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ON NEW INEQUALITIES OF SIMPSON’S TYPE FOR QUASI-CONVEX

FUNCTIONS WITH APPLICATIONS

ERHAN SET, M. EMIN ÖZDEMIR AND MEHMET ZEKI SARıKAYA

Abstract. In this paper, we introduce some inequalities of Simpson’s type based on quasi-
convexity. Some applications for special means of real numbers are also given.

1. Introduction

The following inequality is well known in the literature as Simpson’s inequality.

Theorem 1. Let f : [a,b] → R be a four times continuously differentiable mapping on (a,b)

and
∥

∥ f (4)
∥

∥

∞
= sup

x∈(a,b)

∣

∣ f (4)(x)
∣

∣<∞. Then, the following inequality holds:

∣

∣

∣

∣

1

3

[

f (a)+ f (b)

2
+2 f

(

a +b

2

)]

−
1

b −a

∫b

a
f (x)d x

∣

∣

∣

∣

≤
1

2880

∥

∥ f (4)
∥

∥

∞
(b −a)4 .

For recent refinements, counterparts, generalizations and new Simpson’s type inequali-

ties, see ([1],[2],[4]).

In [2], Dragomir, Agarwal and Cerone proved the following some recent developments on

Simpson’s inequality for which the remainder is expressed in terms of lower derivatives than

the fourth.

Theorem 2. Suppose f : [a,b] → R is a differentiable mapping whose derivative is continuous

on (a,b) and f ′ ∈ L [a,b]. Then the following inequality

∣

∣

∣

∣

1

3

[

f (a)+ f (b)

2
+2 f

(

a +b

2

)]

−
1

b −a

∫b

a
f (x)d x

∣

∣

∣

∣

≤
b −a

3

∥

∥ f ′
∥

∥

1 (1.1)

holds, where
∥

∥ f ′
∥

∥

1 =
∫b

a

∣

∣ f ′(x)
∣

∣d x.

The bound of (1.1) for L-Lipschitzian mapping was given in [2] by 5
36 L (b −a) .

Also, the following inequality was obtained in [2].
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Theorem 3. Suppose f : [a,b]→R is an absolutely continuous mapping on [a,b] whose deriva-

tive belongs to Lp [a,b]. Then the following inequality holds,

∣

∣

∣

∣

1

3

[

f (a)+ f (b)

2
+2 f

(

a +b

2

)]

−
1

b −a

∫b

a
f (x)d x

∣

∣

∣

∣

(1.2)

≤
1

6

[

2q+1 +1

3(q +1)

]

1
q

(b −a)
1
q
∥

∥ f ′
∥

∥

p

where 1
p +

1
q = 1.

We recall that the notion of quasi-convex functions generalized the notion of convex

functions. More precisely, a function f : [a,b]→R is said to be quasi-convex on [a,b] if

f
(

t x + (1− t )y
)

≤max
{

f (x), f (y)
}

, ∀x, y ∈ [a,b].

Any convex function is a quasi-convex function but the reverse are not true. Because there

exist quasi-convex functions which are not convex, (see for example [3])

The main aim of this paper is to establish new Simpson’s type inequalities for the class of

functions whose derivatives in absolute value at certain powers are quasi-convex functions.

2. Simpson’s Type Inequalities for Quasi-Convex

In order to prove our main theorems, we need the following lemma, see [1].

Lemma 1. Let f : I ⊂ R → R be an absolutely continuous mapping on I ◦ where a,b ∈ I with

a < b. Then the following equality holds:

∣

∣

∣

∣

1

6

[

f (a)+4 f

(

a +b

2

)

+ f (b)

]

−
1

b −a

∫b

a
f (x)d x

∣

∣

∣

∣

(2.1)

= (b −a)

∫1

0
p (t ) f ′ (t b + (1− t ) a)d t

where

p(t )=







t − 1
6 , t ∈

[

0, 1
2

)

,

t − 5
6 , t ∈

[

1
2 ,1

]

.

A simple proof of this equality can be also done by integrating by parts in the right hand

side. The details are left to the interested reader.

