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GENERALIZED SHARP HARDY TYPE AND

CAFFARELLI-KOHN-NIRENBERG TYPE

INEQUALITIES ON RIEMANNIAN MANIFOLDS

SHIHSHU WALTER WEI∗ AND YE LI

Abstract. We prove generalized Hardy’s type inequalities with sharp constants and

Caffarelli-Kohn-Nirenberg inequalities with sharp constants on Riemannian mani-

folds M . When the manifold is Euclidean space we recapture the sharp Caffarelli-

Kohn-Nirenberg inequality. By using a double limiting argument, we obtain an

inequality that implies a sharp Hardy’s inequality, for functions with compact sup-

port on the manifold M (that is, not necessarily on a punctured manifold M\{x0}

where x0 is a fixed point in M). Some topological and geometric applications are

discussed.

1. Introduction

It is well-known that Hardy-type inequalities have been widely used in analysis and

differential equations. In [5] Caffarelli, Kohn and Nirenberg proved rather general inter-

polation inequalities with weights. C.S. Lin [14] has generalized these results to include

derivatives of all orders.

On the other hand, completing the square, in particular the elementary result that

at2 + bt + c ≥ 0 with a > 0 holds for all t ∈ R , if and only if b2 − 4ac ≤ 0 , has

far-reaching consequences or analogs in various branches of mathematics. These include

the Cauchy-Schwarz inequality in Hilbert space, the Bochner method in differential ge-

ometry, the L2 method in several complex variables, the Kodaira vanishing theorem and

Kodaira imbedding theorem in Kähler geometry, geometric inequalities in partial differ-

ential equations, and curvature estimates in submanifold theory (see e.g. [2], [11], [8],

[13], [12]).
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Using only integration by parts and the elementary algebraic inequality mentioned

above, D. G. Costa provides a new and short proof for the L2 version of the Caffarelli-

Kohn-Nirenberg inequality with sharp constants:

C̆

∫

Rn

|u|2

|x|(a+b+1)
dx ≤

(

∫

Rn

|u|2

|x|2a dx

)
1
2
(

∫

Rn

|∇u|2

|x|2b
dx

)
1
2

(1.1)

for u ∈ C∞
0 (Rn\ {0}), where a, b ∈ R and C̆ = C̆(a, b) = |n−(a+b+1)|

2 is sharp.

When a = 1 and b = 0, one recaptures Hardy’s inequality

(

n − 2

2

)2 ∫

Rn

|u|2
|x|2 dv ≤

∫

Rn

|∇u|2 dv (1.2)

for u ∈ C∞
0 (Rn\ {0}) , where the constant

(

n−2
2

)2
is sharp (cf. [6]).

In the first part of this article, by using a double limiting argument, we obtain an

inequality that implies a sharp Hardy’s inequality, for functions with compact support on

the manifold M (that is, not necessarily on a punctured manifold M\{x0} where x0 is a

fixed point in M). Since for general manifolds M , the length |x| , of a point in M is not

defined for x ∈ M , the Caffarelli-Kohn-Nirenberg inequality (1.1) and Hardy’s inequality

(1.2) do not seem to carry over immediately to manifolds. The techniques we use are

the Hessian comparison theorem by constructing appropriate vector fields that involve

a radial vector field on M . Throughout the whole paper, unless it is stated otherwise,

we let M be an n-dimensional Riemannian manifold with a pole x0 , r be the distance

function defined on M from the pole x0 ∈ M , ∆r be the Laplacian of r(cf. [7] or Section

2), and 1 < p < ∞.

