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BLACK HOLES, MARGINALLY TRAPPED SURFACES

AND QUASI-MINIMAL SURFACES
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Abstract. The concept of trapped surfaces introduced by Sir Roger Penrose in

[Phys. Rev. Lett. 14 (1965), 57-59] plays an extremely important role in cosmology

and general relativity. A black hole is a trapped region in a space-time enclosed

by a marginally trapped surface. In term of mean curvature vector, a space-like

surface in a space-time is marginally trapped if its mean curvature vector field is

light-like at each point. In this article, we survey recent classification results on

marginally trapped surfaces from differential geometric viewpoint. Also, we survey

recent results on a closely related subject; namely, quasi-minimal surfaces in pseudo-

Riemannian manifolds.

1. Black holes and galaxies.

The idea of an object with gravity strong enough to prevent light from escaping was

proposed in 1783 by J. Michell (1724-1793), an amateur British astronomer. P.-S. Laplace

(1749-1823), a French physicist came to the same conclusion in 1795 independently. Black

holes, as currently understood, are described by Einstein’s general theory of relativity

developed in 1916 (cf. [26]).

Einstein’s theory of general relativity predicts that when a large enough amount of

mass is present in a sufficiently small region of space, all paths through space are warped

inwards towards the center of the volume, preventing all matter and radiation within

it from escaping. Einstein’s theory has important astrophysical applications. It points

towards the existence of black holes. In addition, general relativity is the basis of current

cosmological models of an expanding universe.

According to the American Astronomical Society, every large galaxy has a super

massive black hole (∼ 105-109Msun) at its center. The black hole’s mass is proportional

to the mass of the host galaxy, suggesting that the two are linked very closely.
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Black holes can’t be seen, because everything that falls into them, including light, is

trapped. But the swift motions of gas and stars near an otherwise invisible object allows

astronomers to calculate that it’s a black hole and even to estimate its mass.

2. Space-times

For physical reasons, a space-time is mathematically defined as a 4-dimensional,

smooth, connected, pseudo-Riemannian manifold with a smooth Lorentzian metric of

signature (−,+,+,+). By combining space and time into a single manifold, physicists

have significantly simplified a large number of physical theories, as well as described in a

more uniform way the workings of the universe at both the supergalactic and subatomic

levels.

Formerly, from experiments at slow speeds, time was believed to be a constant, which

progressed at a fixed rate; however, later high-speed experiments revealed that time

slowed down at higher speeds (with such slowing called “time dilation”). Many experi-

ments have confirmed the slowing from time dilation, such as atomic clocks onboard a

Space Shuttle running slower than synchronized Earth-bound clocks. Since time varies,

it is treated as a variable within the space-time coordinate grid, and time is no longer

assumed to be a constant, independent of the location in space.

In order to define Lorentzian space-times, let us recall the definition of pseudo-

Euclidean spaces. By definition, the pseudo-Euclidean m-space E
m
s is the Cartesian

m-space Rm endowed with the canonical pseudo-Euclidean metric of index s given by

g0 = −
s
∑

i=1

dx2
i +

m
∑

j=s+1

dx2
j , (2.1)

where (x1, . . . , xm) is a rectangular coordinate system of Rm.

The geometry of space-time in special relativity is described by the Minkowski space-

time E
4
1.

Besides Minkowski space-time, there are two other space-times which are of constant

curvature; namely, the de Sitter space-time S4
1 (or dS4 by many physicists) and the

anti-de Sitter space-times H4
1 (or AdS4).

De Sitter space-time can be defined as a hypersurface of Minkowski 5-space. Take

Minkowski space-time E
5
1 with the standard metric

g = −dt2 +

5
∑

i=2

dx2
i ,

the de Sitter space-time S4
1(c2) is the hypersurface described by the hyperboloid

−t2 +

5
∑

i=2

x2
i = c2.
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where c is some positive constant. The metric on de Sitter space-time is the metric

induced from the ambient Minkowski metric.

Similarly, an anti de Sitter space-time H4
1 (−c2) can be realized as a hypersurface of

the pseudo-Euclidean space E
5
2 with index 2 described by

−t2 − x2
2 + x2

3 + x2
4 + x2

5 = −c2.

where c is some positive constant.

Another important cosmological model in general relativity is the Robertson-Walker

space-time described as the warped product:

L4
1(f, c) := (I × S, gcf), gcf = −dt2 + f2(t)gc, (2.2)

where (S, gc) is a 3-dimensional space of constant curvature c. It describes a simply-

connected, homogeneous, isotropic expanding or contracting universe.

Robertson-Walker space-times provide good descriptions of our Universe except in

the earliest and the final era (cf. [31]).

A vector v in a space-time (or more generally in a pseudo-Riemannian manifold) is

called space-like (respectively, time-like) if 〈v, v〉 > 0 (respectively, 〈v, v〉 < 0). A vector

v is called light-like if it is nonzero and it satisfies 〈v, v〉 = 0.

A curve in a space-time is called a null curve if its velocity vector is light-like at each

point. A surface is called space-like if every nonzero tangent vector of the surface is

space-like; and it is called Lorentzian if its metric is Lorentzian (i.e., a metric with index

one).

3. Trapped surfaces

The concept of trapped surfaces, introduced by Sir Roger Penrose in 1965 (see [32])

plays extremely important role in general relativity and cosmology. It is considered as a

cornerstone for the achievement of the singularity theorems, the analysis of gravitational

collapse, the cosmic censorship hypothesis, the Penrose inequality, . . . etc. (see [10] for a

recent survey on marginally trapped surfaces and a closely related subject; namely, the

Kaluza-Klein theory).

In the theory of cosmic black holes, if there is a massive source inside the surface, then

close enough to a massive enough source, the outgoing light rays may also be converging;

a trapped surface. Everything inside is trapped. Nothing can escape, not even light.

It is believed that there will be a marginally trapped surface, separating the trapped

surfaces from the untrapped ones, where the outgoing light rays are instantaneously

parallel.

In terms of the mean curvature vector field; a space-like surface in a 4-dimensional

space-time is marginally trapped if and only if its mean curvature vector field is light-like

at each point on the surface.
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The surface of a black hole is the marginally trapped surface. As times develops, the
marginally trapped surface generates a hypersurface in space-time, a trapping horizon.

Although many physicists are interested in marginally trapped surfaces, almost no
classification results on marginally trapped surfaces are known from differential geometric

point of view until the last few years. Moreover, the issue of differentiability of the
boundary of the trapped region is still wide open in general relativity theory. However,
for strictly stable outer marginally trapped surfaces, the following two results were shown
in [2]:

(i) Local existence of a trapping horizon; and

(ii) Outgoing light rays are converging just inside and diverging just outside such a
surface.

4. Marginally trapped surfaces, biharmonicity and light cones

Let L : M → E
4
s be an isometric immersion of a pseudo-Riemannian surface M into

the pseudo-Euclidean 4-space E
4
s with index s. Denote by ∆ the Laplace operator on

M . Then L : M → E
4
s is a minimal immersion if and only if L is a harmonic map, i.e.,

∆L = 0.
An immersion L : M → E

4
s is called biharmonic if and only if (cf. [5]).

∆2L = 0 (4.1)

holds identically on M .
As far as I know, the first classification result on marginally trapped surfaces from

differential geometric viewpoint is related with biharmonic surfaces, which was obtained
in [17, Chen-Ishikawa].

Theorem 4.1. Let L : M → E
4
1 be a biharmonic surface in Minkowski space-time E

4
1

with flat normal connection. Then L is marginally trapped if and only if, up to rigid

motions of E
4
1, the surface is given by

L(u, v) = (ϕ(u, v), u, v, ϕ(u, v)),

where ϕ is proper biharmonic function on M , i.e., ∆ϕ 6= 0 and ∆2ϕ = 0.

