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ON CONFORMAL TRANSFORMATION OF CERTAIN
FINSLER SPACES

S. C. RASTOGI AND A. K. DWIVEDI

0. Introduction

M. S. Knebelman [4] first defined the conformal theory of Finsler metrics, such that
two metric functions L and L are conformal if the length of an arbitrary vector in the
space with the metric L is proportional to the length in the space with metric L, that is,
if 9, = ©gi;, where g;; and g, are the metric tensors corresponding to metric functions
L and L respectively and ¢ is a function of coordinates. Conformal transformations
in Finsler spaces have further been studied by various authors namely Hashiguchi [1I],
Izumi [2, ], Matsumoto [8] and others. The purpose of the present paper is to sutdy
conformal transformation of L(c, 3)-metric (Matsumoto [3,/1]) and its special case related
to Randers’ space [9]. Throughout the present paper we shall follow the notations used
in Matsumoto’s monograph [f].

1. Preliminaries

Let (M™, L) be an n-dimensional Finsler space equipped with the fundamental func-
tion L(x,y) on a differentiable manifold M™. Let (M™,*L) be another Finsler space
equipped with the fundamental function *L(z,y) such that Matsumoto []:

“L(x,y) = L(z,y) + B(z,y). (1.1)

where 3(z,y) = b;(z)dz".
We also have for I; = L/0y*, *I; = 0*L/dy* and b; = 93/0y",

I =1; + b;. (1.2)
If hij = 3gij — Zilj = LLij we have *hm/*L = hij/L or Lij = *Lij such that [5]
“gi5 = (915 — L) + 1", "gY = 77T 4 'l — 72UV + 1Y), (1.3)

where 1 = (Lb* + B)/(*L72), b2 = b;b', b = g'ib;, 7 = *L/L.
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Since *I° = 7711%, therefore for m; = b; — (3/L)l;, we can obtain
*Cijk = Tcijk + (hijmk + hjkmi + hkimj)/2L. (1.4)

The h- and v-covariant derivatives of a covariant vector field X; are defined as

X, = 0;X; — NI(AX;) — X, F, (1.5)
and
X)), = 85X~ X,C. (1.6)
where the symbol 9; and A; stands for 9/9z7 and 9/dy’ respectively, (sz, N ;, C’;k) are
connection parameters of F™ such that N} = Fy; = y"F}, and Cj, = ¢ Cijy.

If*F jk denotes the Cartan’s connection of *F", then it is given by Matsumoto []

where D, is a tensor of type (1,2) such that it satisfies |]

LijrDyy + LirjDiy + Lip D%y = 0, Ly Dy + (I + b)) Dy = by, (1.8)
Djy = 2LF} + 7Y (Eoo — 2LE,ob")1Y, (1.9)
Dj; = LG + 77 (G — LGmjb™) (1.10)
and _ _ _ _
e = LHp (9" — U077 1) + I'r 7 Hyg, (1.11)
where
Gij = Fij — LijrDyy/2, G = Ejo — Lj»Diy/2, G =g" Gy (1.13)
Hiji = (Ljkr Doy — Lir DG — Lijr Doy,) /2 (1.14)
and
Hji, = Eji, — (Ljr Doy, + LirDgj) /2. (1.15)

The T-tensor in a Finsler space is defined by [6]:
Thijk = LChij|k + Chijli + Crirly + Chjrli + Cijrln, (1.16)

which in a space with generalized (a, §) metric can be expressed as [4]

*Thijk = *L*Chij}k + *Chij*lk + *Chik*lj + *Ch]’k*li + *Cijk*lh. (1.17)
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2. Conformal transformation

Let us assume that there exists a conformal transformation of Finsler spaces which
transform in such away that L = Le?, (0 = o(x)), *L = *Le°. From equation (1.1),
(1.2), (1.3) and (1.4) we can obtain for 7 =7, p = p,

Li=lie”, I'=1e™, "l ="1;e”, "' ="I'e”7, b, = bie”, b = b'e ™,

g —_ ﬁe”, Q,L —_ yie20, gz _ yi, *Q,L _ eQa*yi7 *g’t _ *yi7 (21)