Theorem 1. For every u ∈ W 1,p
0 (M) and every ǫ > 0, the following inequality holds:

∣

∣

∣

∣

∣

−
∫

∂Bδ(x0)

r

rp + ǫ
|u|pdS +

∫

M\Bδ(x0)

(rp + ǫ)(r∆r + 1) − p rp

(rp + ǫ)2
|u|p dv

∣

∣

∣

∣

∣

≤ p

(
∫

M\Bδ(x0)

( |u|p−1
r

rp + ǫ

)

p
p−1 dv

)

p−1

p
(
∫

M\Bδ(x0)

|∇u|p dv

)
1
p

(1.3)

for sufficiently small δ > 0 , where ∂Bδ(x0) denotes the C1 boundary of the geodesic ball

Bδ(x0) centered at x0 with radius δ > 0 , dS and dv are the volume element of ∂Bδ(x0)

and M respectively. In particular, if M is manifold of radial curvature K ≤ 0 with

n > p . Then |u|p

rp ∈ L1(M), and

(

n − p

p

)p ∫

M

|u|p
rp

dv ≤
∫

M

|∇u|p dv; (1.4)

for every u ∈ W 1,p
0 (M).
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This result is sharp when M = R
n.

Corollary 1.1. Let M be a manifold of radial curvature K ≤ 0 with n > 2. Then for

every u ∈ W 1,2
0 (M),

(

n − 2

2

)2 ∫

M

|u|2
r2

dv ≤
∫

M

|∇u|2 dv; (1.5)

This result is sharp when M = R
n. Moreover, this theorem does not require u ∈

W 1,2
0 (M\{x0}) and hence is stronger than the result obtained from inequality (1.9) in

Theorem 3 by setting a = 1 and b = 0.

Corollary 1.2. Let M be a complete simply connected manifold of sectional curvature

κ ≤ 0. Then (1.4) holds for every x0 ∈ M , for every u ∈ W 1,p
0 (M) , with p < n.

Theorem 2. Let M be a manifold of radial curvature K ≥ 0 with n < p . Then for every

u ∈ W 1,p
0 (M), |u|p

rp ∈ L1(M), and the following inequality holds:

(

−n − p

p

)p ∫

M

|u|p
rp

dv ≤
∫

M

|∇u|p dv; (1.6)

As an immediate consequence, one has

Corollary 1.3. Let M be an elliptic n-paraboloid in R
n+1. Then the conclusion of

Theorem 2 holds, where x0 is the vertex of M .

Corollary 1.4. Let K : [0,∞) → R be a smooth function satisfying K ≥ 0 and
∫∞

0 sK(s)ds ≤ 1 , and f be a smooth solution of the differential equation f ′′ = −Kf ,

with initial conditions f(0) = 0 and f ′(0) = 1 . Let M = R
n with a smooth metric g̃

such that g̃ restricted to R
n\{0} is g = dr2 + f(r)2dΘ , where r is the radial function on

R
n and dΘ is the tensor which restricts to the usual metric on sphere around the origin

0 . Then (1.6) holds for every u ∈ W 1,p
0 (M), with p > n.

Corollary 1.5. Let M be a manifold of radial curvature K ≡ 0. Then for every u ∈
W 1,p

0 (M), the following inequality holds:

∣

∣

∣

∣

n − p

p

∣

∣

∣

∣

p ∫

M

|u|p
rp

dv ≤
∫

M

|∇u|p dv; (1.7)

Corollary 1.5 is sharp when the smooth function K ≡ 0 and recaptures the Lp version

of the Hardy’s inequality in R
n (see e.g. [15]).

In the second part of this article, we generalize the above inequality (1.1) in Euclidean

space to a class of Caffarelli-Kohn-Nirenberg type inequalities with sharp constants on

Riemannian manifolds. We use the Hessian comparison theorem and Costa’s approach of

employing the elementary algebraic inequality b2−4ac ≤ 0 , by constructing appropriate

vector fields that involve a radial vector field on M .
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Theorem 3. For every u ∈ W 1,2
0 (M\ {x0}), and every a, b ∈ R , the following inequality

holds:

1

2

∣

∣

∫

M

|u|2
ra+b+1

(r∆r − a − b)dv
∣

∣

≤
(
∫

M

|u|2
r2a

dv

)
1
2

(

∫

M

|∇u|2
r2b

dv

)
1
2

(1.8)

where dv is the volume element of M . In particular, if M is a manifold of radial curvature

K ≤ 0. then for every u ∈ W 1,2
0 (M\ {x0}), and every a, b ∈ R with a + b + 1 ≤ n,

C̃

∫

M

|u|2
ra+b+1

dv ≤
(

∫

M

|u|2
r2a

dv

)
1
2
(

∫

M

|∇u|2
r2b

dv

)
1
2

(1.9)

where dv is the volume element of M and C̃ = C̃(a, b) := n−(a+b+1)
2 is a constant.