The light cone in Minkowski space-time is defined as

LC4
1 = {x ∈ E

4
1 : 〈x, x〉 = 0}.

Marginally trapped surfaces in light cones are completely determined in [11, 13].

Proposition 4.1. Let x : M → LC3
1 be an isometric immersion of a spatial surface M

into the light cone LC3
1 ⊂ E

4
1. Then M is marginally trapped in E

4
1 if and only if M is

flat.
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Proposition 4.2. Let M be a spatial surface in the de Sitter space-time S4
1(1). If M

lies in LC1 = {(y, 1) ∈ S4
1(1) ⊂ E

5
1 : y ∈ E

4
1, 〈y, y〉 = 0}, then M is marginally trapped in

S4
1(1) if and only if it is of curvature one.

Proposition 4.3. Let M be a spatial surface in the anti-de Sitter space-time H4
1 (−1).

If M lies in {(1, y) ∈ H4
1 (−1) ⊂ E

5
2 : y ∈ E

4
2, 〈y, y〉 = 0}, then M is marginally trapped if

and only if it is of curvature −1.

5. Marginally trapped surfaces with positive relative nullity

Let M be a surface in a space-time M̃4
1 . Denote by h the second fundamental form

of M in M̃4
1 . The relative null space at a point p ∈M in M̃4

1 is defined by

Np(M) = {X ∈ TpM |h(X,Y ) = 0 for all Y ∈ TpM}. (5.1)

The dimension of Np(M), denoted by νp(M), is called the relative nullity at p. The
surface M is said to have positive relative nullity if νp(M) > 0 for each p ∈M .

For marginally trapped surfaces with positive nullity in the Minkowski space-time,
we have the following classification obtained in [20, Chen-Van der Veken].

Theorem 5.1. Up to Minkowskian motions, there exist two families of marginally

trapped surfaces with positive relative nullity in E
4
1:

(1) A surface defined by
(

f(x), x, y, f(x)
)

,

where f(x) is an arbitrary differentiable function with f ′′(x) being nowhere zero.

(2) A surface defined by

(

∫ x

0

r(x)q′(x)dx + q(x)y, y cosx−
∫ x

0

r(x) sin xdx,

y sinx+

∫ x

0

r(x) cos xdx,

∫ x

0

r(x)q′(x)dx + q(x)y

)

,

where q and r are defined on an open interval I ∋ 0 satisfying q′′(x) + q(x) 6= 0 for

each x ∈ I.

Conversely, every marginally trapped surface with positive relative nullity in the

Minkowski space-time E4
1 is congruent to an open portion of a surface obtained from

the two families.

Chen and Van der Veken also obtained the following complete classification of
marginally trapped surfaces with positive relative nullity in de Sitter and anti-de Sit-
ter space-times (cf. [20]).
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Theorem 5.2. Up to rigid motions of S4
1(1), there exist two families of marginally

trapped surfaces with positive relative nullity in the de Sitter space-time S4
1(1) ⊂ E

5
1:

(1) A surface given by

(

f(x) cos y, sinx cos y, sin y, cosx cos y, f(x) cos y
)

,

where f is an arbitrary function defined on an open interval I satisfying f ′′ + f 6= 0
at each point in I.

(2) A surface given by

(

p(s), η1(s), η2(s), η3(s), p(s)
)

cos y

−
(

b−
∫ s

0

r(s)p′(s)ds, ξ1(s), ξ2(s), ξ3(s), b−
∫ s

0

r(s)p′(s)ds
)

sin y,

where b is a real number, p and r are defined on an open interval I ∋ 0 such that

r is non-constant, η = (η1, η2, η3) is a unit speed curve in S2(1) ⊂ E
3 with geodesic

curvature κg = r, and ξ = (ξ1, ξ2, ξ3) is the unit normal of η in S2(1).

Conversely, every marginally trapped surface with positive relative nullity in the de

Sitter space-time S4
1 is congruent to an open portion of a surface obtained from the two

families.

Theorem 5.3. Up to rigid motions of H4
1 (−1), there exist five families of marginally

trapped surfaces with positive relative nullity in the anti-de Sitter space-time H4
1 (−1):

(1)
(

f(x) cosh y, coshx cosh y, sinh y, sinhx cosh y, f(x) cosh y
)

, where f(x) is defined on

an open interval I such that f ′′(x) − f(x) 6= 0 at each x ∈ I.

(2)
(

f(x) sinh y, cosh y, cosx sinh y, sinx sinh y, f(x) sinh y
)

, where f(x) is defined on an

open interval I such that f ′′(x) + f(x) 6= 0 at each x ∈ I.

(3)
(

x2ey, 3ey

2 − 2 sinh y, ey − 2 sinh y, xey, x2ey − ey

2

)

.

(4)
(

sinh y − x2ey

2 − ey, f(x)ey, xey, f(x)ey, sinh y − x2ey

2

)

, where f(x) is defined on an

open interval I such that f ′′(x) 6= 0 at each x ∈ I.

(5) A surface defined by

(

(p(s), η1(s), η2(s), η3(s), p(s)
)

cosh y

−
(

b −
∫ s

0

r(s)p′(s)ds, ξ1(s), ξ2(s), ξ3(s), b−
∫ s

0

r(s)p′(s)ds

)

sinh y,

where b is a real number, p and r are defined on an open interval I ∋ 0 such that r

is non-constant, η = (η1, η2, η3) is a unit speed curve in H2(−1) ⊂ E
3
1 with geodesic

curvature κg = r, and ξ = (ξ1, ξ2, ξ3) is the unit normal of η in H2(−1).
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Conversely, every marginally trapped surfaces with positive relative nullity in the anti-

de Sitter space-time H4
1 is congruent to an open portion of a surface obtained from the

five families.

6. Marginally trapped surfaces with DH = 0

A surface in a space-time is called parallel if its second fundamental form h is parallel

with respect to the Van der Waerden - Borolotti connection, that is, ∇̄h = 0 (cf. [4]).

Parallel space-like and Lorentzian surfaces in 4-dimensional Lorentzian space forms

were classified by Chen and Van der Veken in [22]. Recently, all parallel space-like surfaces

in pseudo-Riemannian space forms with arbitrary index and arbitrary dimension were

completely classified by the author in [14].

The following classification of of marginally trapped surfaces with parallel mean cur-

vature vector in Minkowski space-time were obtained from [23, Chen-Van der Veken]

together with Proposition 4.1.

Theorem 6.1. Let M be a marginally trapped surface with parallel mean curvature

vector in the Minkowski space-time E
4
1. Then, with respect to suitable Minkowskian co-

ordinates (t, x2, x3, x4) on E
4
1, M is an open part of one of the following six types of

surfaces:

(1) a flat parallel biharmonic surface given by

1

2

(

(1 − b)u2 + (1 + b)v2, (1 − b)u2 + (1 + b)v2, 2u, 2v
)

, b ∈ R.

(2) a flat parallel surface given by

a
(

coshu, sinhu, cos v, sin v
)

, a > 0.

(3) a flat surface given by

(f(u, v), u, v, f(u, v)),

where f is a function on M such that ∆f = c for some nonzero real number c.

(4) a flat surface lying in the light cone LC.

(5) a non-parallel surface lying in the de Sitter space-time S3
1(r2) for some r > 0 such

that the mean curvature vector H ′ of M in S3
1(r2) satisfies 〈H ′, H ′〉 = −r2.

(6) a non-parallel surface lying in the hyperbolic space H3(−r2) for some r > 0 such that

the mean curvature vector H ′ of M in H3(−r2) satisfies 〈H ′, H ′〉 = r2.

Conversely, all surfaces of types (1)–(6) above give rise to marginally trapped surfaces

with parallel mean curvature vector in E
4
1.
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The following two results from [23] classifies marginally trapped surface with DH = 0
in de Sitter and anti de Sitter 4-spaces.

