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A SIMPLE PROOF OF INEQUALITIES RELATED TO MEANS

GOU-SHENG YANG AND SHUOH-JUNG LIU

Abstract. The purpose of this paper is to give a fairly elementary method to

prove that the function u(α) = [ xα
−yα

α(x−y)
]

1

α−1 , α 6= 0, 1, u(0) = I, u(1) = L, is strictly
increasing, and to give a simple proof of the inequalities x < H < xy

I
< xy

L
< G <

L < I < A < y, where 0 < x < y and A, G, H, I, L are the arithmetic, the geometric,
the harmonic, the identric and logarithmic means of x and y, respectively.

1. Introduction

Given two positive real numbers x and y, the arithmetic mean A(x, y), the geometric
mean G(x, y), the logarithmic mean L(x, y), the identric mean I(x, y) and the harmonic
mean H(x, y) of x and y are defined, respectively, by

A = A(x, y) =
x + y

2
, G = G(x, y) =

√
xy, H = H(x, y) =

2xy

x + y
,

L = L(x, y) =











x − y

lnx − ln y
, x 6= y ,

x , x = y .

I = I(x, y) =















e−1

(

xx

yy

)
1

x−y

, x 6= y ,

x , x = y .

It is known that (see[1], p.130), if 0 < x < y, then

x < H <
xy

I
<

xy

L
< G < L < I < A < y. (1)

Throughout, we assume 0 < x < y.
In [5], K. B. Stolarsky, defined the function

u(α) =



































[

xα − yα

α(x − y)

]
1

α−1

, α 6= 0, 1,

L(x, y) , α = 0 ,

I(x, y) , α = 1 .
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and proved that u(α) satisfies the following properties:

(i) 0 < x < u(α) < y, ∀α ∈ R.

(ii) u(α) is strictly increasing in α, and u(α) approaches to y (or x) as α approaches

to ∞ (or −∞).

(iii) u(α) is continuous in α, and

u(−1) = G(x, y), u(0) = L(x, y), u(1) = I(x, y), u(2) = A(x, y).

The purpose of this paper is to give a fairly elementary method to prove that the function

u(α) is strictly increasing and to give a simple proof of the inequalities (1).

2. A simple proof of the monotone of u(α).

To prove that u(α) is strictly increasing, we need the following Lemmas:

Lemma 1. Let g(t) = t(ln t)2 − (t − 1)2, t > 0. Then g(t) < 0, ∀t ∈ (0, 1) ∪ (1,∞).

Proof. For t > 0, we have

g
′

(t) = 2 ln t + (ln t)2 − 2(t − 1),

g
′′

(t) =
2

t
+

2 ln t

t
− 2,

g
′′′

(t) =
−2 ln t

t2
,

it follows that, if t > 1, then g′′′(t) < 0, so that g′′(t) < g′′(1) = 0, which implies that

g′(t) is strictly decreasing on(1,∞), and hence g′(t) < g′(1) = 0, which, again, implies

that g(t) is strictly decreasing on(1,∞). Therefore g(t) < g(1) = 0.

Next, if 0 < t < 1, then g′′′(t) > 0, so that g′′(t) < g′′(1) = 0, which implies that

g′(t) is strictly decreasing on (0,1), and then g′(t) > g′(1) = 0.

Hence g(t) is strictly increasing on (0,1). Therefore g(t) < g(1) = 0.

This completes the proof.

Lemma 2. If b > 1, let

f(α) =



















(α − 1)bα ln b

bα − 1
− 1 +

1

α
− ln

bα − 1

α(b − 1)
, α 6= 0,

ln
b − 1

ln b
− ln

√
b , α = 0.

Then f(α) > 0 , ∀α 6= 1.
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Proof. For α 6= 0, we have

f ′(α) =
(bα − 1)bα ln b[(α − 1) ln b + 1] − (α − 1)b2α(ln b)2

(bα − 1)2
− 1

α2
− αbα ln b − bα + 1

α(bα − 1)

=
1 − α

α2(bα − 1)2
[bα(ln bα)2 − (bα − 1)2]

=
1 − α

α2(bα − 1)2
g(bα). (2)

where the function g is defined as in Lemma 1..
If α > 1, it follows from (2) and Lemma 1. that f ′(α) > 0, so that f(α) is strictly

increasing on (1,∞). Hence f(α) > f(1) = 0.
If 0 < α < 1, it follows from (2) and Lemma 1. that f ′(α) < 0, so that f(α) is strictly

decreasing on (0, 1). Hence f(α) > f(1) = 0.
If α < 0, it follows from (2) and Lemma 1. that f ′(α) < 0, so thatf(α) > f(0) > 0.
To show f(0) > 0, we consider the function F (x) =

√
x− 1√

x
− lnx, x > 1. Differen-

tiating gives F
′

(x) = (
√

x−1)2

2x
√

x
> 0, so that F (x) > F (1) = 0. This implies that f(0) > 0.

Consequently, f(α) > 0, ∀α 6= 1.

