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Abstract. In previous works, we have established discrete versions of the Krylov

maximum principle for parabolic operators, on general meshes in Euclidean space.

In this article, we prove a variant of these estimates in terms of a discrete analogue

of the determinant of the coefficient matrix in the differential operator case. Our

treatment adapts key ideas from our previous work on the corresponding discrete

Aleksandrov maximum principle in the elliptic case.

1. Introduction

In our previous papers [2, 5], we provided a general discrete analogue of Krylov

maximum principle [1] for linear second order parabolic partial differential operators in
domains D in Euclidean (n + 1)-space Rn+1. For operators L̃ in the form

L̃u = Dtu − aij(x, t)Diju + bi(x, t)Diu + c(x, t)u (1.1)

acting on functions u ∈ C2,1(D) with coefficient matrix A = [aij ] measurable and positive
in D, the Krylov maximum principle provides an estimate,

sup
D

u ≤ C diam(D)
n

n+1

∥∥∥∥∥
L̃u

(det A)1/(n+1)

∥∥∥∥∥
Ln+1(D)

(1.2)

where C is a constant depending on n and b and c. In this article we extend our
previous results to embrace the dependence of our estimates on the discrete analogue

of the coefficient determinant, detA, thereby establishing the parabolic analogue of our

discrete Aleksandrov maximum principle in [6].
First we note that a general nonlinear parabolic difference equation may be written

in the form,

F [u](x, t) := F (x, t, u, Tu) = 0 (1.3)
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where u : E → R a mesh function defined on a space-time mesh E, which is a discrete

subset of (n + 1)-dimension Euclidean space, Rn × R, with points denoted (x, t), x ∈

Rn , t ∈ R. We shall refer to x and t as the spatial and time coordinates respectively. F

is a given real-valued function on E × RE and

Tu(x, t) =
{

u(y, s)
∣∣ (y, s) 6= (x, t)

}
. (1.4)

We always assume that F [u] is independent of the values u(y, s) for |y − x| sufficiently

large and s > t. The operator F is called monotone if

F (x, t, u, q + η) ≥ F (x, t, u, q) (1.5)

for all (x, t) ∈ E, u ∈ R, q ∈ RE\{(x ,t)}, η ≥ 0. If F is differentiable with respect to

qz then F is monotone if ∂F
∂qz

(x, t, u, q) ≥ 0 for all z = (y, s) ∈ E \ {(x, t)}, (x, t) ∈ E

and positive if in addition,
∑

z∈E
∂F
∂qz

(x, t, u, q) ≤ 0, for each (x, t) ∈ E. We also call F

spatially balanced if

F (x, t, u, q̃ ) = F (x, t, u, q) (1.6)

whenever

q̃z = qz + p · (y − x), z = (y, s) ∈ E and for some p ∈ R
n .

Let

a′(x, t; y) =
∑

z=(y,s)
6=(x,t)
s≤t

∂F

∂qz
(x, t, u, q) (1.7)

and

aij(x, t) =
1

2

∑

y

a′(x, t; y)(y − x)i(y − x)j . (1.8)

We call F is spatially non-degenerate (or spatially elliptic) if A = [aij ] is positive that is

1

2

∑

z=(y,s)

∈E

∂F

∂qz
(x, t, u, q)[(y − x) · ξ]2 ≥ λ|ξ|2 (1.9)

for all ξ ∈ Rn and some positive constant λ. By virtue of the “linearization” formula

F [u](x, t) − F [v](x, t) = L(u − v)(x, t)

=
∑

(y,s)∈E

a(x, t; y, s)(u − v)(y, s) (1.10)

where

a(x, t; y, s) =

∫ 1

0

∂F

∂qz
(x, t, wt, Twt) dt , z = (y, s)
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and

wt = wt(x, t) = tu(x, t) + (1 − t)v(x, t), 0 ≤ t ≤ 1,

where u and v are arbitrary mesh functions. Taking v = 0 in (1.10), we may write the

operator F in the “linear” form

F [u] = Lu(x, t) :=
∑

(y,s)∈E

a(x, t; y, s)u(y, s) + f(x, t) (1.11)

where
f(x, t) = F (x, t, 0, 0)

with coefficients a(x, t; y, s) having finite support in z for each x ∈ E. Accordingly, from
(1.5), L is of monotone type if

a(x, t; y, s) ≥ 0 for all (x, t, y, s) ∈ E × E, (y, s) 6= (x, t) (1.12)

and of positive type if, in addition,

∑

(y,s)∈E

a(x, t; y, s) ≤ 0. (1.13)