Corollary 1.6. Let M be a complete simply connected manifold of sectional curvature

κ ≤ 0. Then (1.9) holds for every x0 ∈ M , for every u ∈ W 1,2
0 (M\ {x0}), and every

a, b ∈ R with a + b + 1 ≤ n.

This corollary is sharp when the sectional curvature κ ≡ 0 and recaptures the L2

version of Caffarelli-Kohn-Nirenberg inequality in R
n by Cartan-Ambrose-Hicks Theorem

(cf. [1, 4, 9, 10]).

Theorem 4. Let M be a manifold of radial curvature K ≥ 0. Then for every u ∈
W 1,2

0 (M\ {x0}), and every a, b ∈ R with a + b + 1 ≥ n, the following inequality holds:

Ĉ

∫

M

|u|2
ra+b+1

dv ≤
(

∫

M

|u|2
r2a

dv

)
1
2
(

∫

M

|∇u|2
r2b

dv

)
1
2

(1.10)

where Ĉ = Ĉ(a, b) := −n−(a+b+1)
2 is a constant.

As an immediate consequence, one has

Corollary 1.7. Let M be an elliptic n-paraboloid in R
n+1. Then the conclusion of

Theorem 4 holds, where x0 is the vertex of M .

Corollary 1.8. Let K, f, M and r be as in Corollary 1.4. Then (1.10) holds for every

u ∈ W 1,2
0 (M\ {0}), and every a, b ∈ R with a + b + 1 ≥ n.

Corollary 1.8 is sharp when the smooth function K ≡ 0 and recaptures the L2 version

of the Caffarelli-Kohn-Nirenberg inequality in R
n by Proposition 4.2 in [7].
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Corollary 1.9. Let M be a manifold of radial curvature K ≡ 0. Then for every u ∈
W 1,2

0 (M\ {x0}), and every a, b ∈ R, then the following inequality holds:

Č

∫

M

|u|2
ra+b+1

dv ≤
(

∫

M

|u|2
r2a

dv

)
1
2
(

∫

M

|∇u|2
r2b

dv

)
1
2

where Č = Č(a, b) :=
∣

∣

∣

n−(a+b+1)
2

∣

∣

∣
is a constant.

In [17], knowledge of an essential positive supersolution of a nonlinear P.D.E. yields

information on topology and geometry. Analogously, in the third part of this article,

we will discuss some topological and geometric applications of these inequalities (cf.

Theorems 7 and 8).

2. Manifolds which possess a pole and The Hessian Comparison Theorem

We recall some related basic facts, notations, definitions, and formulas (see [7] for

details).

2.1. Manifolds which possess a pole

A Cartan-Hadamard manifold is a complete simply-connected Riemannian manifold

of nonpositive sectional curvature. We denote Tx0
M the tangent space to M at x0 ∈ M .

A pole is a point x0 ∈ M such that the exponential map expx0
: Tx0

M → M is a diffeo-

morphism. The theorem of Cartan-Hadamard states that if M is a Cartan-Hadamard

manifold, and x ∈ M , then the exponential map expx : TxM → M is a diffeomorphism.

Thus every point of a Cartan-Hadamard manifold is a pole. Furthermore, if M possess a

pole, M is complete. Given such a manifold M with a pole x0 , the radial vector field ∂

on M\{x0} is the unit vector field such that for any x ∈ M\{x0}, ∂ (x) is the unit vector

tangent to the unique geodesic joining x0 to x and pointing away from x0. A radial plane

is a plane π which contains ∂(x) in the tangent space TxM. By the radial curvature K

of a manifold with a pole, we mean the restriction of the sectional curvature function to

all the radial planes. We define K(t) to be the radial curvature of M at x for any x such

that r(x) = t.