Now we are ready to prove that the function u(α) is strictly increasing in α.

Proof. Let b =
y

x
> 1, and v(α) =

u(α)

x
. Then

v(α) =











































[

bα − 1

α(b − 1)

]
1

α−1

, α 6= 0, 1,

L(x, y)

x
, α = 0,

I(x, y)

x
, α = 1.

It suffices to show that v(α) is strictly increasing in α.
Now, if α 6= 0, 1, we have

v′(α) = v(α)

(α − 1)

[

α(b − 1)

bα − 1

αbα ln b − (bα − 1)

α2(b − 1)

]

− ln
bα − 1

α(b − 1)

(α − 1)2

=
v(α)

(α − 1)2

[

(α − 1)(αbα ln b − bα + 1)

α(bα − 1)
− ln

bα − 1

α(b − 1)

]

=
v(α)

(α − 1)2

[

(α − 1)bα ln b

bα − 1
− 1 +

1

α
− ln

bα − 1

α(b − 1)

]

=
v(α)

(α − 1)2
f(α), (3)
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where f(α) is defined as in Lemma 2..
Since v(α) > 0, it follows from (3) and Lemma 2. that v′(α) > 0, so that v(α) is

strictly increasing for α 6= 0, 1.
Observe that

v′(0) = lim
α→0

v(α) − v(0)

α − 0

= lim
α→0

v(α)

(α − 1)2
f(α)

=
L(x, y)

y
lim
α→0

f(α)

=
L(x, y)

y

(

ln
b − 1

ln b
− ln

√
b

)

> 0.

v′(1) = lim
α→1

v(α) − v(1)

α − 1

= lim
α→1

v(α)

(α − 1)2
f(α)

=
[

lim
α→1

v(α)
]

[

lim
α→1

f ′(α)

2(α − 1)

]

=
I(x, y)

y

[

lim
α→1

1

2(α − 1)

1 − α

α2(bα − 1)2
g(bα)

]

=
I(x, y)g(b)

−2y(b − 1)2
> 0.

Consequently, v′(α) > 0 for all α.

3. A simple proof of the inequalities (1)

Let w(α) =
xy

u(α)
. Then

w(α) =











































xy

[

α(x − y)

xα − yα

]
1

α−1

, α 6= 0, 1,

xy

L(x, y)
, α = 0,

xy

I(x, y)
, α = 1.

Since u(α) is strictly increasing in α, so that w(α) is strictly decreasing in α.
Now

lim
α→∞

w(α) = x, w(2) = H(x, y), w(1) =
xy

I(x, y)
, w(0) =

xy

L(x, y)
,
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w(−1) = G(x, y), w(−2) = (AG2)
1

3 , lim
α→−∞

w(α) = y.

We have
x < H(x, y) <

xy

I(x, y)
<

xy

L(x, y)
< G(x, y) < (AG2)

1

3 < y (4)

To show that
(AG2)

1

3 < L(x, y) < I(x, y) < A(x, y), (5)

we consider the function h(α) = AαG1−α, α ∈ [0, 1] , we see that h′(α) = AαG1−α lnA−
AαG1−α lnG > 0. Hence h(α) is strictly increasing in α.

For c =
√

y

x
> 1, let

α1 =
ln c

2−1
2c ln c

ln c2+1
2c

, α2 =
−1 + c

2+1
c2−1 ln c

ln c2+1
2c

.

Then h(α1) = L(x, y) and h(α2) = I(x, y).
Observe that h(1

3 ) = (AG2)
1

3 and h(1) = A(x, y).
To complete the proof of the inequalities (5), it suffices to prove that 1

3 < α1 < α2 < 1.
In order to prove that α1 > 1

3 , we need the following Lemma:

Lemma 3. Let k(x) = 2(x4 + 4x2 + 1) lnx − 3(x4 − 1), x > 0. Then k(x) > 0, ∀x > 1.

Proof. Let

p(x) = (4x4 + 8x2) lnx − 5x4 + 4x2 + 1,

q(x) = (x2 + 1) lnx − (x2 − 1),

r(x) = 2x2 lnx − x2 + 1.

Then

k′(x) = 2(4x3 + 8x) lnx +
−10x4 + 8x2 + 2

x

=
2

x
p(x),

p′(x) = 16x(x2 + 1) lnx − 16x(x2 − 1)

= (16x) q(x),

q′(x) = 2x lnx − x +
1

x

=
1

x
r(x),

r′(x) = 4x lnx.

If x > 1, then r′(x) > 0, so that r(x) > r(1) = 0, which implies that q(x) is strictly
increasing on (1,∞), then q(x) > q(1) = 0, which implies that p(x) is strictly increasing
on (1,∞), then p(x) > p(1) = 0, which again, implies that k(x) is strictly increasing on
(1,∞).
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Consequently, k(x) > k(1) = 0, ∀x > 1.
This completes the proof of the Lemma.
To prove that α1 > 1

3 , let

s(x) =



















ln
x2 − 1

2x lnx
−

ln
x2 + 1

2x
3

, x > 1,

0 , x = 1.