Theorem 6.2. Let M be a marginally trapped surface with parallel mean curvature

vector in the de Sitter space-time S4
1(1) ⊂ E

5
1. Then M is congruent to an open part of

one of the following eight types of surfaces:

(i) a parallel surface of curvature one given by

(

1, sinu, cosu cos v, cosu sin v, 1
)

.

(ii) a flat parallel surface defined by

1

2

(

2u2 − 1, 2u2 − 2, 2u, sin 2v, cos 2v
)

.

(iii) a flat parallel surface defined by

(

b√
4 − b2

,
cos(

√
2 − b u)√
2 − b

,
sin(

√
2 − bu)√
2 − b

,
cos(

√
2 + bv)√

2 + b
,
sin(

√
2 + bv)√

2 + b

)

with |b| < 2.

(iv) a flat parallel surface defined by

(

cosh(
√
b− 2u)√

b− 2
,
sinh(

√
b− 2u)√
b− 2

,
cos(

√
2 + bv)√

2 + b
,
sin(

√
2 + bv)√

2 + b
,

b√
b2 − 4

)

with b > 2.

(v) a surface of constant curvature one immersed in S4
1(1) ⊂ E

5
1 given by

(f, cosu, sinu cos v, sinu sin v, f),

where f is a function satisfies ∆f = k for some nonzero real number k.

(vi) a non-parallel surface of curvature one in S4
1(1) which lies in

LC1 := {(y, 1) ∈ E
5
1 : 〈y,y〉 = 0,y ∈ E

4
1} ⊂ S4

1(1);

(vii) a non-parallel surface of S4
1(1) which lies in S4

1(1) ∩ S4
1(c0, r

2) with c0 6= 0 and

r > 0 such that the mean curvature vector H ′ of M in S4
1(1) ∩ S4

1(c0, r
2) satisfies

〈H ′, H ′〉 = 1 − r2.

(viii) a non-parallel surface of S4
1(1) which lies in S4

1(1) ∩H4(c0,−r2) with c0 6= 0 and

r > 0 such that the mean curvature vector H ′ of M in S4
1(1)∩H4(c0,−r2) satisfies

〈H ′, H ′〉 = 1 + r2.

Conversely, all surfaces of types (i)–(viii) above give rise to marginally trapped sur-

faces with parallel mean curvature vector in S4
1(1).
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We also have the following result which classify marginally trapped surfaces with

DH = 0 in H4
1 (−1).

Theorem 6.3. Let M be a marginally trapped surface with parallel mean curvature

vector in the anti de Sitter space-time H4
1 (−1) ⊂ E

5
2. Then, M is congruent to one of

the following eight types of surfaces:

(a) a curvature −1 parallel surface given by

(

1, coshu coshv, sinhu, coshu sinh v, 1
)

.

(b) a flat parallel surface defined by

1

2

(

2u2 + 2, cosh 2v, 2u, sinh2v, 2u2 + 1
)

.

(c) a flat parallel surface defined by

(

cosh(
√

2 − bu)√
2 − b

,
cosh(

√
2 + bv)√

2 + b
,
sinh(

√
2 − bu)√

2 − b
,
sinh(

√
2 + bv)√

2 + b
,

b√
4 − b2

)

with |b| < 2.

(d) a flat parallel surface defined by

(

b√
b2 − 4

,
cosh(

√
b+ 2v)√

b+ 2
,
sinh(

√
b+ 2v)√
b+ 2

,
cos(

√
b− 2u)√
b− 2

,
sin(

√
b− 2u)√
b− 2

)

with b > 2.

(e) a surface of constant curvature −1 immersed in H4
1 (−1) ⊂ E

5
2 given by

(f, coshu, sinhu cos v, sinhu sin v, f),

where f is a function satisfies ∆f = k for some nonzero real number k;

(f) a non-parallel surface of H4
1 (−1) with curvature −1, lying in

LC2 := {(1,y) ∈ E
5
2 : 〈y,y〉 = 0,y ∈ E

4
1} ⊂ H4

1 (−1);

(g) a non-parallel surface lying in H4
1 (−1) ∩ S4

2(c0, r
2) with c0 6= 0 and r > 0 such that

the mean curvature vector H ′ in H4
1 (−1) ∩ S4

2(c0, r
2) satisfies 〈H ′, H ′〉 = −r2 − 1;

(h) a non-parallel surface lying in H4
1 (−1)∩H4

1 (c0,−r2) with c0 6= 0 and r > 0 such that

mean curvature vector H ′ in H4
1 (−1) ∩H4

1 (c0,−r2) satisfies 〈H ′, H ′〉 = r2 − 1.

Conversely, all surfaces of types (a)–(h) above give rise to marginally trapped surfaces

with parallel mean curvature vector in H4
1 (−1).
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Remark 1. Recently, space-like surfaces with DH = 0 in pseudo-Riemannian space

forms with arbitrary index and arbitrary dimension were completely classified by the
author in [11, 13]. In particular, he completely classifies space-like surfaces with DH = 0
in Lorentzian space forms of arbitrary dimension.

One may also study marginally trapped surfaces in a pseudo-Riemannian m-manifold
M̃m
s with index s. Here, by a marginally trapped surface in M̃m

s , we mean a space-like
surface whose mean curvature vector field is light-like at each point.

For marginally trapped surfaces in E
m
s with m ≥ 5 we have the following result from

[11].

Theorem 6.4. Let L : M → E
m
s be a marginally trapped surface in a pseudo-Euclidean

m-space E
m
s with index s. If M has parallel mean curvature vector, then M is congruent

to one of the following two types of surfaces:

(1) a surface given by

L = (f, ψ, f),

where f is a function on M satisfying ∆f = b for some real number b 6= 0 and

ψ : M → E
m−2
s−1 is an isometric minimal immersion;

(2) a marginally trapped surface lying in a totally geodesic Minkowski 4-space E
4
1 ⊂ E

m
s .

7. Further results on marginally trapped surfaces

In this section, we present some more results on marginally trapped surfaces.

7.1. A representation formula

A conformal representation formula of Weierstrass-Bryant type was obtained in [1,
Aledo-Gálvez-Mira] for the class of marginally trapped surfaces M in the Minkowski
space-time E

4
1 which satisfy the following two additional conditions:

(a) M has flat normal connection in E
4
1, and

(2) M is locally isometric either to a minimal surface in E
3 or to a maximal surface in

E
3
1.

7.2. Marginally trapped surfaces in Robertson-Walker space-times

For marginally trapped surfaces lying in a Robertson-Walker space-time, we have the
following result from [21, Chen-Van der Veken].

Theorem 7.1. Let L4
1(f, c) = I ×f S be a Robertson-Walker space-time which contains

no open subsets of constant curvature. Then L4
1(f, c) does not admit any marginally

trapped surface M with positive relative nullity.
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Remark 2. If we do not assume M to have positive relative nullity, there exist

marginally trapped surfaces in Robertson-Walker space-times of non-constant sectional

curvature.

7.3. Boost invariant marginally trapped surfaces in E
4

1

The boost group in Minkowski space-time E
4
1 is defined by

G =























cosh θ sinh θ 0 0

sinh θ cosh θ 0 0

0 0 1 0

0 0 0 1









: θ ∈ R















.

It is known in general relativity theory that the inertial vacuum state of Minkowski
space-time is a thermal state when analyzed regarding the notion of time translations

defined by a one-parameter family of Lorentz boosts. The orbits of these boost isometries

correspond to a family of uniformly accelerating observers. This result, known as the
Unruh effect, is actually a consequence of the fact that the Lorentz boost isometries

possess a Killing horizon, that is, a null surface which is normal to the Killing field

generating the isometries.
Recently, marginally trapped surfaces in E

4
1 invariant under boost group are obtained

by Haesen and Ortega in [28]. In particular, they showed that there exist no G-invariant
extremal surfaces in Minkowski space-time with constant Gaussian curvature.