2.2. The Hessian Comparison Theorem

Let (M, g) be a manifold with a pole x0. Let a tensor g − dr
⊗

dr = 0 on the radial

direction, and is just the metric tensor g on the orthogonal complement ∂⊥. We recall

the following:

Theorem 5. (cf. [7] ) (i) If −α2 ≤ K(r) ≤ −β2 with α > 0, β > 0, then

β coth(βr)[g − dr ⊗ dr] ≤ Hess(r) ≤ α coth(αr)[g − dr ⊗ dr]
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(ii) If − a
1+r2 ≤ K(r) ≤ 0 with a ≥ 0, then

1

r
[g − dr ⊗ dr] ≤ Hess(r) ≤ 1 +

√
1 + 4a

2r
[g − dr ⊗ dr]

(iii) If 0 ≤ K(r) ≤ b
1+r2 with b ∈ [0, 1/4], then

1 +
√

1 − 4b

2r
[g − dr ⊗ dr] ≤ Hess(r) ≤ 1

r
[g − dr ⊗ dr]

(iv) If −Ar2q ≤ K(r) ≤ −Br2q with A ≥ B > 0 and q > 0, then

B0r
q [g − dr ⊗ dr] ≤ Hess(r) ≤ (

√
A coth

√
A)rq [g − dr ⊗ dr]

for r ≥ 1, where B0 = min{1,− q+1
2 + [B + ( q+1

2 )2]1/2}.

3. A generalized Hardy’s inequality with sharp constants on manifolds

In this section we use a double limiting argument to prove a generalized Hardy’s

inequality with sharp constants on manifolds.

Proof of Theorem 1. For any given u ∈ W 1,p
0 (M), and any given ǫ > 0, we let

V be an open set with C1 boundary ∂V , such that V ⊂⊂ M, and u = 0 off V . We

first choose a sufficiently small δ > 0 , so that ∂V ∩ ∂Bδ(x0) = ∅ . We then consider

I := p
∫

M\Bδ(x0)

〈

|u|p−2u r∂
rp+ǫ ,∇u

〉

dv . It follows from the Guass lemma that

I =

∫

M\Bδ(x0)

div

(

r∂

rp+ǫ
|u|p

)

dv−
∫

M\Bδ(x0)

div (r∂)

rp+ǫ
|u|p dv+

∫

M\Bδ(x0)

prp

(rp+ǫ)2
|u|p dv

(3.1)

By the divergence theorem, and the fact that the unit outward normal vector ν on

∂Bδ(x0) is −∂, the first term in the right hand side of (3.1) satisfies

∫

M\Bδ(x0)

div

(

r∂

rp + ǫ
|u|p

)

dv =

∫

V \Bδ(x0)

div

(

r∂

rp + ǫ
|u|p

)

dv

= −
∫

∂Bδ(x0)

〈

r∂

rp + ǫ
|u|p, ν

〉

dS

=

∫

∂Bδ(x0)

r

rp + ǫ
|u|pdS (3.2)

Let {ei}n
i=1 be a local orthonormal frame field on M such that e1 = ∂. Denote ∇ the

Riemannian connection on M. Then ∇∂∂ = 0 in M and the Hessian of r is given by
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(∇ei
dr)(ei) = ∇ei

(dr(ei)) − dr(∇ei
ei). Furthermore, off Bδ(x0)

div(∂) = 〈∇∂∂, ∂〉 +

n
∑

i=2

〈∇ei
(∂) , ei〉

=

n
∑

i=2

(∇ei
dr)(ei)

=

n
∑

i=2

Hess(r)(ei, ei) (3.3)

where Hess(r) is the Hessian of r. By the Gauss lemma, ∇r = ∂,

∇(rp + ǫ)−1 = −(rp + ǫ)−2prp−1∂ (3.4)

Substituting (3.2)-(3.4) into (3.1), one has

−
∫

∂Bδ(x0)

r

rp+ǫ
|u|pdS+

∫

M\Bδ(x0)

(rp+ǫ) [
∑n

i=2 r Hess(r)(ei, ei) + 1] − prp

(rp+ǫ)2
|u|p dv = −I

(3.5)
In view of Hölder inequality, and the fact

∑n
i=2 r Hess(r)(ei, ei) + 1 = r∆r + 1 , one

obtains the desired (1.3).
When K ≤ 0, by assumption and the Hessian comparison theorem, r∆r +1 ≥ n > p.