The next theorem gives a new result of the Simpson inequality for quasi-convex func-

tions.
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Theorem 4. Let f : I ⊂ R→ R be a differentiable mapping on I ◦, such that f ′ ∈ L [a,b] , where

a,b ∈ I with a < b. If
∣

∣ f ′
∣

∣ is quasi-convex on [a,b], then the following inequality holds:

∣

∣

∣

∣

1

6

[

f (a)+4 f

(

a +b

2

)

+ f (b)

]

−
1

b −a

∫b

a
f (x)d x

∣

∣

∣

∣

≤
5(b −a)

36
max

{∣

∣ f ′ (a)
∣

∣ ,
∣

∣ f ′ (b)
∣

∣

}

. (2.2)

Proof. From Lemma 1, and since
∣

∣ f ′
∣

∣ is quasi-convex, we have

∣

∣

∣

∣

1

6

[

f (a)+4 f

(

a +b

2

)

+ f (b)

]

−
1

b −a

∫b

a
f (x)d x

∣

∣

∣

∣

= (b −a)

∣

∣

∣

∣

∫1

0
p (t ) f ′ (t b + (1− t ) a)d t

∣

∣

∣

∣

≤ (b −a)

∫1/2

0

∣

∣

∣

∣

t −
1

6

∣

∣

∣

∣

∣

∣ f ′ (t b + (1− t ) a)
∣

∣d t

+(b −a)

∫1

1/2

∣

∣

∣

∣

t −
5

6

∣

∣

∣

∣

∣

∣ f ′ (t b + (1− t ) a)
∣

∣d t

≤ (b −a)

∫1/2

0

∣

∣

∣

∣

t −
1

6

∣

∣

∣

∣

max
{∣

∣ f ′ (a)
∣

∣ ,
∣

∣ f ′ (b)
∣

∣

}

d t

+(b −a)

∫1

1/2

∣

∣

∣

∣

t −
5

6

∣

∣

∣

∣

max
{∣

∣ f ′ (a)
∣

∣ ,
∣

∣ f ′ (b)
∣

∣

}

d t

= (b −a)

∫1/6

0

(

1

6
− t

)

max
{∣

∣ f ′ (a)
∣

∣ ,
∣

∣ f ′ (b)
∣

∣

}

d t

+(b −a)

∫1/2

1/6

(

t −
1

6

)

max
{∣

∣ f ′ (a)
∣

∣ ,
∣

∣ f ′ (b)
∣

∣

}

d t

+(b −a)

∫5/6

1/2

(

5

6
− t

)

max
{∣

∣ f ′ (a)
∣

∣ ,
∣

∣ f ′ (b)
∣

∣

}

d t

+(b −a)

∫1

5/6

(

t −
5

6

)

max
{∣

∣ f ′ (a)
∣

∣ ,
∣

∣ f ′ (b)
∣

∣

}

d t

=
5(b −a)

36
max

{∣

∣ f ′ (a)
∣

∣ ,
∣

∣ f ′ (b)
∣

∣

}

which completes the proof. ���

Corollary 1. In Theorem 4, if f (a)= f ( a+b
2 ) = f (b), then we have

∣

∣

∣

∣

1

b −a

∫b

a
f (x)d x − f

(

a +b

2

)∣

∣

∣

∣

≤
5(b −a)

36
max

{∣

∣ f ′ (a)
∣

∣ ,
∣

∣ f ′ (b)
∣

∣

}

.

A similar results is embodied in the following theorem.

Theorem 5. Let f : I ⊂ R→ R be a differentiable mapping on I ◦, such that f ′ ∈ L [a,b] , where

a,b ∈ I with a < b. If
∣

∣ f ′
∣

∣

q
is quasi-convex on [a,b] and q > 1, then the following inequality
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holds:
∣

∣

∣

∣

1

6

[

f (a)+4 f

(

a +b

2

)

+ f (b)

]

−
1

b −a

∫b

a
f (x)d x

∣

∣

∣

∣

≤
1

6
(b −a)

(

1+2p+1

3(p +1)

)

1
p
(

max
{∣

∣ f ′ (a)
∣

∣

q
,
∣

∣ f ′ (b)
∣

∣

q})
1
q (2.3)

where 1
p +

1
q = 1.

Proof. From Lemma 1, using the well known Hölder integral inequality, we have

∣

∣

∣

∣

1

6

[

f (a)+4 f

(

a +b

2

)

+ f (b)

]

−
1

b −a

∫b

a
f (x)d x

∣

∣

∣

∣

= (b −a)

∣

∣

∣

∣

∫1

0
p (t ) f ′ (t b + (1− t ) a)d t

∣

∣

∣

∣

≤ (b −a)

∫1/2

0

∣

∣

∣

∣

t −
1

6

∣

∣

∣

∣

∣

∣ f ′ (t b + (1− t ) a)
∣

∣d t

+ (b −a)

∫1

1/2

∣

∣

∣

∣

t −
5

6

∣

∣

∣

∣

∣

∣ f ′ (t b + (1− t ) a)
∣

∣d t

≤ (b −a)