7.4. Marginally trapped surfaces in strictly stationary space-times

A space-time is called strictly stationary if it contains a Killing vector field which is

time-like everywhere.
Mars and Senovilla [30] proved the following non-existence result for strictly station-

ary space-time.

Theorem 7.2. There do not exist closed marginally trapped surfaces in strictly station-

ary space-times.

8. Quasi-minimal flat surfaces in E
4

2

There is an important subject closely related with marginally trapped surfaces in
space-times; namely, the study of quasi-minimal surfaces. A Lorentzian surface in a

pseudo-Riemannian manifold is called quasi-minimal if its mean curvature vector is light-
like at each point (cf. [33, 35]).

Let us define a ∗ b as

a ∗ b = (a1b1, . . . , a4b4) (8.1)
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for any two vectors a = (a1, . . . , a4), b = (b1, . . . , b4) in E
4
2.

Flat quasi-minimal surfaces in the pseudo-Euclidean 4-space E
4
2 were classified in

[8, 25].

Theorem 8.1. If L : M → E
4
2 is a quasi-minimal flat surface in E

4
2, then L is congruent

to a surface of the following night types:

(1) A surface defined by

1√
2

(

ϕ(x, y), x + y, x− y, ϕ(x, y)
)

,

where ϕ(x, y) is a function with ϕxy > 0 on an open domain U ⊂ E
2
1.

(2) A surface defined by

L(x, y) = z(x)y + w(x),

where z(x) is a null curve in the light-cone LC and w(x) is a null curve satisfying

〈z′, w′〉 = 0 and 〈z, w′〉 = −1.

(3) A surface defined by

1

2ab

(

2ab cosax cos by − sin ax sin by, 2ab cosax sin by + sin ax cos by,

2ab cosax cos by + sin ax sin by, 2ab cosax sin by − sin ax cos by
)

,

with a, b > 0

(4) A surface defined by

1

2ab

(

2ab cosax cosh by − sin ax sinh by, 2ab cosax sinh by + sin ax cosh by,

2ab cosax cosh by + sin ax sinh by, 2ab cosax sinh by − sin ax cosh by
)

for some positive numbers a, b.

(5) A surface defined by

1

2ab

(

2ab coshax cosh by − sinh ax sinh by, 2ab coshax sinh by + sinh ax cosh by,

2ab coshax cosh by + sinh ax sinh by, 2ab coshax sinh by − sinh ax cosh by
)

for some positive numbers a, b.

(6) A surface defined by

L(x, y) = z(y) cosax+ w(y) sin ax,

where a is a positive number and z, w are null curves lying in the light cone LC
satisfying 〈z, w〉 = z′′ + δz = w′′ + δw = 0 and 〈z, w′〉 = a−1 for some non-constant

function δ(y).
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(7) A ssurfaces lying in the light cone LC ⊂ E
4
2 given by

L(x, y) = u(x) ∗ z(y) + v(x) ∗ w(y),

where u, v, z, w are curves in E
4
2 satisfying the following conditions:

u′′ + βu = v′′ + βv = 0, (i)

z′′ + δz = w′′ + δw = 0, (ii)

〈u′ ∗ z + v′ ∗ w, u ∗ z′ + v ∗ w′〉 = −1. (iii)

where β(x) and δ(y) are non-constant real-valued functions.

(8) A surface defined by

L(x, y) = z(y) coshax+ w(y) sinh ax,

where a is a positive number and z, w are null curves lying in the light cone LC
satisfying 〈z, w〉 = z′′ + δz = w′′ + δw = 0 and 〈z, w′〉 = a−1 for some non-constant

function δ(y).

(9) A surface ψγδ : M → E
4
2 defined in Proposition 8.1 given below.

Proposition 8.1. Let U be a simply-connected domain of the Lorentzian plane E
2
1 =

{(x, y) : x, y ∈ R} with metric g = −dxdy. Let M denote the flat surface given by U
together with the flat metric g = −dxdy. Assume that γ and δ are non-constant functions

defined on M satisfying

γx + (ln δ)xγ = (lnβ)y , δx 6= 0, (γδ)x 6= 0, (8.2)

(ln δ)xy − (lnβ)xy = 2βγ (8.3)

with

β =
δδx

γγy − 2γ2δx − γyδ − 2γγxδ
. (8.4)

Then, up to rigid motions of the pseudo-Euclidean space E
4
2, there exists a unique quasi-

minimal isometric immersion ψγδ : M → E
4
2 whose second fundamental form h and

normal connection D satisfy

h

(

∂

∂x
,
∂

∂x

)

= βe4 −
βγ

δ
e3, h

(

∂

∂x
,
∂

∂y

)

= e3, h

(

∂

∂y
,
∂

∂y

)

= γe3 + δe4, (8.5)

D ∂
∂x
e3 =

δx
δ
e3, D ∂

∂y
e3 =

βy
β
e3, D ∂

∂x
e4 = −δx

δ
e4, D ∂

∂y
e4 = −βy

β
e4, (8.6)

for some pseudo-orthonormal normal frame {e3, e4} satisfying

〈e3, e3〉 = 〈e4, e4〉 = 0, 〈e3, e4〉 = −1. (8.7)
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As an application of Theorem 8.1 we have the following classification of biharmonic
marginally quasi-minimal surfaces in E

4
2.

Theorem 8.2. A quasi-minimal surface in E
4
2 is biharmonic if and only if M congruent

to one of the following surfaces:

(a) A surface defined by

1√
2

(

ϕ(x, y), x + y, x− y, ϕ(x, y)
)

,

where ϕ(x, y) is a function satisfying ϕxy 6= 0 and ϕxxyy = 0 on an open domain

U ⊂ E
2
1.

(b) A surface defined by

L(x, y) = z(x)y + w(x),

where z(x) is a null curve in the light-cone LC and w(x) is a null curve satisfying

〈z′, w′〉 = 0 and 〈z, w′〉 = −1.

9. Quasi-minimal surfaces with constant positive curvature

On E
4
2 we may consider the canonical complex coordinate system {z1, z2} given by

z1 = x1 + ix2, z2 = x3 + ix4. The complex structure on E
4
2 obtained in this way is

the standard complex structure on E
4
2. In this way, E

4
2 can be regarded as a Lorentzian

complex plane C2
1.

The following classification of quasi-minimal surfaces of constant positive curvature
was obtained in [12].

Theorem 9.1. There exist six families of quasi-minimal surfaces of constant curvature

one in C2
1 given by the following:

(1) A surface defined by

(

x+
ibx2

√
2

+

√
2i − 2b(2x+ y)

2b(x+ y)2
, x− ibx2

√
2

+

√
2i + 2b(2x+ y)

2b(x+ y)2

)

,

where b is a nonzero real number.

(2) A surface defined by

(

(

i −
√

2b(x+ y)√
2b(x+ y)2

+

√
2ib

a2

)

cosh(ax) +

(

1

a
− 1

a(x+ y)2
+

√
2ia

2b(x+ y)

)

sinh(ax),

(

i +
√

2b(x+ y)√
2b(x+ y)2

−
√

2ib

a2

)

cosh(ax) +

(

1

a
+

1

a(x+ y)2
+

√
2ia

2b(x+ y)

)

sinh(ax)

)

,

where a, b are nonzero real numbers.
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(3) A surface defined by

(

(

i −
√

2b(x+ y)√
2b(x+ y)2

−
√

2ib

a2

)

cos(ax) +

(

(x+ y)2 − 1

a(x+ y)2
− ia√

2b(x+ y)

)

sin(ax),

(

i +
√

2b(x+ y)√
2b(x+ y)2

+

√
2ib

a2

)

cos(ax) +

(

(x + y)2 + 1

a(x+ y)2
− ia√

2b(x+ y)

)

sin(ax)

)

,

where a, b are nonzero real numbers.

