A SIMPLE PROOF OF INEQUALITIES RELATED TO MEANS

GOU-SHENG YANG AND SHUOH-JUNG LIU

Abstract. The purpose of this paper is to give a fairly elementary method to prove that the function $u(\alpha) = \left[\frac{x^{\alpha} - y^{\alpha}}{\alpha(x-y)}\right]^{\frac{1}{\alpha}-1}$, $\alpha \neq 0, 1, u(0) = I, u(1) = L$, is strictly increasing, and to give a simple proof of the inequalities $x < H < \frac{xy}{I} < \frac{xy}{L} < G < L < I < A < y$, where 0 < x < y and A, G, H, I, L are the arithmetic, the geometric, the harmonic, the identric and logarithmic means of x and y, respectively.

1. Introduction

Given two positive real numbers x and y, the arithmetic mean A(x, y), the geometric mean G(x, y), the logarithmic mean L(x, y), the identric mean I(x, y) and the harmonic mean H(x, y) of x and y are defined, respectively, by

$$A = A(x, y) = \frac{x + y}{2}, \quad G = G(x, y) = \sqrt{xy}, \quad H = H(x, y) = \frac{2xy}{x + y},$$
$$L = L(x, y) = \begin{cases} \frac{x - y}{\ln x - \ln y}, & x \neq y, \\ x & , x = y. \end{cases}$$
$$I = I(x, y) = \begin{cases} e^{-1} \left(\frac{x^x}{y^y}\right)^{\frac{1}{x - y}}, & x \neq y, \\ x & , x = y. \end{cases}$$

It is known that (see[1], p.130), if 0 < x < y, then

$$x < H < \frac{xy}{I} < \frac{xy}{L} < G < L < I < A < y.$$

$$\tag{1}$$

Throughout, we assume 0 < x < y.

In [5], K. B. Stolarsky, defined the function

$$u(\alpha) = \begin{cases} \left[\frac{x^{\alpha} - y^{\alpha}}{\alpha(x - y)}\right]^{\frac{1}{\alpha - 1}}, \alpha \neq 0, 1, \\\\ L(x, y) &, \alpha = 0, \\\\ I(x, y) &, \alpha = 1. \end{cases}$$

Corresponding author: Gou-Sheng Yang.

2000 Mathematics Subject Classification. 26D15.

Key words and phrases. Arithmetic mean, geometric mean, harmonic mean, logarithmic mean, identric mean.

429

and proved that $u(\alpha)$ satisfies the following properties:

- (i) $0 < x < u(\alpha) < y, \ \forall \alpha \in \mathbb{R}.$
- (ii) $u(\alpha)$ is strictly increasing in α , and $u(\alpha)$ approaches to y (or x) as α approaches to ∞ (or $-\infty$).
- (iii) $u(\alpha)$ is continuous in α , and $u(-1) = G(x, y), \quad u(0) = L(x, y), \quad u(1) = I(x, y), \quad u(2) = A(x, y).$

The purpose of this paper is to give a fairly elementary method to prove that the function $u(\alpha)$ is strictly increasing and to give a simple proof of the inequalities (1).

2. A simple proof of the monotone of $u(\alpha)$.

To prove that $u(\alpha)$ is strictly increasing, we need the following Lemmas:

Lemma 1. Let $g(t) = t(\ln t)^2 - (t-1)^2$, t > 0. Then g(t) < 0, $\forall t \in (0,1) \cup (1,\infty)$.

Proof. For t > 0, we have

$$g'(t) = 2 \ln t + (\ln t)^2 - 2(t-1),$$

$$g''(t) = \frac{2}{t} + \frac{2 \ln t}{t} - 2,$$

$$g'''(t) = \frac{-2 \ln t}{t^2},$$

it follows that, if t > 1, then g'''(t) < 0, so that g''(t) < g''(1) = 0, which implies that g'(t) is strictly decreasing on $(1, \infty)$, and hence g'(t) < g'(1) = 0, which, again, implies that g(t) is strictly decreasing on $(1, \infty)$. Therefore g(t) < g(1) = 0.

Next, if 0 < t < 1, then g'''(t) > 0, so that g''(t) < g''(1) = 0, which implies that g'(t) is strictly decreasing on (0,1), and then g'(t) > g'(1) = 0.

Hence g(t) is strictly increasing on (0,1). Therefore g(t) < g(1) = 0. This completes the proof.

