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A SIMPLE PROOF OF INEQUALITIES RELATED TO MEANS

GOU-SHENG YANG AND SHUOH-JUNG LIU

Abstract. The purpose of this paper is to give a fairly elementary method to

prove that the function u(a) = [2‘&__”:)]ﬁ, a#0,1,u(0) = I,u(l) = L, is strictly
increasing, and to give a simple proof of the inequalities < H < T <cHE G
L<I<A<y,where0 <z <yand A,G, H,I,L are the arithmetic, the geometric,

the harmonic, the identric and logarithmic means of = and y, respectively.

1. Introduction

Given two positive real numbers  and y, the arithmetic mean A(z,y), the geometric
mean G(x,y), the logarithmic mean L(z,y), the identric mean I(z,y) and the harmonic
mean H(z,y) of z and y are defined, respectively, by

A=A(x7y)=x;ry, G =G(x,y) = Vay, H=H(x7y)=z2iyy,
T—y =
L= L(z,y) = RS I=1(z,y) = 61<y_y) A
x =Y x ,T=1 .
It is known that (see[1], p.130), if 0 < & < y, then
x<H<$—Iy<%<G<L<I<A<y. (1)

Throughout, we assume 0 < z < y.
In [5], K. B. Stolarsky, defined the function

1
[u] ,a#0,1,
oz —y)

L(Zay) ,Oé:(),

I(x,y) ,a=1.
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and proved that u(«) satisfies the following properties:
(i) 0<z<ule) <y, Va € R.

(ii) w(a) is strictly increasing in «, and u(«) approaches to y (or x) as « approaches
to 0o (or — o).

(iii) w(«) is continuous in «, and

The purpose of this paper is to give a fairly elementary method to prove that the function
u(a) is strictly increasing and to give a simple proof of the inequalities (1).

2. A simple proof of the monotone of u(«).

To prove that u(«) is strictly increasing, we need the following Lemmas:
Lemma 1. Let g(t) = t(Int)> — (¢t — 1)%, t > 0. Then g(t) <0, Vt € (0,1) U (1, 00).
Proof. For ¢t > 0, we have

g () =2Int+ (Int)? — 2(t — 1),

" 2 2Int
H=-4200 o
g t)=5+— :
1 —21Int
9 t)=—5—,

it follows that, if ¢ > 1, then ¢"’(t) < 0, so that ¢”(¢t) < ¢”(1) = 0, which implies that
g'(t) is strictly decreasing on(1,00), and hence ¢'(t) < ¢’(1) = 0, which, again, implies
that g(t) is strictly decreasing on(1, 00). Therefore g(t) < g(1) = 0.

Next, if 0 < t < 1, then ¢"”'(t) > 0, so that ¢”(t) < ¢’’(1) = 0, which implies that
g'(t) is strictly decreasing on (0,1), and then ¢'(t) > ¢'(1) = 0.

Hence ¢(t) is strictly increasing on (0,1). Therefore g(t) < g(1) = 0.

This completes the proof.

Lemma 2. Ifb> 1, let

(o — 1)b*1nb 1 b* —1
o Y 1+ lp—e
b —1 Ta na(b—l)’ a0,
fla) =
lnbil—ln\/g , a=0.
Inb

Then f(a) >0, Ya # 1.
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Proof. For a # 0, we have

(b —1)b%Inb[(a — 1) Inb+1] — (a — Dp**(Inb)2 1  ab®Inb—b* +1

J'e) = (b —1)? o ae 1)
::Eq%;f%F.waan5027(ulf1f]
- ﬁ 9(b). (2)

where the function g is defined as in Lemma 1..

If « > 1, it follows from (2) and Lemma 1. that f/(«) > 0, so that f(a) is strictly
increasing on (1,00). Hence f(a) > f(1) = 0.

If 0 < a < 1, it follows from (2) and Lemma 1. that f'(a) < 0, so that f(«) is strictly
decreasing on (0, 1). Hence f(a) > f(1) =0.

If & < 0, it follows from (2) and Lemma 1. that f'(a) < 0, so thatf(a) > f(0) > 0.