(4) A surface defined by

iz(x) + i(x+ y)z′(x)√
2p(x)(x + y)2

−
∫ x

(1 + ik(x))z(x)dx

+
i√
2

∫ x ( f(x)

x+ y
− 2p(x) + (x+ y)p′(x)

(x+ y)3p2(x)

)

z(x)dx

+
i√
2

∫ y (∫ x{ f(x)

(x+ y)2
− 6p(x) + 2(x+ y)p′(x)

(x + y)4p2(x)

}

z(x)dx

)

dy,

where z is a null curve lying in LC satisfying z′′(ln p)′z′ = fz, and p, f , k are real

valued functions with p 6= 0.

(5) A surface defined by

z(y) +
ic1(1 + (x+ y)(i + p(y))q(y))

(x+ y)2q(y)
e

R

y(i−p(y))q(y)dy

for some real-valued functions q 6= 0 and p, where c1 is a null vector, z is a null curve

satisfying 〈c1, z′〉 = −2e
R y pqdy cos(

∫ y
qdy) and 〈c1, iz′〉 = 2e

R y pqdy sin(
∫ y

qdy).

(6) A surface defined by

∫ x 1 − i sinhα

e
R y q(y)(sinhα−i)dy

z(x)dx − iz′(x)√
2p(x)

∫ y e
R y q(y)(i+sinhα)dy

(x + y)2
dy

+
z(x)√
2ip(x)

∫ y e
R

y q(y)(i+sinhα)dy

(x+ y)2

(

2

x+ y
−
∫ y

q(y)(sinhα)xdy

)

dy

− i

∫ y ∫ x (q(y) coshα− αy)z(x)

e
R y q(y)(sinhα−i)dy sechα

dxdy,

where α, p, q are real-valued functions with q 6= 0 and αy 6= q coshα, and z is a null

curve lying in the light cone LC satisfying 〈z, iz′〉 = 2
√

2p.

Conversely, up to rigid motions and dilations, every marginally trapped surface of

constant positive curvature in C2
1 is locally an open portion of one of the surfaces given

by the six families.
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10. Quasi-minimal surfaces with constant negative curvature

We also have the following complete classification of quasi-minimal surfaces of con-
stant negative curvature from [12].

Theorem 10.1. There exist six families of quasi-minimal surfaces of constant curvature

−1 in C2
1 given by the following:

(1) A surface defined by
(

(i + k)(bx2 − 4ix)

4
+

4i − 2bx+
√

2b sinh(
√

2(x + y))

4b
sech 2

(

x+ y√
2

)

,

− (i + k)(bx2 + 4ix)

4
+

4i + 2bx−
√

2b sinh(
√

2(x + y))

4b
sech 2

(

x+ y√
2

)

)

,

where b is a nonzero real number and k is an arbitrary real number.

(2) A surface defined by

1

2a2b

(

a

(

2b(1 − ik) − b sech 2

(

x+ y√
2

)

− 2
√

2i tanh

(

x+ y√
2

))

sinh(ax)

+

(

b2(i + k) + 2ia2 sech 2

(

x+ y√
2

)

+
√

2a2b tanh

(

x+ y√
2

))

cosh(ax),

a

(

b sech 2

(

x+ y√
2

)

+ 2b(1 − ik) − 2
√

2ia2

(

x+ y√
2

))

sinh(ax)

−
(

b2(i + k) − 2ia2 sech 2

(

x+ y√
2

)

+
√

2a2b tanh

(

x+ y√
2

))

cosh(ax)

)

,

where a, b are nonzero real numbers and k is an arbitrary real number.

(3) A surface defined by

1

2a2b

(

(

b cos(ax) + 2ia sin(ax)
)

(√
2a2 tanh

(

x+ y√
2

)

− b(i + k)

)

+
2ia2 cos(ax) − ab sin(ax)

cosh2((x + y)/
√

2)
,

2ia2 cos(ax) + ab sin(ax)

cosh2((x+ y)/
√

2)

+
(

b cos(ax) − 2ia sin(ax)
)

(

b(i + k) −
√

2a2 tanh

(

x+ y√
2

))

)

,

where a, b are nonzero real numbers and k is an arbitrary real number.

(4) A surface defined by
∫ x

(1 − i sinhα)z(x)dx + i

∫ y ∫ x

(sinhα)yz(x)dxdy

− i

p(x)

(√
2 tanh

(

x+ y√
2

)

z′(x) − sech 2

(

x+ y√
2

)

z(x)

)

,
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where z is a null curve in LC satisfying z′′(x) − (ln p)′(x)z′(x) = (2 + f(x))z(x),

α = sinh−1

(

k(x) +

√
2(2 + f(x))

p(x) coth((x+ y)/
√

2)
+
p′(x) +

√
2p(x) tanh((x + y)/

√
2)

p2(x) cosh2((x + y)/
√

2)

)

,

and f , p, k are real-valued functions with p 6= 0.

(5) A surface defined by

z(y) +

√
2c1(1 − ip(y))

e
R y(p(y)−i)q(y)dy

tanh

(

x+ y√
2

)

+

ic1 sech 2

(

(x+ y)/
√

2

)

q(y)e
R y(p(y)−i)q(y)dy

,

where p, q are real-valued functions with q 6= 0, c1 is a null vector, and z is a null

curve satisfying 〈c1, z′〉 = −e
R

y pqdy cos(
∫ y

qdy) and 〈c1, iz′〉 = e
R

y pqdy sin(
∫ y

qdy).

(6) A surface defined by

∫ x 1 − i sinhα

e
R y q(y)(sinhα−i)dy

z(x)dx− iz′(x)

p(x)

∫ y e
R y q(y)(i+sinhα)dy

cosh2((x+ y)/
√

2)
dy

+
iz(x)

p(x)

∫ y e
R y q(y)(i+sinhα)dy

cosh2((x + y)/
√

2)

(∫ y

q(y)(sinhα)xdy −
√

2 tanh

(

x+ y√
2

))

dy

− i

∫ y ∫ x (q(y) coshα− αy)z(x)

e
R

y q(y)(sinhα−i)dy sechα
dxdy,

where α, p, q are real-valued functions with q 6= 0 and αy 6= q coshα, and z is a null

curve lying in the light cone LC satisfying 〈z, iz′〉 = p.

Conversely, up to rigid motions and dilations, every marginally trapped surface of

constant negative curvature in C2
1 is locally an open portion of one of the surfaces given

by the six families.

11. Quasi-minimal surfaces with parallel mean curvature vector in E
4

2

Next, we present the classification of quasi-minimal surfaces with parallel mean cur-
vature vector in E

4
2 obtained in [16, Chen-Garay].

Theorem 11.1. Let L : M → E
4
2 be a flat quasi-minimal surface in E

4
2. If M has

parallel mean curvature vector, then L is congruent to an open portion of one of surfaces

of the following seven types:

(1) A surface defined by

1√
2

(

xy + f(x) + k(y), x+ y, x− y, xy + f(x) + k(y)
)

,

for some functions f(x), k(y).
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(2) A surface defined by

L = z(x)y + w(x),

where z(x) is a null curve in the light-cone LC and w(x) is a null curve satisfying

〈z′, w′〉 = 0, 〈z, w′〉 = −1 and z′′(x) + β(x)z(x) = 0 for some function β(x).

(3) A surface defined by

1

2ab

(

2ab cosax cos by − sinax sin by, 2ab cosax sin by + sin ax cos by,

2ab cosax cos by + sin ax sin by, 2ab cosax sin by − sin ax cos by
)

, a, b > 0.

(4) A surface defined by

1

2ab

(

2ab cosax cosh by − sin ax sinh by, 2ab cosax sinh by + sin ax cosh by,

2ab cosax cosh by + sinax sinh by, 2ab cosax sinh by − sin ax cosh by
)

, a, b > 0.