Lemma 2. If b > 1, let

$$f(\alpha) = \begin{cases} \frac{(\alpha-1)b^{\alpha}\ln b}{b^{\alpha}-1} - 1 + \frac{1}{\alpha} - \ln \frac{b^{\alpha}-1}{\alpha(b-1)} , & \alpha \neq 0, \\\\ & \ln \frac{b-1}{\ln b} - \ln \sqrt{b} & , & \alpha = 0. \end{cases}$$

Then $f(\alpha) > 0$, $\forall \alpha \neq 1$.

Proof. For $\alpha \neq 0$, we have

$$f'(\alpha) = \frac{(b^{\alpha} - 1)b^{\alpha} \ln b[(\alpha - 1)\ln b + 1] - (\alpha - 1)b^{2\alpha}(\ln b)^2}{(b^{\alpha} - 1)^2} - \frac{1}{\alpha^2} - \frac{\alpha b^{\alpha} \ln b - b^{\alpha} + 1}{\alpha(b^{\alpha} - 1)}$$
$$= \frac{1 - \alpha}{\alpha^2(b^{\alpha} - 1)^2} \ [b^{\alpha}(\ln b^{\alpha})^2 - (b^{\alpha} - 1)^2]$$
$$= \frac{1 - \alpha}{\alpha^2(b^{\alpha} - 1)^2} \ g(b^{\alpha}).$$
(2)

where the function g is defined as in Lemma 1..

If $\alpha > 1$, it follows from (2) and Lemma 1. that $f'(\alpha) > 0$, so that $f(\alpha)$ is strictly increasing on $(1, \infty)$. Hence $f(\alpha) > f(1) = 0$.

If $0 < \alpha < 1$, it follows from (2) and Lemma 1. that $f'(\alpha) < 0$, so that $f(\alpha)$ is strictly decreasing on (0, 1). Hence $f(\alpha) > f(1) = 0$.

If $\alpha < 0$, it follows from (2) and Lemma 1. that $f'(\alpha) < 0$, so that $f(\alpha) > f(0) > 0$. To show f(0) > 0, we consider the function $F(x) = \sqrt{x} - \frac{1}{\sqrt{x}} - \ln x$, x > 1. Differentiating gives $F'(x) = \frac{(\sqrt{x}-1)^2}{2x\sqrt{x}} > 0$, so that F(x) > F(1) = 0. This implies that f(0) > 0. Consequently, $f(\alpha) > 0$, $\forall \alpha \neq 1$.

Now we are ready to prove that the function $u(\alpha)$ is strictly increasing in α .

Proof. Let $b = \frac{y}{x} > 1$, and $v(\alpha) = \frac{u(\alpha)}{x}$. Then $v(\alpha) = \begin{cases} \left[\frac{b^{\alpha} - 1}{\alpha(b-1)}\right]^{\frac{1}{\alpha-1}}, & \alpha \neq 0, 1, \\\\ \frac{L(x,y)}{x}, & \alpha = 0, \\\\ \frac{I(x,y)}{x}, & \alpha = 1. \end{cases}$

It suffices to show that $v(\alpha)$ is strictly increasing in α .

Now, if $\alpha \neq 0, 1$, we have

$$v'(\alpha) = v(\alpha) \frac{(\alpha - 1) \left[\frac{\alpha(b-1)}{b^{\alpha} - 1} \frac{\alpha b^{\alpha} \ln b - (b^{\alpha} - 1)}{\alpha^2(b-1)} \right] - \ln \frac{b^{\alpha} - 1}{\alpha(b-1)}}{(\alpha - 1)^2}$$
$$= \frac{v(\alpha)}{(\alpha - 1)^2} \left[\frac{(\alpha - 1)(\alpha b^{\alpha} \ln b - b^{\alpha} + 1)}{\alpha(b^{\alpha} - 1)} - \ln \frac{b^{\alpha} - 1}{\alpha(b-1)} \right]$$
$$= \frac{v(\alpha)}{(\alpha - 1)^2} \left[\frac{(\alpha - 1)b^{\alpha} \ln b}{b^{\alpha} - 1} - 1 + \frac{1}{\alpha} - \ln \frac{b^{\alpha} - 1}{\alpha(b-1)} \right]$$
$$= \frac{v(\alpha)}{(\alpha - 1)^2} f(\alpha), \tag{3}$$

where $f(\alpha)$ is defined as in Lemma 2...