It follows from (1.3) that

−
∫

∂Bδ(x0)

r

rp + ǫ
|u|pdS +

∫

M\Bδ(x0)

(n − p)rp + nǫ

(rp + ǫ)2
|u|p dv

≤ p

(
∫

M\Bδ(x0)

(rp)
1

p−1

(rp + ǫ)
p

p−1

|u|p dv

)

p−1

p
(
∫

M\Bδ(x0)

|∇u|p dv

)
1
p

(3.6)

Furthermore,
∫

M\Bδ(x0)

(n − p)rp + nǫ

(rp + ǫ)2
|u|p dv ≥

∫

M\Bδ(x0)

(n − p)rp + nǫ − pǫ

(rp + ǫ)2
|u|p dv

≥ (n − p)

∫

M\Bδ(x0)

(rp + ǫ)
1

p−1

(rp + ǫ)
p

p−1

|u|p dv

≥ (n − p)

∫

M\Bδ(x0)

(rp)
1

p−1

(rp + ǫ)
p

p−1

|u|p dv (3.7)

Substituting (3.7) into (3.6), one gets

−
∫

∂Bδ(x0)

r

rp + ǫ
|u|pdS + (n − p)

∫

M\Bδ(x0)

(rp)
1

p−1

(rp + ǫ)
p

p−1

|u|p dv

≤ p

(
∫

M\Bδ(x0)

(rp)
1

p−1

(rp + ǫ)
p

p−1

|u|p dv

)

p−1

p
(
∫

M\Bδ(x0)

|∇u|p dv

)
1
p

(3.8)
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Thus, by taking sufficiently small δ > 0, one has
∫

∂Bδ(x0)

r

rp + ǫ
|u|pdS = 0, if x0 /∈ V (3.9)

and

0 ≤
∫

∂Bδ(x0)

r

rp + ǫ
|u|pdS ≤ δ

δp + ǫ
|u|pLp(M) → 0 as δ → 0, if x0 ∈ V. (3.10)

As δ → 0 , (3.8), via (3.9) or (3.10) implies that for every ǫ > 0,

(n − p)

∫

M

(rp)
1

p−1

(rp + ǫ)
p

p−1

|u|p dv ≤ p

(
∫

M

(rp)
1

p−1

(rp + ǫ)
p

p−1

|u|p dv

)

p−1

p
(
∫

M

|∇u|p dv

)
1
p

(3.11)
Letting ǫ → 0 gives the desired (1.4).

Proof of Theorem 2. When K ≥ 0, by assumption and the Hessian comparison
theorem, r∆r + 1 ≤ n < p. By letting δ → 0 in (1.3), one has

∫

M

(p − n)rp − nǫ

(rp + ǫ)2
|u|p dv ≤ p

(
∫

M

( |u|p−1 r

rp + ǫ

)

p
p−1 dv

)

p−1

p
(
∫

M

|∇u|p dv

)
1
p

(3.12)

We observe that the factor r
rp+ǫ on the right hand side of (3.12) is uniformly bounded

on M . By the dominate convergent theorem, we let ǫ tends to 0 and obtain the desired
(1.6).

Proof of Corollary 1.4. It follows from the construction in the proof of Proposition
4.2 in [7] that M is a manifold with a pole, and the preassigned function K is the radial
curvature of M . Now the result follows from Theorem 2.