(∫1/2

0

∣

∣

∣

∣

t −
1

6

∣

∣

∣

∣

p

d t

)

1
p
(∫1/2

0

∣

∣ f ′ (t b + (1− t ) a)
∣

∣

q
d t

)

1
q

+ (b −a)

(∫1

1/2

∣

∣

∣

∣

t −
5

6

∣

∣

∣

∣

p

d t

)
1
p
(∫1

1/2

∣

∣ f ′ (t b + (1− t ) a)
∣

∣

q
d t

)
1
q

= (b −a)

(∫1/6

0

(

1

6
− t

)p

d t +

∫1/2

1/6

(

t −
1

6

)p

d t

)

1
p

×

(∫1/2

0

∣

∣ f ′ (t b + (1− t ) a)
∣

∣

q
d t

)

1
q

+ (b −a)

(
∫5/6

1/2

(

5

6
− t

)p

d t +

∫1

5/6

(

t −
5

6

)p

d t

)

1
p

×

(∫1

1/2

∣

∣ f ′ (t b + (1− t ) a)
∣

∣

q
d t

)
1
q

.

Since
∣

∣ f ′
∣

∣

q
is quasi-convex, we have

∣

∣ f ′ (t b + (1− t ) a)
∣

∣

q
≤ max

{∣

∣ f ′ (b)
∣

∣

q
,
∣

∣ f ′ (a)
∣

∣

q}

hence
∣

∣

∣

∣

1

6

[

f (a)+4 f

(

a +b

2

)

+ f (b)

]

−
1

b −a

∫b

a
f (x)d x

∣

∣

∣

∣

≤ 2.(b −a)

(

1+2p+1

6p+1(p +1)

)

1
p

(

max
{∣

∣ f ′ (a)
∣

∣

q
,
∣

∣ f ′ (b)
∣

∣

q}

2

) 1
q
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≤ 2
1
p (b −a)

(

1+2p+1

6p+1(p +1)

)

1
p
(

max
{∣

∣ f ′ (a)
∣

∣

q
,
∣

∣ f ′ (b)
∣

∣

q})
1
q

where we use the fact that
∫1/6

0

(

1

6
− t

)p

d t +

∫1/2

1/6

(

t −
1

6

)p

d t =

∫5/6

1/2

(

5

6
− t

)p

d t +

∫1

5/6

(

t −
5

6

)p

d t

=
1+2p+1

6p+1(p +1)

which completes the proof. ���

Corollary 2. In Theorem 5, if f (a)= f ( a+b
2 ) = f (b), then we have

∣

∣

∣

∣

1

b −a

∫b

a
f (x)d x − f

(

a +b

2

)∣

∣

∣

∣

≤
1

6
(b −a)

(

1+2p+1

3(p +1)

)

1
p
(

max
{∣

∣ f ′ (a)
∣

∣

q
,
∣

∣ f ′ (b)
∣

∣

q})
1
q .

Corollary 3. In Theorem 5, if f (a)= f ( a+b
2 ) = f (b) and p = 2, then we have

∣

∣

∣

∣

1

b −a

∫b

a
f (x)d x − f

(

a +b

2

)∣

∣

∣

∣

≤
(b −a)

6

√

max
{

∣

∣ f ′ (a)
∣

∣

2
,
∣

∣ f ′ (b)
∣

∣

2
}

.

A more general inequality is given using Lemma 1, as follows.

Theorem 6. Let f : I ⊂ R→ R be a differentiable mapping on I ◦, such that f ′ ∈ L [a,b] , where

a,b ∈ I with a < b. If
∣

∣ f ′
∣

∣

q
is quasi-convex on [a,b] and q ≥ 1, then the following inequality

holds:

∣

∣

∣

∣

1

6

[

f (a)+4 f

(

a +b

2

)

+ f (b)

]

−
1

b −a

∫b

a
f (x)d x

∣

∣

∣

∣

(2.4)

≤
5(b −a)

36

(

max
{∣

∣ f ′ (a)
∣

∣

q
,
∣

∣ f ′ (b)
∣

∣

q })
1
q .