The operator L is then called evolving if

a(x, t; y, s) = 0 for s > t, (1.14)

that is, its action is independent of values at future times. We also call L spatially

balanced if

b(x, t) :=
∑

(y,s)

a(x, t; y, s)(x − y)

= 0 (1.15)

and separately spatially balanced if

b′(x, t, s) :=
∑

y

a(x, t; y, s)(x − y)

= 0 , for each s ≤ t. (1.16)

For each point (x, t) ∈ E, we define a spatial mesh E′ = E′(x, t) in Rn , by

E′ =
{
y ∈ R

n
∣∣ a(x, t; y, s) > 0, for some s ≤ t

}
(1.17)

and for y ∈ E′, we define new coefficients a′ by

a′(x, t, y) =
∑

s≤t

a(x, t; y, s). (1.18)
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Moreover, let

aij(x, t) =
1

2

∑

y

a′(x, t; y)(y − x)i(y − x)j and A = [aij ]. (1.19)

A further discrete set Z = Z(x, t) is then defined in Rn by

Z(x, t) =
{
x + a′(x, t, y)(y − x)

∣∣ y ∈ E′(x, t)
}
. (1.20)

Note that if L is spatially balanced, then the set Z is centered at x. We call the operator
L spatially non-degenerate ( or spatially elliptic ) if

1

2

∑

y

a′(x, t; y)[(y − x) · ξ]2 ≥ λ|ξ|2 (1.21)

for some positive constant λ. Further, we call L time-wise non-degenerate if

γ = γ(x, t) :=
∑

s<t

a(x, t; x, s) > 0. (1.22)

To extend this condition to general space-time meshes, we call the operator L of weak

positive type if it is monotone and,

µ = µ(x, t) := −
∑

(y,t)∈E

a(x, t; y, t) > 0. (1.23)

Note that L is of positive type for sufficiently large µ.
To illustrate the above conditions we recall the special case of a uniform mesh and

single time step operator treated in [2]. Here the mesh E is given by

E = Z
n
h × Zτ

=
{

(x, t) ∈ R
n+1

∣∣ x = (m1 · · · , mn)h , t = mτ , m,m1 · · · , mn ∈ Z
}

(1.24)

where the spatial mesh length h and time step τ are fixed positive constants. A spatial
operator L′ is defined on the cubic spatial mesh Zn

h ⊂ Rn by

L′u(x, t) =
∑

z 6=0

a(x, t; z)δ2
zu(x, t) + b(x, t; z)δzu(x, t) + c(x, t)u(x, t) (1.25)

where the coefficients a, b are real-valued functions on E × Zn
h , vanishing for |z| > Kh

for some K ∈ N, c is a real-valued function on E and the difference operators δz , δ2
z are

given by

δzu(x, t) =
1

2|z|

{
u(x + z, t) − u(x − z, t)

}
,

(1.26)

δ2
zu(x, t) =

1

|z|2
{
u(x + z, t) − 2u(x, t) + u(x − z, t)

}
.
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The space-time difference operator L, corresponding to a standard explicit-implicit

scheme, is then defined by

Lu(x, t) = (1 − α)L′u(x, t) + αL′u(x, t − τ) −
1

τ

{
u(x, t) − u(x, t − τ)

}
(1.27)

where α is a fixed number satisfying 0 ≤ α ≤ 1. The scheme is implicit when α = 0 and

explicit when α = 1. The operator L is monotone if

a(x, t′; z) −
1

2
|z| |b(x, t′; z)| ≥ 0 , ∀z 6= 0 , and t′ = t , t − τ

(1.28)

α τ


2
∑

z 6=0

a(x, t; z)

|z|2
− c(x, t)


 ≤ 1 .