4. Proof of Theorems 3 and 4

For every u ∈ W 1,2
0 (M \ {x0}) and every a, b, t ∈ R, we have

∫

M

∣

∣

∣

∣

∣

∇u

|r∂|b
+ t

∂

ra |∂|a+1 u

∣

∣

∣

∣

∣

2

dv ≥ 0 (4.1)

where ∇u is the weak derivative of u . Since |∂| = 1, (4.1) becomes

∫

M

|∇u|2
r2b

dv + t2
∫

M

|u|2
r2a

dv + 2t

∫

M

〈

u
∂

ra+b
,∇u

〉

dv ≥ 0 (4.2)

Denote the last integral by II. In view of the product rule,

II =

∫

M

div

(

u
∂

ra+b
u

)

dv − II −
∫

M

|u|2
ra+b

div (∂) dv −
∫

M

|u|2
〈

∂,∇r−(a+b)
〉

dv (4.3)
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By the divergence theorem, the first term in the right hand side of (4.3) satisfies

∫

M

div

(

u
∂

ra+b
u

)

dv =

∫

V

div

(

u
∂

ra+b
u

)

dv = 0 (4.4)

where V is an open set with C1 boundary and supp {u} ⊂ V ⊂⊂ M\ {x0} . Let {ei}n
i=1 be

a local orthonormal frame field on M\ {x0} such that e1 = ∂. Denote ∇ the Riemannian
connection on M\ {x0} . Then ∇∂∂ = 0 in M\ {x0} and the Hessian of r is given by
(∇ei

dr)(ei) = ∇ei
(dr(ei)) − dr(∇ei

ei). Furthermore,

div(∂) = 〈∇∂∂, ∂〉 +

n
∑

i=2

〈∇ei
(∂) , ei〉

=
n
∑

i=2

(∇ei
dr)(ei)

=

n
∑

i=2

Hess(r)(ei, ei) (4.5)

where Hess(r) is the Hessian of r. By the Gauss lemma, ∇r = ∂,

∇r−(a+b) = −(a + b)r−(a+b+1)∂ (4.6)

Substituting (4.4)-(4.6) into (4.3), one has

2II = −
∫

M

|u|2
ra+b+1

[

n
∑

i=2

r Hess(r)(ei, ei) − (a + b)

]

dv

Let

A =

∫

M

|u|2
r2a

dv , B = −2II , C =

∫

M

|∇u|2
r2b

dv

then (4.2) takes the form
At2 − Bt + C ≥ 0 (4.7)

for every t ∈ R which implies that B2 − 4AC ≤ 0. In other words,

1

2

∣

∣

∣

∣

∣

∫

M

|u|2
ra+b+1

[

r

n
∑

i=2

Hess(r)(ei, ei) − (a + b)

]

dv

∣

∣

∣

∣

∣

≤
(

∫

M

|u|2
r2a

dv

)
1
2
(

∫

M

|∇u|2
r2b

dv

)
1
2

(4.8)
This implies (1.8), since Hess(r)(e1, e1) = 0 and the trace of Hessian of r is the

Laplacian ∆r of r .
Since the radial curvature K ≤ 0, it follows from the Hessian comparison theorem [7]

or Theorem 5 that
n
∑

i=2

r Hess(r)(ei, ei) ≥ n − 1 (4.9)
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Hence via the assumption a + b + 1 ≤ n,

1

2

∫

M

|u|2
ra+b+1

(n − (a + b + 1)) dv ≤
(

∫

M

|u|2
r2a

dv

)
1
2
(

∫

M

|∇u|2
r2b

dv

)
1
2

(4.10)

This proves Theorem 3.

To prove Theorem 4, we use the Hessian comparison theorem, and obtain

n
∑

i=2

r Hess(r)(ei, ei) ≤ n − 1 (4.11)

By the assumption a + b + 1 ≥ n, Theorem 4 follows from (4.8).