_ "620 * % "620 *h _T€20h" *L _L“ea (22)
Qij = gij€ Qij = Gije , ;= ijy g — Hij€ s :

gij _ gijef2cr’ *gij _ *gijef2cr’ *hij — *hije*%, (2.3)

and
Ciji = Cijie®, *Cyjp = “Ciju€®, "Ly, = Lijre” and (Aghy;) = €27 (Aghi;).  (2.4)
From equations (2.1), (2.2), (2.3) and (2.4) we can obtain

Theorem 2.1. Under the gwen conformal transformation following entities are
conformally invariant *1;*L™"; *L*1'; L™Y;; Lb'; L71B; *g,;L72; *g"7*L?; *hiy*L™2;
*hL? FCun* L2

We know that Izumi |2, 3]

G'=G' + By, G =Gi+bj, G =G+, (2.5)
where
B =yiyh — L?¢" /2, b, = (A;B™)on, bl = (Ak(A;B"))os. (2.6)
From equation (1.12) and Fj = Fjpg” we can obtain
Ni =N} +b, (2.7)
2Ejk = 60[2ij +bjor — bkdj],
QEjk = 60[2Ejk + bjO'k + ka'j]
and _ _ _ -
Fy=e"7[F5+ (b'oo — Bg“0;)/2]. (2.10)
From L = Le?, we can write Log L = Log L + o, which gives
o =L " (0kL) — L' (0kL), o9 ={L "(0kL) — L' (0kL)}y". (2.11)
Hence from equations (2.8), (2.9) and (2.10) we have:

Theorem 2.2. Under the given conformal transformation following entities are con-
formally invariant:
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(a) (bjor — broy)/L;
(b) (bjok + bro;)/ L
(c) L(b'oo — Bg“oy);
(d) L71[2ij — Lil(bjakL — bkc‘)]L)],
(e) L™![2Ej, — L™ (bjOkL + br0; L)];
(f) L[F'o — (1/2)(0;L)(b'y" — Bg™)].
From equation (1.9) we can obtain
Djyo = Dy + Biy (2.12)
where
Bl =: {L(cob" — Bopg?') — y'r~ (V209 — Bo,b? — L' Bag)}/2. (2.13)

Equation (2.12) with the help of (2.13) gives on simplification
Theorem 2.3. Under the given conformal transformation tensor D*{, defined by
oo =i Diy — (WD) Y* — Bg™ — e {0 — BLF - N2 (214)
is conformally invariant.

From equation (1.13) we get

G.. = e”[Gij + (biO'j — bJO',L)/Q — LijTBSO]) (215)

Ly

and
Qj = e”[Gj + (bjO'() + 60'j)/2 - LjTBSO]' (216&)

Since G; = Ejo — Fjo, we can also obtain
G, = e’ (G + poj). (2.16b)
Comparing equations (2.16a) and (2.16b), we get
L;Byy = (bjoq — B0j)/2. (2.17)
From equations (2.15) and (2.17), we get

G,

j = e”[Gij - LIT(AJBSO)] (218)

From equations (2.15) and (2.16), we can obtain

Theorem 2.4. Under the given conformal transformation following entities are con-
formally invariant:
(a) L=H{Gr — BL™H(OkL)},
(b) LGy =L~ {bi(0;L)—=bj (O L) =L~ Lijr (Op L) [b"y* —Bg™ —1"r = H{(b*— L)y —
BO* /2.
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With the help of equations (1.10), (2.17) and (2.18) we can obtain
Di; = Di; + Bj;. (2.19)

where _ _ _ _
By; =77 'foj — (A;Bgo)(hy — 77 'my). (2.20)

From equations (2.19) and (2.20) with the help of (2.12), we can obtain

Theorem 2.5. Under the given conformal transformation tensor D*éj defined by
“05 = Doy — [T UBLTHO;L) — (A Do) (' = 771 'm, )], (2.21)
is conformally invariant.

Multiplying (2.19) by 4’ comparing the resulting equation with (2.12) and using (2.13)
we obtain on simplification

L[ﬂop(gm — 'Y — o (b — 1?7 = (A]-PT)(hZ; — 7 m, )y (2.22)
which implies

Theorem 2.6. Under the given conformal transformation, there exists a scalar o(x),
which satisfies equation (2.22).