To show f(0) > 0, we consider the function F(x) = \/z — ﬁ —1Inz, x> 1. Differen-
tiating gives F (z) = (‘éi?/g > 0, so that F(x) > F'(1) = 0. This implies that f(0) > 0.
Consequently, f(a) > 0, Va # 1.

Now we are ready to prove that the function u(«) is strictly increasing in a.

Proof. Let b = % > 1, and v(a) = @. Then

{bil)]“ , a#0,1,

alb—1

v(a) = L(z,y) L a=o,
T

I(x,y) o1

T ’ '

It suffices to show that v(«) is strictly increasing in a.
Now, if a # 0,1, we have

ab—1) ab*Inb— (b* — 1) b* —1
(a_”{w1 a2(b—1) ]_ma@n

v'(a) = v(a)

(a— 17
v(a) {(a—l)(ab“lnb—b“—i—l) i b> —1 }
 (a—1)2 a(db> —1) alb—1)
_ v(@) [(e=1)b*Inb 1 0 b* — 1
(a—l)Q{ b> —1 1+0¢ ! a(b—l)}
v(a)
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where f(«) is defined as in Lemma 2..

Since v(a) > 0, it follows from (3) and Lemma 2. that v'(a)) > 0, so that v(«a) is
strictly increasing for o # 0, 1.

Observe that

- gcl—>mo (o — 1)2f(a)
L(z,y) ..
- Yy O];L)O f(a)
L(z,y) -1
; (1 = ln\/l_)> >0
’l)/(].) Cltlinl U(Oéo)é:zl)(l)

- {hm v(oz)} [hm M]

a—1 a—1 2(Oé — ]_)
I(z,y) T, 1 l-—«a o
T Ty {ih”ﬁ 2(a—1) a2(b* — 1)2 9(b )}
_ I(x,y)g(b)
T -0

Consequently, v'(a)) > 0 for all .

3. A simple proof of the inequalities (1)

Let w(a) = Y Then

u(o)
alr—y) |t
Jee=a]™ o
==Yy
_ Ty
w(a) = , a=0,
L(z,y)
Ty
, a=1
I(z,y)
Since u(q) is strictly increasing in «, so that w(«) is strictly decreasing in .
Now 2y 2y
li = 2)=H 1) = 0) =
Jim w(e) =2, 0(2) = Hw), wl) = s, w) = 72
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w(-1) = Gla,y), w(-2)=(AG)}, lim_w(a)=y.

a— — 00
We have . .
Y - Y

T 2)3
Ty ~ Ly < G(z,y) < (AG7)s <y (4)

x < H(z,y) <

To show that )

(AG*)s < L(z,y) < I(z,y) < Alz,y), (5)
we consider the function h(a) = A*G' = a € [0,1] , we see that h'(a) = A*G'~*In A —
A“G'"*InG > 0. Hence h(a) is strictly increasing in a.

For ¢ = \/g> 1, let

2 2
c—1 _ c+1

O v .
1 In 241’ 2 In 241
2c 2c

Then h(ay) = L(z,y) and h(az) = I(z,y).
Observe that h(3) = (AG?)3 and h(1) = A(z,y).
To complete the proof of the inequalities (5), it suffices to prove that % <oy <ag <l
In order to prove that a; > %, we need the following Lemma:

Lemma 3. Let k(z) = 2(z* + 422 + 1) Inx — 3(z* — 1),z > 0. Then k(z) >0, Vo > 1.

Proof. Let
p(z) = (4o* + 82 Inx — 5 +42% +1,
q(x) = @* + 1) Inz — (22 — 1),
r(z) =222 Inz — 2 + 1.

Then

—102* + 822 + 2
x

K (z) =2(423 + 8z)Inz +
2
p'(z) = 16x(2? + 1) Inz — 162(x? — 1)
= (16z) g(x),
1
¢ (z)=2zxlnzr —x+ —
T
1

= ; T(I)a

r'(z) = 4z Inz.