5. Embedding Theorems for weighted Sobolev Spaces of functions

on Riemannian manifolds

Following Costa’s notation [6], we let D1,2
γ (M) denote the completion of C∞

0 (M\ {x0})
with respect to the norm

||u||D1,2
γ (M) :=

(

∫

M

|∇u|2
r2γ

dv

)
1
2

L2
γ(M) denote the completion of C∞

0 (M\ {x0}) with respect to the norm

||u||L2
γ(M) :=

(

∫

M

|u|2
r2γ

dv

)
1
2

and H1
a,b(M) denote the completion of C∞

0 (M\ {x0}) with respect to the Sobolev norm

||u||H1
a,b

(M) :=

(

∫

M

[

|u|2
r2a

+
|∇u|2
r2b

]

dv

)
1
2

Theorem 6. Let M be a manifold of radial curvature K ≤ 0 , or as in Corollary 1.6
with a+b+1 < n , or as in Theorem 4, Corollary 1.7, or Corollary 1.8 with a+b+1 > n,

or as in Corollary 1.9 with a+ b+1 6= n. Then the following continuous embeddings hold

H1
a,b(M) ⊂ L2

a+b+1

2

(M) and H1
b,a(M) ⊂ L2

a+b+1

2

(M) (5.1)
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6. Generalized inequalities on manifolds

Corollary 6.1.
(i) For any u ∈ H1

b+1,b(M) it follows that

(n

2
− (b + 1)

)2
∫

M

|u|2
r2(b+1)

dv ≤
∫

M

|∇u|2
r2b

dv;

(ii) For any u ∈ H1
a,a+1(M) it follows that

(n

2
− (a + 1)

)2
∫

M

|u|2
r2(a+1)

dv ≤
(

∫

M

|u|2
r2a

dv

)
1
2
(

∫

M

|∇u|2
r2(a+1)

dv

)
1
2

;

(iii) If u ∈ H1
−(b+1),b(M) then u ∈ L2(M) and

(n

2

)

∫

M

|u|2 dv ≤
(
∫

M

r2(b+1) |u|2 dv

)
1
2

(

∫

M

|∇u|2
r2b

dv

)
1
2

;

(iv) If u ∈ H1
0,1(M), then u ∈ L2

1(M) and

n − 2

2

∫

M

|u|2
r2

dv ≤
(
∫

M

|u|2 dv

)
1
2

(

∫

M

|∇u|2
r2

dv

)
1
2

;

(v) If u ∈ H1
−1,1(M), then u ∈ L2

1
2

(M) and

(

n − 1

2

)
∫

M

|u|2
r

dv ≤
(
∫

M

r2 |u|2 dv

)
1
2

(

∫

M

|∇u|2
r2

dv

)
1
2

;

(vi) If u ∈ H1(M) = H1
0,0(M), then u ∈ L2

1
2

(M) and

(

n − 1

2

)
∫

M

|u|2
r

dv ≤
(
∫

M

|u|2 dv

)
1
2
(
∫

M

|∇u|2 dv

)
1
2

Remark 6.1 The case M = R
n is due to [6].

Proof. We make special choices in (1.9) or (1.10) as follows:

(i) Let a = b + 1;

(ii) Let b = a + 1;

(iii) Let a = −b − 1;

(iv) Let a = 0, b = 1;

(v) Let a = −1, b = 1;

(vi) Let a = 0, b = 0.



412 SHIHSHU WALTER WEI AND YE LI

7. Topological applications

Using the same idea as in Proposition 5.1 in [17], one obtains

Theorem 7. Let M be an n-manifold. If M supports inequality (1.4) with n > p

(resp. (1.6) with n < p) for every u ∈ W 1,p
0 (M) , then M is not compact.

Proof. If M were compact, then substituting u ≡ 1 into (1.4) (resp. (1.6)) we would

have
∫

M
|u|p

rp dv = 0, or u = 0 a.e. This is a contradiction.

8. Geometric applications

Since geometric inequalities are linked to topology, and since curvature is related to

topology, we have the following geometric application:

Theorem 8. Let M be a complete manifold (Let M be an n-manifold with n > p, and

x0 ∈ M. If M supports inequality (1.4)(resp. (1.6) with n < p) for every u ∈ W 1,p
0 (M) ,

then there does not exists a constant τ > 0 such that the Ricci curvature RicM ≥ τ.

Proof. Suppose on the contrary, then by Bonnet-Myers’ Theorem (cf. [3, 16]), M would

be compact. This contradicts Theorem 7.
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