The spatial non-degeneracy condition in [2] is that for each (x, t) ∈ E, there exists an

orthogonal set of vectors z1, · · · , zn ∈ Zn
h such that

λi(x, t) := (1 − α)
{
a(x, t; zi) −

|zi|

2
|b(x, t; zi)|

}

+ α
{
a(x, t − τ ; zi) −

|zi|

2
|b(x, t − τ ; zi)|

}
> 0 (1.29)

i = 1, · · · , n. It follows then that our present spatial non-degeneracy condition is that

the coefficient matrix is positive

A = diag(λ1, · · · , λn) > 0 (1.30)

while the time-wise non-degeneracy condition (1.22) is satisfied for

γ(x, t) =
1

τ
− α

(
2
∑

z 6=0

a(x, t − τ ; z)

|z|2
− c(x, t − τ)

)
> 0 . (1.31)

Finally the operator (1.27) is weakly positive if it is monotone and, instead of (1.12),

µ(x, t) =
1

τ
− (1 − α) c(x, t) > 0 , (1.32)

in accordance with (1.23) above and [2].

2. Preliminaries

The proof of the maximum principle, Theorem 3.1 in next section, is based on certain

inequalities of Krylov [1], together with the discrete adaptation in [6] of the geometric

argument of Aleksandrov. As in our previous work [2], the sum on the right hand side

of (3.4) can be taken over the increasing-upper contact set of u. As before, for a spatial
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mesh function u, defined on a subset D
′ of a discrete mesh E′ ⊂ Rn , we define the upper

contact set Γ+ = Γ+(u) by

Γ+ =
{

x ∈ D
′
∣∣ u(y) ≤ u(x) + p · (y − x) for all y ∈ D

′ ,

for some p ∈ R
n
}
.

The spatial upper contact set of a space-time mesh function u on a set D ⊂ E , is then
defined by

Γ+ = Γ+(u) =
{

(x, t) ∈ D
∣∣ x ∈ Γ+

t

}
,

where Γ+
t denotes the upper contact set on

Dt =
{

x ∈ R
n
∣∣ (x, t) ∈ D

}

of the spatial mesh function ut given by ut(x) = u(x, t). The increasing set of a space-
time mesh function u is defined by

I+ = I+(u)

=
{

(x, t) ∈ D
∣∣ u(x, t) > u(x, s) for all (x, s) ∈ D, s < t

}
,

and the increasing upper contact set is then given by

S
+ = S

+(u) = Γ+ ∩ I+.

Let D be a bounded subset of the space-time mesh E, with d, T denoting respectively
the spatial and time diameters of D, that is

d = max
{
|x − y|

∣∣ (x, t), (y, s) ∈ D , for some s , t ∈ R
}

,
(2.1)

T = max
{

t − s
∣∣ (x, t), (y, s) ∈ D , for some x , y ∈ R

n
}

.

Without loss of generality, we can assume that D lies in the space-time cylinder Q given
by

Q = Bd/2 × [0, T ] .

For a fixed point (x, t) ∈ D, let us also define

τ = τ(x, t) = min
{
t − s

∣∣ (y, s) ∈ D , s < t , a(x , t ; y, s) > 0
}

. (2.2)

If D is a subset of E, then the interior of D, with respect to L, is defined by

D
o =

{
(x , t) ∈ D

∣∣ a(x , t ; y, s) = 0, ∀ (y, s) 6∈ D
}

(2.3)

and the boundary of D, with respect to L, is defined by

D
b = D − D

o.

The basic inequalities we need are encompassed in the following lemmas (also see [2]
), which correspond to special cases of [1], Corollary 1.
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Lemma 2.1. Let w1 and w2 be mesh function on a spatial mesh Ωh, vanishing at extreme

points of Ω̂h (the convex hull of Ωh) and satisfying w1 ≥ w2 on Ωh. Then we have the

inequalities,

0 ≤
∑

x∈Ωh

(
w1|χw1(x)| − w2(x)|χw2(x)|

)

≤ (n + 1)
∑

x∈Ωh

(w1 − w2)(x)|χw1 (x)|. (2.4)

In fact there is no loss of generality in replacing the functions w1 and w2 in Lemma 2.1 by

their concave envelopes which then vanish on ∂Ω̂h. In this form, Lemma 2.1 is directly
covered by Krylov [1].