(5) A surface defined by

1

2ab

(

2ab coshax cosh by − sinh ax sinh by,

2ab coshax sinh by + sinh ax cosh by, 2ab coshax cosh by + sinh ax sinh by,

2ab coshax sinh by − sinh ax cosh by
)

, a, b > 0.

(6) A surface defined by

L = z(y) cos ax+ w(y) sin ax,

where z and w are null curves lying in the light cone LC satisfying 〈z, w〉 = z′′+δz =

w′′ + δw = 0 and 〈z, w′〉 = a−1 for some non-constant function δ(y) and positive

number a.

(7) A surface defined by

L = z(y) coshax+ w(y) sinh ax,

where z and w are null curves lying in the light cone LC satisfying 〈z, w〉 = z′′+δz =

w′′ + δw = 0 and 〈z, w′〉 = a−1 for some non-constant function δ(y) and positive

number a.

Theorem 11.2. Let L : M → C2
1 be a quasi-minimal immersion of a surface into C2

1.

Assume that M contains no flat points. Then M has parallel mean curvature vector if

and only if the immersion L is congruent to Lkψc : Mψ → C2
1 as described in Proposition

11.1, where c is a nonzero real number, k(y) a nonzero real-valued function, and ψ(x, y)

a real-valued function satisfying ψx 6= 0 and the Riccati equation ψy = ǫk2(y)(ψ2 +1)−1

(ǫ = 1 or −1).
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Proposition 11.1. Let c be a nonzero real number, k(y) a nonzero real-valued function

and ψ(x, y) a real-valued function satisfying ψx 6= 0 and the Riccati equation:

ψy = ǫk2(y)(ψ2 + 1) − 1, (ǫ = 1 or − 1), (11.1)

on a simply-connected domain U . Let Mψ = (U, gψ) be the surface equipped with the

Lorentzian metric:

gψ = −dx⊗ dy + dy ⊗ dx

|ψx|
. (11.2)

Then the Gaussian curvature of Mψ is −2ǫsign(ψx)k
2(y)ψ2

x. Moreover, up to rigid mo-

tions, there exists a unique quasi-minimal immersion L̂ = Lkψc : Mψ → C2
1 with parallel

mean curvature vector and with Wirtinger angle α = sinh−1 ψ such that the second fun-

damental form satisfies

h

(

∂

∂x
,
∂

∂x

)

= αx(tanhα− i sechα)L̂x + c(i + ψ)L̂y,

h

(

∂

∂x
,
∂

∂y

)

= sechα(i sechα− tanhα)L̂x,

h

(

∂

∂y
,
∂

∂y

)

=
ǫαxk

2(y)

c
(tanhα− i sechα)L̂x + ǫk2(y)(i + ψ)L̂y.

(11.3)

12. Lorentzian complex space forms and Legendre curves

12.1. Lorentzian complex space forms

Let M̃n
i (4ε) be an indefinite complex space form of complex dimension n and com-

plex index i. The complex index is defined as the complex dimension of the largest
complex negative definite subspace of the tangent space. If i = 1, we say that M̃n

i (4ε) is
Lorentzian.

The curvature tensor R̃ of M̃n
i (4ε) is given by

R̃(X,Y )Z = ε{〈Y, Z〉X − 〈X,Z〉Y + 〈JY, Z〉JX − 〈JX,Z〉JY + 2〈X, JY 〉JZ}.

Let Cn denote the complex number n-space with complex coordinates z1, . . . , zn. The
Cn endowed with gi,n, i.e., the real part of the Hermitian form

bi,n(z, w) = −
i
∑

k=1

z̄kwk +

n
∑

j=i+1

z̄jwj , z, w ∈ Cn,

defines a flat indefinite complex space form with complex index i. We simply denote the
pair (Cn, gi,n) by Cn

i . Consider the differentiable manifold:

S2n+1
2 = {z ∈ Cn+1

1 ; b1,n+1(z, z) = 1},
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which is an indefinite real space form of constant sectional curvature one. The Hopf
fibration

π : S2n+1
2 → CPn1 (4) : z 7→ z · C∗

is a submersion and there exists a unique pseudo-Riemannian metric of complex index one
on CPn1 (4) such that π is a Riemannian submersion. The pseudo-Riemannian manifold
CPn1 (4) is a Lorentzian complex space form of positive holomorphic sectional curvature
4.

Analogously, consider H2n+1
3 = {z ∈ Cn+1

2 ; b2,n+1(z, z) = −1}, which is an indefinite
real space form of constant sectional curvature −1. The Hopf fibration

π : H2n+1
3 (−1) → CHn

1 (−4) : z 7→ z ·C∗

is also a submersion and there is a unique pseudo-Riemannian metric of complex index
1 on CHn

1 (−4) such that π is a Riemannian submersion. The CHn
1 (−4) is a Lorentzian

complex space form of negative holomorphic sectional curvature −4.

12.2. Legendre curves

Let 〈 , 〉 denote the inner product on C3
i induced from gi,3 for i = 1 or 2. Let us

put ǫv = 1 (respectively, ǫv = −1) whenever v is a spacelike vector (respectively, v is
timelike).

A curve z in S5
2 , (in H5

3 , or in LC) is called Legendre if 〈z′, iz〉 = 0 holds identically.
The squared Legendre curvature κ̂2 of a unit speed Legendre curve z is defined by κ̂2 =
ǫz′〈z′′, z′′〉; its Legendre torsion is τ̂ = ǫz′〈z′′, iz′′′〉.

If z(s) is a unit speed Legendre curve in S5
2(1) ⊂ C3

1

(

or in H5
3 (−1) ⊂ C3

2), then
z/|z|, iz/|z|, z′, iz′ are orthonormal vector fields defined along the curve. Thus, there ex-
ists a unit normal vector field Pz such that z/|z|, iz/|z|, z′, iz′, Pz, iPz form an orthonor-
mal frame. By differentiating 〈z′(s), iz(s)〉 = 0, 〈z′(s), z(s)〉 = 0, we get 〈z′′, iz〉 = 0,
〈z′′, z〉 = −ǫz′ , Thus, z′′ can be expressed as

z′′(s) = iψ(s)z′(s) − ǫz′cz(s) − a(s)Pz(s) + b(s)iPz(s) (12.1)

for some real-valued functions ψ, a, b. The Legendre curve z(s) is called special Legendre

if (12.1) reduces to

z′′(s) = iψ(s)z′(s) − ǫz′cz(s) − a(s)Pz(s), (12.2)

where Pz is a unit parallel normal vector field, i.e., P ′
z(s) = µ(s)z′(s) for µ = aǫz′ǫPz .

A Legendre curve z in the light cone LC is called special Legendre if 〈iz′, z′′〉 = 0
holds identically.

13. Quasi-minimal Lagrangian surfaces

An n-dimensional submanifold M of a Kähler (or more generally, of a pseudo-Kähler)
n-manifold is called Lagrangian if the almost complex structure J of the ambient manifold
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interchanges the tangent and the normal spaces of M . Clearly, Lagrangian surfaces of a

Lorentzian Kähler surface M̃2
1 are always Lorentzian.

Lagrangian submanifolds appear naturally in the context of classical mechanics and
mathematical physics. For instance, the systems of partial differential equations of Hamil-

ton 牮Jacobi type lead to the study of Lagrangian submanifolds and foliations in the
cotangent bundle. Furthermore, Lagrangian submanifolds are part of a growing list of

mathematically rich special geometries that occur naturally in string theory.

Quasi-minimal Lagrangian surfaces in a Lorentzian complex space form whose mean
curvature vector H satisfies ∆H = λH for some constant λ were studied by Sasahara in

[34].
Recently, quasi-minimal Lagrangian surfaces in Lorentzian complex space forms have

been completely classified by Chen and Dillen in [15].

