b;c;z) =bzF(a+1,b+1;c+1;z)+cF(a, b;c;z),

we find that
M,(2) = (1 - ga)F(a, bic;z) + 2@F(a+ 1,b;c:2).

Now, in view of the integral representation (1.2), M (z) has the integral form

I'(c) Yo c—a-b-1 N(@)
- - 20 2.8
M@= sorore—a-nl & *°P 1=t 28
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with

1-faa-n
N(t) = ——F(c—-a,l-a;c—a-b+1;1-1)
c—a—-b

+IF(c—a—1,—a;c—a—b;1—t)
a

_Y Y Vv (c—anl-an) a1
_a+(1—aa)zo (1-1)
a-—1,

(c—a-bn+1)1,n)

ZOO c— n+1)(-a,n+1) PN TS

ocz:: (c—a-bn+1)(1,n+1) (-1
_Z X (c—a,n)(l-a,n) Y Y Y, _ntl
Ca ,ZZ:: (c—a- bn+1)(2n)[ (1 aa)+aa agem@[d=07

Which is clearly nonnegative as 0 <y < 1, 0 < @ < min(l, g) O<b<c—-a<landte]0,1].

Using the relation 8?(1 ~) > t, on the (2.8) we get W[Ml (2)] > M;(-1). Now by applying

Lemma 1.1 we obtain the result Finally, to prove the sharpness, let function f and M; are
defined by

f@ye_ o - —w(z) = _ g
( ; ) =9(@=1+20-f7— and M@=y(D=1+20-F)1—.
Further, with 1 =1-2(1 - 8)(1 — §), we have

f(2)\a B N z
(7) *Mi(2) = 1+401 - p1- ) =1+20 -,

and the desired conclusion follows.
Putting a = 1 in the Theorem 2.3 we get the following result.

Corollary2.3. LetO<y<1,a=v,0<b<c—1<1 and h(z) be the function given by

_(_ Y@ N peba(fUDNe 7
he ={rgren Jy ¢ 00 (T) it

Suppose that f € Py(a, ). Then we have h € Py(a, 1), where f; =1-2(1-p)(1 - p') with
p=0- %)F(l, b;c;—1) + %F(Z, b; ¢; —1) The constant B is sharp.

Suppose

a na .y _ o (1+a)(1+b) n+a-1 a
G%(z):= Gf(a’b’a’Z)_n;—(n+a)(n+b)z * f%(z.) (2.9)

Then it is easy to see that (by comparing coefficient of both side),

G(z)z{f A(r)(f(;Z)) } ,
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where
a b

t“—t
(a+1)b+1) b a for b#a, b>-1, a>-1;

AL) = ]
(a+1)2t”log(;), for b=a, a>-1.

This operator for the special case a = 1 has been introduced in [11] and has been studied by a
number of authors [1], [2], [8]. Because of the symmetry, we may assume b > a if b # a.

Theorem 2.4. Let0<y,a=y,-1<a<0,b>aand f € Py(a, B1). Then G defined by (2.9)
isin Py(a, B2), where B, =1-2(1 - 1)(1 - B), with

1
(@t @+ 1 [(I—Z)(t“—tb)—z(at“—btb)]dt, for b# a;
, b-a o 1+t «a

1—Z)(log%)t“+£(1+alogt)t“]dt, for b=a.

(@+1)>2 i m[( r

Proof. Let b > a and G be defined by (2.9). Differentiating the both sides of (2.9), we get

z2G'(2) (G(2)\a _(f(2)\a
where ( )( b b
a+1)1+b) & (a-a-1 +l1-ay ,
M(z) = Z(n+a+1 n+b+1)Z )
Also from (2.9) we have
G@ye (f@ye & A+ad+b) ,, (f@)e
(—Z ) ( ) Z—(n+a)(n+b)z _( . ) * My(2), 2.11)
where M>(z) = (””é)_(;*b) ¥, (n+;+1 - n+}j+1)z”. Now, with combining the relations (2.10),
(2.11) and using a direct integration we obtain
G(2)\a  2zG'(2) (G(2)\a (f(2)\a
(1—7/)( ) e ( - ) _( . ) « M(2), 2.12)
where
_(a+DB+1) 11 o a—a-1 ,
M(z) = b2 1o [(1 )t +yTt
-1-nt +yb— P1dr
_(a+ )b+ 1) 1 Vi by Yo oa b
= a ) 1_tz[(l )(t )= Liar*~bi"|dr.

Since t* > t” and bt? — at® > 0 as -1 < a <0 and b > a. Therefore we have RM(z) > M(-1)
and the result follows by applying Lemma 1.1 to (2.12). Now for the case b = a by taking the
limit as b — a in the previous case we obtain the result.
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Finally our next result deals with generalization of the Kamatu operator [9] which is de-
fined by

F(@) = Fapa(2) = (axDP ! z:“(log%)”_l(f(f))”‘dr}é

I'(p)

1
{( AP ey, fa(z)}“ (2.13)

1 (n+a)P

Theorem 2.5. Let0<y,a=0,p>1,-1<a< % —1. If f € Py(a, B1). Then F is defined by
(2.13) belongs to Py(a,8), where§ =1-2(1-p1)(1 - '), with

p - (1&:))'0 fol (log%)p_z f:lt((p— 1)2 + [1 -a +a)£] log%)dt

Proof. By differentiating of the representation (2.13) we obtain that

zF/(z)(@) (f(z)) (Oz": (1+a)l7(n+a—1)zn_1).

F(2) z a(n+a)P

A computation and the representation (2.13) gives that

(F(z))a+ zF’(z)(F(Z))“

=7 YF(Z) z
1 [e'e) 1
- (L) ([1-al - 1] Lralel 1 8 Arare
=(@)“*M(z),

where

M(z) = u;(gpfol(log%)p 2 1 ((p 1)— [1 (1+a)—]log )dt

Forp>land-l<as< % —1, we conclude that RM(z) > M(—1) and the result follows as in the
proof of Theorem 2.4.
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