Lemma 2.2. Let w be a spatial mesh function on a mesh Ω ⊂ Rn , vanishing at extreme

points of Ω̂ (the convex hull of Ω). Then for any y ∈ Ω , we have the estimate,

w(y) ≤

{
dn

z

ωn

∑

x∈Ω

w(x) |χw(x)|

} 1
n+1

(2.5)

where dy = max
x∈Ω

|y − x|.

Our purpose in this article is to deduce the discrete maximum principle in a form cor-
responding to (1.2), where the dependence on the coefficients of L in (1.11) is determined

by detA for A given by (1.19). First we mention a lemma of [6]. Let

V (y1, · · · , yn) = det
[
yi

j

]
(2.6)

denote the volume of the parallelpiped spanned by y1, · · · , yn.

Lemma 2.3. For y1, · · · , yN ∈ Rn , N ≥ n, we have

det

(
N∑

i=1

yi ⊗ yi

)
=

∑

1≤i1<i2···<in≤N

V 2(yi1 , · · · , yin). (2.7)

Moreover, for the difference operator L, given by (1.11), and the mesh E, we introduce

a volume element V (x, t) at a point (x, t) ∈ E by

V (x, t) = max
y1,··· ,yn∈Z(x,t)

V (y1 − x, · · · , yn − x). (2.8)

The volume element V (x, t) is used in Theorem 3.1, instead of hn when uniform grids

are considered with mesh length h.
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3. Maximum principles

In this section we prove an extension to general space-time meshes of our discrete
maximum principle for parabolic differential operators [2]. We shall assume that the

operator L, given by (1.11) is evolving, monotone, non-degenerate, in accordance with
(1.20), (1.22) and weakly positive, as in (1.23). We then associate non-negative constants

b′o and c′o to the operator L by assuming

b∗(x, t) :=
∑

s≤t

|b′(x, t, s)| ≤ τµb′o , (3.1)

c′(x, t) :=
∑

(y,s)∈E
s<t

a(x, t; y, s)

≤ (1 + c′oτ)µ . (3.2)

When L is separately spatially balanced we clearly have b′o = 0 and if L is of positive

type, (1.23) is satisfied for µ = c′ whence we can take c′o = 0 in (3.2). We then have the
following maximum principle.

Theorem 3.1. Let u be a space-time mesh function satisfying the difference inequality,

Lu ≥ f in D
o , (3.3)

together with the boundary condition

u ≤ 0 in D
b .

Then we have the estimate

max
D

u ≤ Cd
n

n+1





∑

(x,t)∈S+

|f(x, t)|n+1

det[A(x, t)]
V (x, t)τ̃ (x, t)






1
n+1

, (3.4)

where τ̃(x, t) = γ−1(x, t) and C is a constant depending on n, b′oT/d and c′oT .

Note that in (3.4), V (x, t)τ̃ (x, t) interprets a volume element for the space-time mesh

space E.

Proof. First we consider the case of spatially balanced operators of positive type, that
is b = 0, c ≤ 0. We order the time values in D, by defining

to = 0 ,

ti = min
{

t
∣∣ (x, t) ∈ D , x ∈ R

n , t > ti−1

}
, i = 1, 2, . . . ,

so that

0 = to < t1 . . . < tN = T ,
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for some natural number N . We then define a finite sequence of spatial mesh functions

uo , . . . , uN on corresponding discrete sets Dm ⊂ Rn by setting

um(x) = utm(x) = u(x, tm) ,

Dm = Dtm
.

Writing

D
′ =

N⋃

m=0

Dm ,

we replace {um} by a non-decreasing sequence {vm} of spatial mesh functions on D
′, by

defining

vm(x) = max
x∈Dj

j≤m

{
uj(x), 0

}
. (3.5)

At any point x ∈ D
′, where vm(x) > vm−1(x), we have vm(x) = um(x). Consequently,

setting

a′
m(x, y) = a′(x, tm, y) ,

cm(x) = c(x, tm) ,
(3.6)

γm(x) = γ(x, tm) ,

fm(x) = f(x, tm) ,

we obtain from (3.3) and (1.12), the difference inequality,

L′
mvm(x) ≡

∑

y∈D′

a′
m(x, y)

(
vm(y) − vm(x)

)

+ cm(x)vm(x) + γm(x)
(
vm−1(x) − vm(x)

)

≥ fm(x). (3.7)