Since $v(\alpha) > 0$, it follows from (3) and Lemma 2. that $v'(\alpha) > 0$, so that $v(\alpha)$ is strictly increasing for $\alpha \neq 0, 1$.

Observe that

$$\begin{aligned} v'(0) &= \lim_{\alpha \to 0} \frac{v(\alpha) - v(0)}{\alpha - 0} \\ &= \lim_{\alpha \to 0} \frac{v(\alpha)}{(\alpha - 1)^2} f(\alpha) \\ &= \frac{L(x, y)}{y} \lim_{\alpha \to 0} f(\alpha) \\ &= \frac{L(x, y)}{y} \left(\ln \frac{b - 1}{\ln b} - \ln \sqrt{b} \right) > 0. \\ v'(1) &= \lim_{\alpha \to 1} \frac{v(\alpha) - v(1)}{\alpha - 1} \\ &= \lim_{\alpha \to 1} \frac{v(\alpha)}{(\alpha - 1)^2} f(\alpha) \\ &= \left[\lim_{\alpha \to 1} v(\alpha) \right] \left[\lim_{\alpha \to 1} \frac{f'(\alpha)}{2(\alpha - 1)} \right] \\ &= \frac{I(x, y)}{y} \left[\lim_{\alpha \to 1} \frac{1}{2(\alpha - 1)} \frac{1 - \alpha}{\alpha^2 (b^\alpha - 1)^2} g(b^\alpha) \right] \\ &= \frac{I(x, y)g(b)}{-2y(b - 1)^2} > 0. \end{aligned}$$

Consequently, $v'(\alpha) > 0$ for all α .

3. A simple proof of the inequalities (1)

Let
$$w(\alpha) = \frac{xy}{u(\alpha)}$$
. Then

$$w(\alpha) = \begin{cases} xy \left[\frac{\alpha(x-y)}{x^{\alpha} - y^{\alpha}}\right]^{\frac{1}{\alpha-1}}, & \alpha \neq 0, 1, \\ \frac{xy}{L(x,y)}, & \alpha = 0, \\ \frac{xy}{I(x,y)}, & \alpha = 1. \end{cases}$$

Since $u(\alpha)$ is strictly increasing in α , so that $w(\alpha)$ is strictly decreasing in α .

Now $\lim_{\alpha \to \infty} w(\alpha) = x, \quad w(2) = H(x, y), \quad w(1) = \frac{xy}{I(x, y)}, \quad w(0) = \frac{xy}{L(x, y)},$

432

$$\begin{split} w(-1) &= G(x,y), \quad w(-2) = (AG^2)^{\frac{1}{3}}, \quad \lim_{\alpha \to -\infty} w(\alpha) = y. \\ \text{We have} \\ x &< H(x,y) < \frac{xy}{I(x,y)} < \frac{xy}{L(x,y)} < G(x,y) < (AG^2)^{\frac{1}{3}} < y \end{split}$$

To show that

$$(AG^2)^{\frac{1}{3}} < L(x,y) < I(x,y) < A(x,y),$$
(5)

we consider the function $h(\alpha) = A^{\alpha}G^{1-\alpha}, \alpha \in [0,1]$, we see that $h'(\alpha) = A^{\alpha}G^{1-\alpha}\ln A - A^{\alpha}G^{1-\alpha}$ $A^{\alpha}G^{1-\alpha}\ln G > 0$. Hence $h(\alpha)$ is strictly increasing in α . For $c = \sqrt{\frac{y}{x}} > 1$, let

$$\alpha_1 = \frac{\ln \frac{c^2 - 1}{2c \ln c}}{\ln \frac{c^2 + 1}{2c}}, \quad \alpha_2 = \frac{-1 + \frac{c^2 + 1}{c^2 - 1} \ln c}{\ln \frac{c^2 + 1}{2c}}.$$

Then $h(\alpha_1) = L(x, y)$ and $h(\alpha_2) = I(x, y)$. Observe that $h(\frac{1}{3}) = (AG^2)^{\frac{1}{3}}$ and h(1) = A(x, y).

4

To complete the proof of the inequalities (5), it suffices to prove that $\frac{1}{3} < \alpha_1 < \alpha_2 < 1$. In order to prove that $\alpha_1 > \frac{1}{3}$, we need the following Lemma:

Lemma 3. Let $k(x) = 2(x^4 + 4x^2 + 1) \ln x - 3(x^4 - 1), x > 0$. Then $k(x) > 0, \forall x > 1$.