Since from equation (1.13) we can obtain
Grj = AxGj — (Ir + by)(ArDg;), (2.23)
therefore by virtue of equations (2.14) and (2.23) we can obtain on simplification
(lr + br)ArByj — Ljkr Bog = Ej (2.24a)

and
AR{(A;BGo) A} = (I +br) Ax(m7 1" Bo) — Lir(A;Bgo) — broy, (2.24b)

where A% = (h%. — 77 H'L~'m,.).
Hence we have:

Theorem 2.7. Under the given conformal transformation, there exists a scalar o(x),
for which the tensors By, and A% satisfy (2.24).

From equations (1.14) and (1.15), we can obtain

H,j, = e7[Hiji + (1/2){Ljkr Bo; — Liir By; — Lijr Bog b (2.25)

and
Hj, = e7[Hjk + {bjor + beoj + Ljr(ArxBgo) + Lir(A;Bo) .- (2.26)
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From equations (2.25) and (2.26) on simplification we can obtain

Theorem 2.8. Under the given conformal transformation, following entities are
conformally invariant

Lil[Tflﬂ(aiL)Lfl + (A D) (L + Tﬁlmr)], (2.27a)
Lil[ij - (Lj’l“Ak‘DSO + LkrAngo) — Lil(bkajL + bjakL)], (227b)
LY [Hyji — (1/2){Ljrr Dy — Liir Dijj — Lijr Dpy }- (2.27¢)

From equation (1.11), we can obtain

Dl = Diy + By (2.28)

where
Btk =t (1/2) L{Ljxe By, — Lire By — LjreBoy (g™ — 10777
JrliT_l{ijk + broj; + Ljr(AkBgo) + Lkr(AjBSO)}' (2.29)

With the help of equations (2.28) and (2.29), we can obtain
Theorem 2.9. Under the given conformal transformation, the tensor defined by
D"y = Dy, — (1/2)L{Ljn DG, — Lira Dy — Leju Dy} (g™ = 10771)
U7 Y L7 (b;0kL + brO; L) + Ljr ArDgyy) + Lir A Dio Y, (2.30)
is conformally invariant.

From equations (1.16) and (1.17), we can easily obtain *T),;, = €>7*T};), which
implies

Theorem 2.10. Under the given conformal transformation, the tensor *L’3*Thijk
is conformally invariant.

3. Conformal transformation of connection parameters

From equation (1.7) with the help of equation (2.28), (2.29) and Hashiguchi [1]
Fly = Fl + U}y, (3.1)

where

Uy = 8ioy, + 80 + CL B + C BY — g™ Cpom B — g0, (3.2)

we can obtain
“Ej ="+ Uj, (3.3)
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where
“Ujy, = 8501 + 6405 + Cjp, BY' + Cppy B — 9" Ciiom By — g0’
+(1/2) L(Ljue By — Lire By — Lire By ) (g — U7 )
H'rHbjon + broj + Ljr(ArBig) + Lir (A Bgo) }). (3.4)
From equation (3.3) on multiplication by y’ we can obtain by virtue of *U*;,y7 =: *b'y,
N =N )
where
*bi =: [y'op + 0koo + L20™Cy,, — ypo' — (1/2)L(LyBb, + Lyt Bl
—Ly B )(g" — UV ™) + 't Y Bok + broo + Lie (A Bio)y’ Y. (3.6)
Hence we have:

Theorem 3.1. Under the given conformal transformation in a space with gener-
alized (v, B)-metric the entities *Uj, and *bj, given by (3.4) and (3.6) respectively are
conformally invariant.

From equations (3.3), (3.4), (3.5) and (3.6) we can obtain

= "Ni+ "M, (3.7)
and _ _ _
ik =T F T My, (3.8)
where
“Mj, =: (1/2)L(L#: D§,. + Lire Do — Lyt Dy, ) (9" — 10" 771)
—(Ok L)LY (Y’ + L?C} g™ + 11 B)
f(arL)(Lflyré,i — g 1T ) — liT*ILkr(AjDSO)yj (3.9)
and

My, = =L (6,.0;L + 850, L) — L™ (0, L){C},, (y;9™™ — 6]*y" — L*C}™")
+C5, (yrg™ = 677y" — L2CP") + ¢ Cirm (yng™ — 67y" — L*CJ7)
+9j19""} = (1/2) L{(L;jxt D§, — LirtDy; — Ljre DGy, ) (9" = 10777 1)}
7liT71{L(bjakL -+ bkE)]L) —+ LjT(AkDSO) -+ LkT(A]'DSO)}. (310)