If > 1, then v'(z) > 0, so that r(x) > (1) = 0, which implies that ¢(z) is strictly
increasing on (1, 00), then ¢(x) > ¢(1) = 0, which implies that p(z) is strictly increasing
on (1,00), then p(x) > p(1) = 0, which again, implies that k(z) is strictly increasing on
(1, 00).
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Consequently, k(z) > k(1) =0, Vo > 1.
This completes the proof of the Lemma.
To prove that a; > %, let

! 2?2+ 1
a? -1 Mo
— 1
s(z) = oz 3 » T2 5
0 , x=1
Then for x > 1, we have
(@) 2zInz 2x(2xInz) — (22 — 1)(2+2Inz) 20 4 —2(2%+1)
s'(x) = -
x?—1 42%(In z)? 3(z2+1) 422
_2’lnz—2?+1+Inz 2?2 -1
z(z?2 —1)Inz 3x(z? +1)

_ k(x)
~ 3z(2* —1)Inz (6)

where k() is defined as in Lemma 3..
It follows from (6) and Lemma 3. that s'(z) > 0, Vo > 1. Hence s(z) > s(1) =
0, Vx > 1, which is equivalent to % < 1. Therefore,

h (é) — (AGY)} < (o) = Liz,y) (7)

(see [2], 3], [4])-
In order to prove that as > a1, we need the following Lemma:

Lemma 4. Let {(x) = (2> — 1) — 2xInx)? , > 1. Then {(x) > 0, Vo > 1.

Proof. Let ¢1(z) =2?—1—2zlnz , z > 1.
It suffices to show ¢1(x) > 0, Va > 1. Differentiating gives

Ell(x)=2x—2—21nx,
1 2

! =2——.

1 (@) -

If 2 > 1, then ¢} (x) > 0, so that () is strictly increasing on (1,00), and then £ (z) >
¢1(1) = 0, which, implies that ¢;(z) is strictly increasing on (1,00).

Consequently, ¢1(z) > (1(1) =0, Vo > 1.

This completes the proof of the lemma.

2 2
_ c+1 c’—1
L+ c?—1 Ine In 2clnc

To prove that as = = aq, let

TE=TE

241 21
_1+I2+1lnx—ln§1 , > 1,

62(1,): xre — rinwx
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It suffices to show that : fa(x) >0, Vo > 1.
To this end, we observe that for x > 1, we have

ly(z) = 2$($2*1)—21(x2+1)1nz+ 2 +1  2zlnzda’lnz — (2 - 1)(2+2nx)
(a2 —1)2 r(z? 1) 22-1 422 (In x)?
- _4352(1“35)2-1-(364—1)lnx+(1—x2)(x21nx—x2+1n$+1)

z(z? —1)?lnx

{(x)
= 2 __1)2 ’ ®)
(2?2 —1)?Inx
where ¢(z) is defined as in Lemma 4..
It follows from (8) and Lemma 4. that £y(z) > 0, Va > 1, so that fo(z) is strictly
increasing on (1, 00). Hence f2(x) > ¢3(1) = 0. Therefore
haz) = I(x,y) > h(en) = L(z,y). 9)
To prove that as < 1, we need the following Lemma:
Lemma 5. Let m(z) = 2*lnx —2* + 22Inz + 22 , 2 > 0. Then m(x) >0, Vo > 1.
Proof. We have

(z) =42®Inz — 32 + 2z lnx + 32

m
m’ (z) =122 Inz — 52> 4+ 2Inz +5

"

2
m (z) =24xlnz + 2z + —.
x

If > 1, then m” (x) > 0, so that m" (z) > m" (1) = 0, implies m’ () is strictly
increasing on (1,00), and m’(2) > m'(1) = 0, which again, implies that m(z) is strictly
increasing on (1, 00).

Consequently, m(x) > m(1) =0, Vo > 1.

This completes the proof of the lemma.

Now, let

Then for x > 1, we have

(@) 20 4a? —222 -2 (2* —1)2zlnz+x+ 1) —2z(2*Inz +Inx)
n (x) = -

2+ 1 422 (2 —1)2
1
3 4rlng— -
_ 2-1 7 ez -~
x(z?+1) (2 —1)2
4dm(x)

T @+ 1)@z —1)2 (10)
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where m(z) is defined as in Lemma 5..
It follows from 10 and Lemma 5. that n' (z) >0, Vz > 1.
Hence n(z) > n(1) =0, Yo > 1, which is equivalent to ag < 1. Therefore,

hag) = I(x,y) < h(1l) = A(z,y). (11)

The inequalities (1) then follows from (4), (7) (9) and (11).
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