Letting χm denote the normal mapping of the mesh function vm on D
′, that is

χm(x) =
{

p ∈ R
n
∣∣ vm(y) ≤ vm(x) + p · (y − x) for all y ∈ D

′
}

,

and

Γ+
m =

{
x ∈ D

′
∣∣χm(x) 6= φ

}
,

the upper contact set of vm on D
′, we suppose now that also x ∈ Γ+

m and, following [3],

[4], for some fixed p ∈ χm(x), set

wm(z) = vm(z) − p · (z − x) , (3.8)
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for z ∈ D
′. From (3.7), we then have

∑

y∈D′

a′
m(x, y)

(
wm(x) − wm(y)

)
+ γm(x)

(
vm(x) − vm−1(x)

)

≤
∑

y∈D′

a′
m(x, y)p · (x − y) + cm(x)vm(x) − fm(x)

≤ −fm(x) , (3.9)

under our initial hypothesis that L is balanced and positive. Following our treatment of
the spatial case in [4], we define a function w̃ on the finite discrete set Zm = Zm(x) =
Z(x, tm), given by (1.20), by

w̃m(z) = wm(x) + a′
m(x, y)

(
wm(y) − wm(x)

)
(3.10)

whenever
z = zy = x + a′

m(x, y)(y − x).

It follows that
χm(x) − p = χwm

(x) ⊂ χw̃m
(x) (3.11)

and moreover, from (3.9),

∑

y∈D′

(
w̃m(x) − w̃m(zy)

)
≤ −fm(x). (3.12)

Let {
k(x) = 1,

k(y) = 0 for y ∈ Zm(x).
(3.13)

We then have

|χw̃m
| ≤

∣∣fm(x)
∣∣n∣∣χk(x)

∣∣

=
∣∣fm(x)

∣∣n∣∣Z∗
m(x)

∣∣ (3.14)

where Zm(x) = { x + a′(x, tm; y)(y − x) | y ∈ E′(x, t) } and

Z∗
m(x) = χk(x, tm), (3.15)

=
{
p ∈ R

n
∣∣ p · (y − x ) ≤ 1, for all y ∈ Zm(x ))

}
.

Moreover, we need a geometric inequality proved in Lemma 3 of [6],

∣∣Z∗
m(x)

∣∣ ≤ C

|Ẑm(x)|
(3.16)

where C = n
3n
2 ω2

n and Ẑm(x) is the convex hull of Zm(x). From (3.14) and (3.11) we
have ∣∣χm(x)

∣∣ ≤ C(N)
V (x, tm)

det[A(x, tm)]

∣∣fm(x)
∣∣n (3.17)



ON THE KRYLOV MAXIMUM PRINCIPLE FOR DISCRETE PARABOLIC 447

where

V (x, tm) = max
y1,··· ,yn∈Zm(x)

V (y1 − x, · · · , yn − x). (3.18)

From (3.9), we also have

(vm − vm−1)(x) ≤
fm(x)

γm(x)
. (3.19)

Therefore, we obtain

∑

x∈D

vm|χm(x)| − vm−1|χm−1(x)| ≤ (n + 1)
∑

x∈D

(vm − vm−1)(x)
∣∣χm(x)

∣∣

≤ C(n, N)
∑

x∈S
+
m

|fm(x)|n+1V (x, tm)

γm(x) det[A(x, tm)]
(3.20)

where

S
+
m = {x ∈ Γ+

m | vm(x) > vm−1(x) }.

Since v0 ≡ 0, we thus have

∑

x∈D

vm|χm(x)| ≤ C(n, N)

m∑

j=0

∑

x∈S
+
j

|fj(x)|n+1V (x, tj)

γj(x) det[A(x, tj)]

≤ C(n, N)
∑

(x,t)∈S+

|f(x, t)|n+1V (x, t)

γ(x, t) det[A(x, t)]
(3.21)

Hence we conclude, from [2], Lemma 3.2,

max
D

u ≤ max
D′

vN ,

≤ C(n, N)d
n

n+1

{ ∑

(x,t)∈S+

|f(x, t)|n+1

det[A(x, t)]
V (x, t)γ−1(x, t)

} 1
n+1

(3.22)

and the estimate (3.4) in the case b = 0, c ≤ 0.