Theorem 13.1. Let M be a marginally trapped Lagrangian surface in the Lorentzian

complex plane C2
1.

(i) If M is flat, either M is an open part of a Lagrangian surfaces defined by

(i.1) L(x, y) = eiyz(x) for some null curve z(x) in the light cone LC; or M is an

open part of a Lagrangian surfaces defined by

(i.2) L(s, t) = c1se
if(t) + z(t), where f(t) is a real-valued function, c1 is a light-

like vector, and z(t) is a null curve in C2
1 satisfying 〈iz′, eifc1〉 = 0 and

〈z′, eifc1〉 = −1.

(ii) If M is not flat, then it is an open part of a Lagrangian surface defined by

L(x, y) = z(x)

∫ y

y0

eiyψxdy − z′(x)

∫ y

y0

eiyψdy,

where ψ(x, y) with ψy 6= 0 is a solution of ψxx = q(x)ψ + 1 for some function q(x)
and z(x) is curve in the light cone LC of C2

1 satisfying z′′ = qz.

Theorem 13.2. Let M be a marginally trapped Lagrangian surface in the Lorentzian

complex projective plane CP 2
1 (4).

(p) If M is of constant curvature K, then either K = 1 or K = 0.

(p.1) If K = 1, then M is an open part of one of the following four types of La-

grangian surfaces:

(p.1.1) A Lagrangian surface defined by

1

a(u+v)

(

e
√

2iav
(√

2 + ia(u−v)
)

, e
√

2iava(u − v),
√

2 + ia(u+v)

)

,

where a is a nonzero real number.
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(p.1.2) A Lagrangian surface defined by

(

2

u+ v
+
√

2if(v)

)

z(v) − z′(v),

where f(v) is a non-constant real-valued function and z(v) is a unit

speed spacelike Legendre curve with Legendre squared curvature κ̂2 =

6f2(v) in the light cone LC.

(p.1.3) A Lagrangian surface defined by

e
i√
2
bv

3bw

(

(√
6 + i

√
3bw

)

cosh(
√

6
2 bv) − 3

(√
2i+ bw

)

sinh
(√

6
2 bv

)

,

cosh(
√

6
2 bv) +

√
3
(

ibw − 2
√

2
)

sinh(
√

6
2 bv),

√
6 + i

√
3bw

e3ibv/
√

2

)

,

where b is a positive real number.

(p.1.4) A Lagrangian surface defined by L(u, v) =
z(v)

u+ v
− z′(v)

2
, where

z(v) is a unit speed timelike special Legendre curve in the light cone

LC with zero Legendre curvature κ̂ and nonzero Legendre torsion τ̂ .

(p.2) If K = 0, it is an open part of one of the following three types of flat La-

grangian surfaces:

(p.2.1) A Lagrangian surface defined by

e2
− 1

3 ix+ 1

3
iy

6
√

2

(

3(2
2

3 )x + 4y, 8i+ 3(2
2

3 )x+ 4y, 2
√

2eiy−3(2− 1

3 )ix
)

.

(p.2.2) A Lagrangian surface defined by

eiqx+ib(q
2−p2)y

×
(

i(p2 − 3q2) cosh(px+ 2bpqy) + 4pq sinh(px+ 2bpqy)

p
√

2(p2 + 9q2)
,

√

p2 + q2
√

p2 + 9q2
eib(p

2+3q2)y−3iqx,

√

p2 + q2√
2p

cosh(px+ 2bpqy)

)

,

where b is a real number either negative or greater than 3
√

4/3 and

p=
2−

2

3

√
3η2−3

5

6 b

6
2

3 bη
, q=

3
1

3 b+2−
2

3 η2

6
2

3 bη
, η=

(

9b3+
√

81b6−12b3
)

1

3

.
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(p.2.3) A Lagrangian surface defined by

(

(4kr2 −
√

3r(k2 + r2))
1

2√
3k2 − 9kr2

e−i(
√

3k+r)x+ib(3k2+2
√

3kr+r2)y,

(r2 − 3k2)e2ir(x+2bry)

√
9k4 − 30k2r2 + 9r4

,

√

3k2r + 2
√

3kr2 + r3
√

3k(r2 − k2) + 2
√

3k2r

× ei(3bk
2y+

√
3k(x−2bry)−rx+br2y)

)

,

where

k =
(4δ + 2

2

3 δ2 + 2
4

3 )
1

2

2
√

6bδ
, r =

(4δ − 2
2

3 δ2 − 2
4

3 )
1

2

2
√

6bδ

and

δ = (2 − 27b3 + 3
√

81b6 − 12b3)
1

3

for some b ∈ (0,
3
√

4
3 ).

(q) If M has non-constant curvature, then it is an open part of the Lagrangian

surface ψ̂ : Mψ → CP 2
1 (4) defined in Proposition 13.1.

Theorem 13.3. Let M be a marginally trapped Lagrangian surface in the Lorentzian

complex hyperbolic plane CH2
1 (−4).

(h) If M is of constant curvature K, then K = −1 or K = 0.

(h.1) If K = −1, then M is an open part of one of the following four types of

Lagrangian surfaces:

(h.1.1) A Lagrangian surface defined by

1

a(u− v)

(

ae
√

2iav(u+ v), a(u− v) + i
√

2, e
√

2iav(a(u+ v)) +
√

2i
)

,

where a is a nonzero real number.

(h.1.2) A Lagrangian surface defined by

(

2

u− v
−
√

2iψ(v)

)

z(v) + z′(v),

where ψ(v) is a non-constant real-valued function and z(v) is a unit

speed timelike Legendre curve with non-constant Legendre squared

curvature in the light cone LC.
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(h.1.3) A Lagrangian surface defined by

e
− i√

2
bv

3bw

(

3(bw + i
√

2) cosh
(

√
6

2
bv
)

+ 3(
√

2 + ibw) sinh
(

√
6

2
bv
)

,

e
3√
2
ibv

(
√

6 + i
√

3bw), 3bw sinh
(

√
6

2
bv
)

−
√

3(ibw − 2
√

2) cosh
(

√
6

2
bv
)

)

,

where b is a nonzero real number.

(h.1.4) A Lagrangian surface defined by L(u, v) =
z(v)

u− v
− z′(v)

2
, where z(v)

is a unit speed spacelike special Legendre curve in the light cone LC
with zero Legendre curvature κ̂ and nonzero Legendre torsion τ̂ .

(h.2) If K = 0, then M is an open part of one of the following three types of flat

Lagrangian surfaces:

(h.2.1) A Lagrangian surface defined by

e
i
6
(2y−3(22/3)x)

3(25/6)

(

2
5

6 eiy+3ix/2
1

3 , 3ix+ 2
4

3 (2 − iy), 3x− 2
4

3 y
)

.

(h.2.2) A flat Lagrangian surface defined by

eiqx+ib(q
2−p2)y

(

4pq cosh(px+2bpqy)+i(p2−3q2) sinh(px+2bpqy)

p
√

2p2+18q2
,

√

p2 + q2
√

p2 + 9q2
ei(bp

2y+3bq2y−3qx),

√

p2 + q2√
2p

sinh(px+ 2bpqy)

)

,

where b is either a negative number or a positive number greater

than
3
√

4/3 and

p=
2−

2

3

√
3η2−3

5

6 b

6
2

3 bη
, q=

2−
2

3 η2+3
1

3 b

6
2

3 bη
, η=

(

√

81b6−12b3−9b3
)

1

3

.