Proof. Let

$$p(x) = (4x^4 + 8x^2) \ln x - 5x^4 + 4x^2 + 1,$$

$$q(x) = (x^2 + 1) \ln x - (x^2 - 1),$$

$$r(x) = 2x^2 \ln x - x^2 + 1.$$

Then

$$k'(x) = 2(4x^{3} + 8x) \ln x + \frac{-10x^{4} + 8x^{2} + 2}{x}$$
$$= \frac{2}{x} p(x),$$
$$p'(x) = 16x(x^{2} + 1) \ln x - 16x(x^{2} - 1)$$
$$= (16x) q(x),$$
$$q'(x) = 2x \ln x - x + \frac{1}{x}$$
$$= \frac{1}{x} r(x),$$
$$r'(x) = 4x \ln x.$$

If x > 1, then r'(x) > 0, so that r(x) > r(1) = 0, which implies that q(x) is strictly increasing on $(1,\infty)$, then q(x) > q(1) = 0, which implies that p(x) is strictly increasing on $(1, \infty)$, then p(x) > p(1) = 0, which again, implies that k(x) is strictly increasing on $(1,\infty).$

433

(4)

Consequently, k(x) > k(1) = 0, $\forall x > 1$. This completes the proof of the Lemma. To prove that $\alpha_1 > \frac{1}{3}$, let

$$s(x) = \begin{cases} \ln \frac{x^2 - 1}{2x \ln x} - \frac{\ln \frac{x^2 + 1}{2x}}{3}, & x > 1\\ 0, & x = 1 \end{cases}$$

Then for x > 1, we have

$$s'(x) = \frac{2x \ln x}{x^2 - 1} \frac{2x(2x \ln x) - (x^2 - 1)(2 + 2 \ln x)}{4x^2(\ln x)^2} - \frac{2x}{3(x^2 + 1)} \frac{4x^2 - 2(x^2 + 1)}{4x^2}$$
$$= \frac{x^2 \ln x - x^2 + 1 + \ln x}{x(x^2 - 1) \ln x} - \frac{x^2 - 1}{3x(x^2 + 1)}$$
$$= \frac{k(x)}{3x(x^4 - 1) \ln x},$$
(6)

where k(x) is defined as in Lemma 3..

It follows from (6) and Lemma 3. that s'(x) > 0, $\forall x > 1$. Hence s(x) > s(1) = 0, $\forall x > 1$, which is equivalent to $\frac{1}{3} < \alpha_1$. Therefore,

$$h\left(\frac{1}{3}\right) = (AG^2)^{\frac{1}{3}} < h(\alpha_1) = L(x, y)$$
(7)

,

(see [2], [3], [4]).

In order to prove that $\alpha_2 > \alpha_1$, we need the following Lemma:

Lemma 4. Let $\ell(x) = (x^2 - 1)^2 - (2x \ln x)^2$, x > 1. Then $\ell(x) > 0$, $\forall x > 1$.

Proof. Let $\ell_1(x) = x^2 - 1 - 2x \ln x$, x > 1.

It suffices to show $\ell_1(x) > 0$, $\forall x > 1$. Differentiating gives

$$\ell_1'(x) = 2x - 2 - 2 \ln x$$

 $\ell_1''(x) = 2 - \frac{2}{x}$.

If x > 1, then $\ell_1''(x) > 0$, so that $\ell_1'(x)$ is strictly increasing on $(1, \infty)$, and then $\ell_1'(x) > \ell_1'(1) = 0$, which, implies that $\ell_1(x)$ is strictly increasing on $(1, \infty)$.

Consequently, $\ell_1(x) > \ell_1(1) = 0$, $\forall x > 1$.

This completes the proof of the lemma.

To prove that
$$\alpha_2 = \frac{-1 + \frac{c^2 + 1}{c^2 - 1} \ln c}{\ln \frac{c^2 + 1}{2c}} > \frac{\ln \frac{c^2 - 1}{2c \ln c}}{\ln \frac{c^2 + 1}{2c}} = \alpha_1$$
, let

$$\ell_2(x) = \begin{cases} -1 + \frac{x^2 + 1}{x^2 - 1} \ln x - \ln \frac{x^2 - 1}{2x \ln x}, & x > 1, \\ 0 & , x = 1. \end{cases}$$

434

It suffices to show that : $\ell_2(x) > 0$, $\forall x > 1$.