To treat the general case, we introduce, as in [2], a modified mesh function ū given

by

ū = e−κtu(x, t) , (3.23)

where κ is a non-negative constant to be chosen later. For fixed t ∈ {t1, . . . , tN}, we set

t̄ = min
{

s
∣∣ a(x, t; y, s) > 0, for some x ∈ Dt and (y, s) ∈ D

}

and define new coefficients ā by

ā(x, t; y, s) = eκ(s−t̄)a(x, t; y, s). (3.24)
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Then we have the modified difference inequality,

L̄ū ≡
∑

ā(x, t; y, s)ū(y, s)

≥ e−κt̄f(x, t)

≥ −|f(x, t)| , (3.25)

in place of (3.3). Furthermore, by (1.23)

c̄(x, t) =
∑

(y,s)∈D

ā(x, t; y, s)

=
∑

(y,t)∈D

eκ(t−t̄)a(x, t; y, t) +
∑

(y,s)∈D

s<t

eκ(s−t̄)a(x, t; y, s)

≤ eκ(t−τ−t̄) {−eκτµ(x, t) + c′(x, t)}

≤ 0 (3.26)

provided

κ ≥
1

τ
log

c′

µ
. (3.27)

Clearly, (1.23) is both necessary and sufficient for the operator L̄ to be of positive type.

Returning to the proof of Theorem 3.1, we replace u by ū, with v and w defined accord-

ingly, to obtain from (3.25), in place of (3.9),

∑

y∈D′

a′
m(x, y)

(
wm(x) − wm(y)

)
+ γm(x)

(
vm(x) − vm−1(x)

)

≤
∑

y∈D′

ā′
m(x, y)

(
wm(x) − wm(y)

)
+ γ̄m(x)

(
vm(x) − vm−1(x)

)

≤ b̄m(x) · p + c̄m(x)vm(x) − e−κt̄fm(x) (3.28)

where

ā′(x, y, t) =
∑

s≤t

ā(x, t; y, s) ,

γ̄(x, t) =
∑

s<t

ā(x, t; x, s) ,

b̄(x, t) =
∑

ā(x, t; y, s)(y − x) ,

and

ā′
m(x, y) = ā′(x, y, tm) , γ̄m(x) = γ̄(x, tm) ,

b̄m(x) = b̄(x, tm) , c̄m(x) = c̄(x, tm) .
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To handle the term involving b̄ in (3.28), we proceed as in [5] and restrict the upper

contact set and normal mapping of vm by extending vm to the ball B = BR+ 1
2d for some

R ≥ 0, so that vm vanishes in B − D
′. The normal mapping χm and upper contact set

Γ+
m are then defined with B replacing D

′. We then have for any p ∈ χm(x),

|p| ≤
vm(x)

R
,

and hence we estimate, from (3.28)

∑

y∈D′

a′
m(x, y)

(
wm(x) − wm(y)

)
+ γm(x)

(
vm(x) − vm−1(x)

)

≤

(
|b̄m|

R
+ c̄m

)
vm(x) +

∣∣fm(x)
∣∣ . (3.29)

Now, by (3.1) (3.2), we have

|b̄(x, t)|

R
+ c̄(x, t) ≤ µeκ(t−τ−t̄)

{(
b′oτ

R
− 1

)
eκτ + 1 + c′oτ

}

≤ 0 ,

provided κ and R are chosen so that

(
1 −

b′oτ

R

)
eκτ ≥ 1 + c′oτ. (3.30)

Consequently we obtain, from (3.29)

∑

y∈D′

a′
m(x, y)

(
wm(x) − wm(y)

)
+ γm(x)

(
vm(x) − vm−1(x)

)
≤
∣∣fm(x)

∣∣ (3.31)

and, as before, we conclude the estimate (3.22) with u replaced by ū and d replaced by

d + R. Accordingly, we have the estimate

max
D

u ≤ C(n, N)(d + R)
n

n+1 eκT

{ ∑

(x,t)∈S+

|f(x, t)|n+1

det[A(x, t)]
γ−1V (x, t)

} 1
n+1

, (3.32)

for any constants κ and R satisfying (3.30) in D. Choosing, say

R = 2b′oT , κ = 1 + 2c′o ,

yields the estimate (3.4) as asserted.
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