Theorem 3.2. Under the given conformal transformation in a space with generalized
(v, B)-metric the entities defined by N*} and F*%\ are conformally invariant.
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4. Conformal transformation of torsion and curvature tensors
The h-torsion tensor R}, is expressed as [6]:
Rl = Ciim{oeN'; — N{ AN}, (4.1)
therefore by virtue of *IV JZ =N JZ + Déj, we can easily obtain
. ;k = ;k + I;ka (4.2)
where
I' ik = Qi [Dojie + Doj{(Am " Fop)y® + Dy}l (4.3)
and C(; ) means interchange of j and k and subtraction.
From equation (4.2) it is easy to get
*_;l'k = * ;k + J;ka (4.4)

where
i = Clmy 05k + 707" (An "Ny — " F )] (4.5)

and symbol ||k, means covariant derivative corresponding to *F;k.
The hu-torsion tensor Py, is expressed as [6]:

P}, = ApN; — F}y, (4.6)
therefore we can obtain
P, = P}, + Ay DG — Dy, (4.7)
which on conformal transformation gives
Pl =Pl + A+ U, (4.8)
Hence we have:

Theorem 4.1. The torsion tensors of a space with generalized (v, 3)-metric, when
conformally transformed, satisfy equations (4.4) and (4.8) such that entities J]’fk and
(Ax*b5 +*Ujy,) are conformally invariant.

Further with the help of equations (3.7), (3.8), (3.9), (3.10), (4.4) and (4.5), we can
define

=t R+ Qo (Ml + 22 M F) ) (4.9a)

and
e =P+ AR M + My, (4.9b)

which give
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Theorem 4.2. Under the given conformal transformation in a space with generalized
(o, B)-metric the entities R*}, and P}y defined by (4.9a,b) are conformally invariant.
We know that the h-curvature tensor Rfljk is given as [6]:
ij = C(j,k){akaij - NIT(Ameij) + F}?}Frink} +Chm e (4.10)
implying

* ij = R;ij + CfizmI;Z + Mj,,* Tt Q(j,k){D;szc + D&(Am*Fik)

+ Dy D}, (4.11)
and
“Rpik = "Ry + "ChmJ ik — "Nijs (4.12)
where
“Nigk = i U Uk + 08 (An Ejy) + "Upy " By = U Upy b (4.13)

From equations (4.5), (4.12) and (4.13) on simplification, we can obtain

_*;zjk = *;ij + *U}izjkv (4-14)
where
ik = Rige + Clm U e + NP (A Ffy)
= "Chm "Njj + "NJATNT )} (4.15)
and

“Upir = Qi T Chm CNRASOT + *FI b)) + *NEA UL + UL Fi (4.16)
which leads to

Theorem 4.3. Under the given conformal transformation in a space with generalized
(v, B)-metric the entity R*}, ;. is conformally invariant if and only if *Uéjk vanishes.

We know that the hv-curvature tensor P} jx is given by [6]:
therefore we can obtain

*Phji = Prji + Miyy; + AxDjj + 07 ALCh,p, + *Chp Ae Dy + My, PT
+ Cl Dy = Mj,,, D — Cih. D, (4.18)

mj>
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where

M, = (2L7) 7 (R — 7~ "my)my, + (hy, — 7~ mg)m,
+ hjp{m” — "7 1(b* — B%/L*)}]. (4.19)

The curvature tensor * P} i on conformal transformation leads to
*Phx =P — A Up; + *Cl (AT + *UT). (4.20)
From equation (4.20), we can easily obtain B*ij = P*ﬁljk, where
ik = P+ AL = (AN 1 FI. (4.21)
Theorem 4.4. Under the given conformal transformation in a space with generalized
(o, B)-metric the entity P*}, ;. defined by (4.21) is conformally invariant.
We know that the v-curvature tensor S}, is given by [6]
S}izjk = Q(j,k){AkC}izj + C}?}Cink}v (4.22)

therefore by virtue of
Ol = Ol + My, (4.23)

and (2.4), the conformal transformation of generalized v-curvature tensor, satisfies the
invariant property *Sj . = *S}ij. Hence we have:

Theorem 4.5. The curvature tensors of a space with generlized («, 3)-metric un-
der a conformal transformation satisfy equations (4.12) and (4.20) such that entities
(*Chndik = *Nijp) and {A Uy, —*Cp (A*0T +*UR)} are conformally invariant.