Then for x > 1, we have

s′(x) =
2x lnx

x2 − 1

2x(2x ln x) − (x2 − 1)(2 + 2 lnx)

4x2(ln x)2
− 2x

3(x2 + 1)

4x2 − 2(x2 + 1)

4x2

=
x2 lnx − x2 + 1 + lnx

x(x2 − 1) lnx
− x2 − 1

3x(x2 + 1)

=
k(x)

3x(x4 − 1) lnx
, (6)

where k(x) is defined as in Lemma 3..
It follows from (6) and Lemma 3. that s′(x) > 0, ∀x > 1. Hence s(x) > s(1) =

0, ∀x > 1, which is equivalent to 1
3 < α1. Therefore,

h

(

1

3

)

= (AG2)
1

3 < h(α1) = L(x, y) (7)

(see [2], [3], [4]).
In order to prove that α2 > α1, we need the following Lemma:

Lemma 4. Let ℓ(x) = (x2 − 1)2 − (2x lnx)2 , x > 1. Then ℓ(x) > 0, ∀x > 1.

Proof. Let ℓ1(x) = x2 − 1 − 2x lnx , x > 1.
It suffices to show ℓ1(x) > 0, ∀x > 1. Differentiating gives

ℓ
′

1(x) = 2x − 2 − 2 lnx ,

ℓ
′′

1 (x) = 2 − 2

x
.

If x > 1, then ℓ
′′

1 (x) > 0, so that ℓ
′

1(x) is strictly increasing on (1,∞), and then ℓ
′

1(x) >

ℓ
′

1(1) = 0, which, implies that ℓ1(x) is strictly increasing on (1,∞).
Consequently, ℓ1(x) > ℓ1(1) = 0 , ∀x > 1.
This completes the proof of the lemma.

To prove that α2 =
−1 + c

2+1
c2−1 ln c

ln c2+1
2c

>
ln c

2−1
2c ln c

ln c2+1
2c

= α1, let

ℓ2(x) =















−1 +
x2 + 1

x2 − 1
lnx − ln

x2 − 1

2x lnx
, x > 1,

0 , x = 1.
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It suffices to show that : ℓ2(x) > 0 , ∀x > 1.
To this end, we observe that for x > 1, we have

ℓ
′

2(x) =
2x(x2 − 1) − 2x(x2 + 1)

(x2 − 1)2
lnx +

x2 + 1

x(x2 − 1)
− 2x lnx

x2 − 1

4x2 lnx − (x2 − 1)(2 + 2 lnx)

4x2(lnx)2

=
−4x2(lnx)2 + (x4 − 1) lnx + (1 − x2)(x2 lnx − x2 + lnx + 1)

x(x2 − 1)2 lnx

=
ℓ(x)

x(x2 − 1)2 lnx
, (8)

where ℓ(x) is defined as in Lemma 4..
It follows from (8) and Lemma 4. that ℓ

′

2(x) > 0 , ∀x > 1, so that ℓ2(x) is strictly
increasing on (1,∞). Hence ℓ2(x) > ℓ2(1) = 0. Therefore

h(α2) = I(x, y) > h(α1) = L(x, y). (9)

To prove that α2 < 1, we need the following Lemma:

Lemma 5. Let m(x) = x4 lnx − x4 + x2 lnx + x2 , x > 0. Then m(x) > 0 , ∀x > 1.

Proof. We have

m
′

(x) = 4x3 lnx − 3x3 + 2x lnx + 3x

m
′′

(x) = 12x2 lnx − 5x2 + 2 lnx + 5

m
′′′

(x) = 24x lnx + 2x +
2

x
.

If x > 1, then m
′′′

(x) > 0, so that m
′′

(x) > m
′′

(1) = 0, implies m
′

(x) is strictly
increasing on (1,∞), and m

′

(x) > m
′

(1) = 0, which again, implies that m(x) is strictly
increasing on (1,∞).

Consequently, m(x) > m(1) = 0, ∀x > 1.
This completes the proof of the lemma.

Now, let

n(x) =















ln
x2 + 1

2x
+ 1 − x2 + 1

x2 − 1
lnx , x > 1,

0 , x = 1.

Then for x > 1, we have

n
′

(x) =
2x

x2 + 1

4x2 − 2x2 − 2

4x2
−

(x2 − 1)(2x lnx + x + 1
x
) − 2x(x2 lnx + lnx)

(x2 − 1)2

=
x2 − 1

x(x2 + 1)
−

x3 − 4x lnx − 1

x
(x2 − 1)2

=
4m(x)

x(x2 + 1)(x2 − 1)2
, (10)
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where m(x) is defined as in Lemma 5..

It follows from 10 and Lemma 5. that n
′

(x) > 0 , ∀x > 1.

Hence n(x) > n(1) = 0, ∀x > 1, which is equivalent to α2 < 1. Therefore,

h(α2) = I(x, y) < h(1) = A(x, y). (11)

The inequalities (1) then follows from (4), (7) (9) and (11).
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