To this end, we observe that for x > 1, we have

$$\ell_{2}'(x) = \frac{2x(x^{2}-1) - 2x(x^{2}+1)}{(x^{2}-1)^{2}} \ln x + \frac{x^{2}+1}{x(x^{2}-1)} - \frac{2x\ln x}{x^{2}-1} \frac{4x^{2}\ln x - (x^{2}-1)(2+2\ln x)}{4x^{2}(\ln x)^{2}}$$
$$= \frac{-4x^{2}(\ln x)^{2} + (x^{4}-1)\ln x + (1-x^{2})(x^{2}\ln x - x^{2} + \ln x + 1)}{x(x^{2}-1)^{2}\ln x}$$
$$= \frac{\ell(x)}{x(x^{2}-1)^{2}\ln x},$$
(8)

where $\ell(x)$ is defined as in Lemma 4..

It follows from (8) and Lemma 4. that $\ell'_2(x) > 0$, $\forall x > 1$, so that $\ell_2(x)$ is strictly increasing on $(1, \infty)$. Hence $\ell_2(x) > \ell_2(1) = 0$. Therefore

$$h(\alpha_2) = I(x, y) > h(\alpha_1) = L(x, y).$$
 (9)

To prove that $\alpha_2 < 1$, we need the following Lemma:

Lemma 5. Let $m(x) = x^4 \ln x - x^4 + x^2 \ln x + x^2$, x > 0. Then m(x) > 0, $\forall x > 1$.

Proof. We have

$$m'(x) = 4x^{3} \ln x - 3x^{3} + 2x \ln x + 3x$$
$$m''(x) = 12x^{2} \ln x - 5x^{2} + 2 \ln x + 5$$
$$m'''(x) = 24x \ln x + 2x + \frac{2}{x}.$$

If x > 1, then $m^{'''}(x) > 0$, so that $m^{''}(x) > m^{''}(1) = 0$, implies $m^{'}(x)$ is strictly increasing on $(1, \infty)$, and $m^{'}(x) > m^{'}(1) = 0$, which again, implies that m(x) is strictly increasing on $(1, \infty)$.

Consequently, m(x) > m(1) = 0, $\forall x > 1$.

This completes the proof of the lemma.

Now, let

$$n(x) = \begin{cases} \ln \frac{x^2 + 1}{2x} + 1 - \frac{x^2 + 1}{x^2 - 1} \ln x, & x > 1, \\ 0, & x = 1. \end{cases}$$

Then for x > 1, we have

$$n'(x) = \frac{2x}{x^2 + 1} \frac{4x^2 - 2x^2 - 2}{4x^2} - \frac{(x^2 - 1)(2x\ln x + x + \frac{1}{x}) - 2x(x^2\ln x + \ln x)}{(x^2 - 1)^2}$$
$$= \frac{x^2 - 1}{x(x^2 + 1)} - \frac{x^3 - 4x\ln x - \frac{1}{x}}{(x^2 - 1)^2}$$
$$= \frac{4m(x)}{x(x^2 + 1)(x^2 - 1)^2},$$
(10)

where m(x) is defined as in Lemma 5..

It follows from 10 and Lemma 5. that n'(x) > 0, $\forall x > 1$. Hence n(x) > n(1) = 0, $\forall x > 1$, which is equivalent to $\alpha_2 < 1$. Therefore,

$$h(\alpha_2) = I(x, y) < h(1) = A(x, y).$$
(11)

The inequalities (1) then follows from (4), (7) (9) and (11).

References

- P. S. Bullen, D. S. Mitrinović and P. M. Vasić, Means and Their Inequalities, D. Reidle Publishing Company, Dordrecht, Holland, 1988.
- [2] B. C. Carlson, The logarithmic mean, Amer. Math. Monthly 79 (1972), 615–618.
- [3] E. B. Leach and M. C. Sholander, *Extend mean values*, ii, J. Math. Anal. 92 (1983), 207–223.
- [4] J. Sandor, A note on some inequalities for means, Arch. Math. (Basel) 56 (1991), 471-473.
- [5] K. B. Stolarsky, Generalizations of the logarithmic mean, Mathematics Magazine 48 (1975), 87–92.

Department of Mathematics Tamkang University, Tamsui 25137, Taiwan, Republic of China. E-mail: 005490@math.tku.edu.tw

Department of Mathematics Tamkang University, Tamsui 25137, Taiwan, Republic of China. E-mail: liusolong@livemail.tw