(h.2.3) A flat Lagrangian surface defined by
( √

3k2r − 2
√

3kr2 + r3
√

3
√

3k(k2 − r2) + 6k2r
e

i
b (rx+r2y+3k2y+

√
3k(x+2ry)),

(r2 − 3k2)e2ib
−1r(2ry−x)

√
9k4 − 30k2r2 + 9r4

,

√

4kr2 +
√

3r(r2 + r2)
√

3k(k2 − 3r2)
e

i
b (rx+r2y+3k2y−

√
3k(x+2ry))

)

,
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where b ∈ (0, 3
√

4/3), and

k =

√

b(γ + 1)2

2
√

3γ
, r =

√

b(γ − 1)2

2
√−3γ

,

γ =
− 3

√

27b3 − 2 + 3
√

3b
√

27b4 − 4b
3
√

2
.

(g) If M has non-constant curvature, then it is an open part of the Lagrangian surface

φ̂ : P̃φ → CH2
1 (−4) defined in Proposition 13.2.

Proposition 13.1. Let ψ(x, y) be a solution of the third order differential equation:

ψψxxy − ψxxψy − 3ψ2ψx + ψy = 0.

with ψx, ψy 6= 0 and let Dψ be a simply-connected domain in R2 such that ψ is nowhere

zero on Dψ. Denote the surface (Dψ , gψ) endowed with Lorentzian metric gψ = −ψdxdy
by Mψ. Then, up to rigid motions of CP 2

1 (4), there exists a unique Lagrangian isometric

immersion ψ̂ : Mψ → CP 2
1 (4) whose second fundamental form satisfies

h

(

∂

∂x
,
∂

∂x

)

=
1

ψ
J
∂

∂y
, h

(

∂

∂x
,
∂

∂y

)

= J
∂

∂x
,

h

(

∂

∂y
,
∂

∂y

)

=

(

ψxy −
ψxψy
ψ

− ψ2

)

J
∂

∂x
+ J

∂

∂y
.

Similarly, we have the following.

Proposition 13.2. Let φ(x, y) be a solution of the third order differential equation:

φφxxy − φxxφy + 3φ2φx + φy = 0.

with φx, φy 6= 0 and let Dφ be a simply-connected domain in R2 such that φ is nowhere

zero on Dφ. Denote the surface (Dφ, gφ) endowed with Lorentzian metric gφ = −φdxdy
by Pφ. Then, up to rigid motions of CH2

1 (−4), there exists a unique Lagrangian isometric

immersion φ̂ : Pφ → CH2
1 (−4) whose second fundamental form satisfies

h

(

∂

∂x
,
∂

∂x

)

=
1

φ
J
∂

∂x
, h

(

∂

∂x
,
∂

∂y

)

= J
∂

∂x
,

h

(

∂

∂y
,
∂

∂y

)

=

(

φxy −
φxφy
φ

+ φ2

)

J
∂

∂x
+ J

∂

∂y
.

14. Slant quasi-minimal surfaces in Lorentzian complex space forms

First recall the following fundamental result on Lorentzian surface in Lorentzian
Kähler surface from [9].
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Proposition 14.1. Every Lorentzian surface in a Lorentzian Kähler surface contains

no complex points.

Let M be a Lorentzian surface in a Lorentzian Kähler surface (M̃2
1 , g, J). For each

tangent vector X of M , we put

JX = PX + FX, (14.1)

where PX and FX are the tangential and the normal components of JX .
On M there exists a pseudo-orthonormal local frame {e1, e2} on M such that

〈e1, e1〉 = 〈e2, e2〉 = 0, 〈e1, e2〉 = −1. (14.2)

For a pseudo-orthonormal frame {e1, e2} on a Lorentzian surface M satisfying (14.2), it
follows from (14.1), (14.2), and 〈JX, JY 〉 = 〈X,Y 〉 that

Pe1 = (sinhα)e1, P e2 = −(sinhα)e2 (14.3)

for some function α. If we put

e3 = ( sechα)Fe1, e4 = ( sech θ)Fe2, (14.4)

then we obtain from (14.1)−(14.4) that

Je1 = sinhαe1 + coshαe3, Je2 = − sinhαe2 + coshαe4, (14.5)

Je3 = − coshαe1 − sinhαe3, Je4 = − coshαe2 + sinhαe4, (14.6)

〈e3, e3〉 = 〈e4, e4〉 = 0, 〈e3, e4〉 = −1, (14.7)

We call such a frame {e1, e2, e3, e4} an adapted pseudo-orthonormal frame for the
Lorentzian surface M in M̃2

1 .
A Lorentzian surface M in a Lorentzian Kähler surface is called θ-slant if the function

α defined by (14.3) is a constant θ on M .
For a θ-slant surface, we have 〈e1, Je2〉 = sinh θ. Since θ-slant surfaces with θ = 0

are Lagrangian, we call θ-slant surfaces with θ 6= 0 proper slant.
The following two results from classify slant quasi-minimal surfaces in Lorentzian

complex space forms M̃2
1 (4c) (see [19, Chen and Mihai]).

Theorem 14.1. There do not exist quasi-minimal proper slant surfaces in any

Lorentzian complex space form M̃2
1 (4c) with c 6= 0.

Theorem 14.2. Let θ be a nonzero real number. Then we have:

(I) If z(s) is a null curve in the light cone LC satisfying 〈z′, iz〉 = 2 sinh θ, then

L(s, t) = z(s)t
1

2
(1−i csch θ)

defines a flat quasi-minimal θ-slant surface in the Lorentzian complex plane C2
1.
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(II) If z(s) is a null curve lying in LC which satisfies 〈z, iz′〉 = 1, then

L(s, y) = z(s)e(i−sinh θ)y

defines a flat quasi-minimal θ-slant surface in C2
1.

(III) For any given function ϕ(t) defined on an open interval I ∋ 1,

2 sinh θ

t
1

2
(i csch θ−1)

(

∫ t

1

tϕ(t)dt + t
1

2
(i csch θ−1)

∫ t

1

ϕ(t)t
1

2
(3−i csch θ)dt

− i

2
− s

2
csch θ,

∫ t

1

tϕ(t)dt+ t
1

2
(i csch θ−1)

∫ t

1

ϕ(t)t
1

2
(3−i csch θ)dt+

i

2
− s

2
csch θ

)

defines a flat quasi-minimal θ-slant surface in C2
1.

(IV) Let µ(t) and ϕ(t) be two functions defined on an open interval I ∋ 0. Put F (t) =
∫ t

0 µ(t)dt and Φ(t) = ϕ(t)e−2F (t) sinh θ. Then

(

se(i−sinh θ)F (t) + (sinh θ − i)

∫ t

0

Φ(t)

(
∫ t

0

e(i+sinh θ)F (u)du

)

dt

+ (1 + i sinh θ)

(∫ t

0

e(i+sinh θ)F (t)dt

)(

1

2
+ i

∫ t

0

Φ(t)dt

)

,

se(i−sinh θ)F (t) + (sinh θ − i)

∫ t

0

Φ(t)

(∫ t

0

e(i+sinh θ)F (u)du

)

dt

+ (i− sinh θ)

(∫ t

0

e(i+sinh θ)F (t)dt

)(

i

2
+

∫ t

0

Φ(t)dt

)

)

defines a flat quasi-minimal θ-slant surface in C2
1.

(V) Let p(s) be a function defined on on open interval I ∋ 0, φ(s, y) be a solution of the

second differential equation

φss − p(s)φ = cosh2 θe−
4

3
y sinh θ,

and z be a null curve in C2
1 satisfying 〈z′′, z′′〉 = 0 and 〈z′, iz′′〉 = cosh2 θ. If φ is

not the product of two functions of single variable, then

L(s, y) =

∫ y

0

φz′′ − φsz
′ + cosh2 θe−

4

3
y sinh θz

(sinh θ + i)e−y(i+
1

3
sinh θ)

dy + z(s)ey(i−sinh θ) (14.8)

defines a non-flat quasi-minimal θ-slant surface in C2
1.

Conversely, quasi-minimal slant surfaces in C2
1 are either Lagrangian or, up to di-

lations and rigid motions of C2
1, obtained locally from the five families of proper slant

surfaces.
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