Multiplying equation (4.12) by *y? and comparing the resulting equation with (4.4),
on simplification, we obtain equation

Ciuim UL NI+ 0 Am* by} = 0. (4.24)
which implies:

Theorem 4.6. Under the given conformal transformation in a space with generalized
(a, B)-metric the tensors *U},;, *N* and *b}* satisfy equation (4.24).

mj’

5. Some special cases

Case I. Randers’ space: The v-curvature tensor in a Randers’ space is expressed
in the following form [H]

*L** Shijk = Cjpy (hnemij + higmns), (5.1)
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where the v-Ricci tensor is given by
LS = —{(n — 1)m?/41}* hyy, — {(n — 3)/4}ym;my, (5.2)

where m;; = (7/4){(m?/2)hi; + m;m;}.
From equations (5.1) and (5.2), we can easily obtain

*Shijk = €7 Shijk,  "Si, =Sk (5.3)
Hence we have:
Theorem 5.1. In a Randers’ space *L*Q*Shijk and *S;, are conformally invariant.

In a Randers’ space the (v)hv-torsion tensor is given by [4]

*Phjx = hniPi + hji Pn + hen Py, (5.4)
where
2P; = (*L/L2)Fyo + Ejo/L — Fy; — Pl; — G (5.53)
and

From equation (5.5b), we can easily obtain
G =[G + {00(B — Lb?) + LAoab"} /(2L*L))] (5.6a)
and
P =[P+ Bo,b"/(2L) + 0o(28 — Lb*)/(2L?)). (5.6b)
With the help of equations (5.5a) and (5.6a,b), we can obtain on simplification

2P; = 2P; + oolrb; +m; + (b* — B/L)(l; + 7" 'my)]/(2L) — o {B( + 1) = b’L}/(2L)
+ (1/2)a4b*m; (1 — B/*L), (5.7)

which implies for Py’ = P,
Py =P+ (1/2)(5? — 8/ L)oo, (5:)
From equation (2.11), we can obtain
L(oqb") = (0aL)b" — (0o L)b". (5.9)

From equations (5.6a,b) with the help of equations (2.11), (5.7) and (5.8) together
with T'=*LG + 2Py L, we can obtain

oub" =28"HT ~T). (5.10)
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From equation (5.7) on simplification we can obtain Qj = (@;, where
Qj =: 4P — 2L Po{(rb; +my)(b* = /L)™' — (I + 7~ "my)} + 2Tmy(73) !
+ L7{B(r + 1) = b*L}(9;L). (5.11)
Hence we have:

Theorem 5.2. In a Randers’ space entities Loab®, fo,b* and Q; are conformally
mvariant.

From equations (5.4) and (5.7) with the help of equation (5.11) on simplification we
can obtain P*} . = P*pjk, where

P*hjk =: *Lil[*Ph]’k + (1/4){hh]Qk + hijh + hkth}] (512)
Hence we have:

Theorem 5.3. In a Randers’ space the entity P*y;i, defined by (5.12) is conformally
movariant.

Cast II. Landsberg space: If Randers’ space reduces to a Landsberg space, we
can write 3]
“Rp ik = Rpjp + “Ch Rojis (5.13)

where R}'l ik is well known Riemannian curvature tensor.
Taking conformal transformation of (5.13), we can obtain

*_ij = *R;ij + *Ciingjk + Xiiija (5.14)
where _ _ _
X}szk - _;ij - Zj/« (5-15)
From equation (5.14), we can obtain E*ij = R*ij, where
ik = "Rix — Cm0h{Rnj — Rgnj/2(n — 1)} + " gnj{ R — Rgur/2(n — 1)}
+ "Ch[{Ro; — Ry;/2(n — 1)}
— y;9"{Rix — Rgir./2(n — 1)}]]/(n — 2). (5.16)

Hence we have:

Theorem 5.4. In a Landsberg space the entity *ij defined by (5.16) is conformally
movariant.
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