Proof. Suppose that q ≥ 1. From Lemma 1 and using the well known power mean inequality,

we have
∣

∣

∣

∣

1

6

[

f (a)+4 f

(

a +b

2

)

+ f (b)

]

−
1

b −a

∫b

a
f (x)d x

∣

∣

∣

∣

= (b −a)

∣

∣

∣

∣

∫1

0
p (t ) f ′ (t b + (1− t ) a)d t

∣

∣

∣

∣

≤ (b −a)

∫1/2

0

∣

∣

∣

∣

t −
1

6

∣

∣

∣

∣

∣

∣ f ′ (t b + (1− t ) a)
∣

∣d t

+ (b −a)

∫1

1/2

∣

∣

∣

∣

t −
5

6

∣

∣

∣

∣

∣

∣ f ′ (t b + (1− t ) a)
∣

∣d t

≤ (b −a)

(∫1/2

0

∣

∣

∣

∣

t −
1

6

∣

∣

∣

∣

d t

)1− 1
q
(∫1/2

0

∣

∣

∣

∣

t −
1

6

∣

∣

∣

∣

∣

∣ f ′ (t b + (1− t ) a)
∣

∣

q
d t

)

1
q
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+ (b −a)

(∫1

1/2

∣

∣

∣

∣

t −
5

6

∣

∣

∣

∣

d t

)1− 1
q
(∫1

1/2

∣

∣

∣

∣

t −
5

6

∣

∣

∣

∣

∣

∣ f ′ (t b + (1− t ) a)
∣

∣

q
d t

)
1
q

.

Since
∣

∣ f ′
∣

∣

q
is quasi-convex, we have

∣

∣

∣

∣

1

6

[

f (a)+4 f

(

a +b

2

)

+ f (b)

]

−
1

b −a

∫b

a
f (x)d x

∣

∣

∣

∣

≤ 2(b −a)

(

5

72

)1− 1
q
(

5

72
max

{∣

∣ f ′ (a)
∣

∣

q
,
∣

∣ f ′ (b)
∣

∣

q}

) 1
q

=
5(b −a)

36

(

max
{∣

∣ f ′ (a)
∣

∣

q
,
∣

∣ f ′ (b)
∣

∣

q})
1
q

Also, we note that
∫1/2

0

∣

∣

∣

∣

t −
1

6

∣

∣

∣

∣

d t =

∫1

1/2

∣

∣

∣

∣

t −
5

6

∣

∣

∣

∣

d t =
5

72
.

Therefore, te proof is completed. ���

Remark 1. Theorem 6 is equal to Theorem 4 for q = 1.

Remark 2. In Theorem 5, since

lim
p→∞

(

1+2p+1

3(p +1)

)

1
p

= 2 and lim
p→1+

(

1+2p+1

3(p +1)

)

1
p

=
5

6

we have

5

6
<

(

1+2p+1

3(p +1)

)

1
p

< 2 p ∈ (1,∞) ,

so for q > 1, Theorem 6 is an improvement of Theorem 5.

Corollary 4. In Theorem 6, if f (a) = f ( a+b
2 ) = f (b), then we have

∣

∣

∣

∣

1

b −a

∫b

a
f (x)d x − f

(

a +b

2

)∣

∣

∣

∣

≤
5(b −a)

36

(

max
{∣

∣ f ′ (a)
∣

∣

q
,
∣

∣ f ′ (b)
∣

∣

q })
1
q .

3. Applications to Special Means

We now consider the applications of above Theorems to the following special means:

(a) The arithmetic mean: A = A(a,b) :=
a +b

2
, a,b ≥ 0,

(b) The harmonic mean:

H = H (a,b) :=
2ab

a +b
, a,b > 0,

(c) The logarithmic mean:

L = L (a,b) :=















a i f a = b

b−a
lnb−ln a i f a 6= b

, a,b > 0,
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(d) The p−logarithmic mean:

Lp = Lp (a,b) :=



















[

bp+1−ap+1

(p+1)(b−a)

] 1
p

if a 6= b

a if a = b

, p ∈R� {−1,0} ; a,b > 0.

It is well known that Lp is monotonic nondecreasing over p ∈R with L−1 := L and L0 := I . In

particular, we have the following inequalities

H ≤ L ≤ A.

Now, using the results of Section 2, some new inequalities is derived for the above means.

Proposition 7. Let a,b ∈R, 0 < a < b and n ∈N, n ≥ 2. Then, we have
∣

∣

∣

∣

1

3
A

(

an ,bn
)

+
2

3
An (a,b)−Ln

n (a,b)

∣

∣

∣

∣

≤ n
5(b −a)

36
max

{

an−1,bn−1} .

Proof. The assertion follows from Theorem 4 applied to the quasi-convex mapping f (x) =

xn , x ∈ [a,b] and n ∈N. ���

Proposition 8. Let a,b ∈R, 0 < a < b. Then, for all p > 1, we have

∣

∣

∣

∣

1

3
H−1 (a,b)+

2

3
A−1 (a,b)−L−1 (a,b)

∣

∣

∣

∣

≤
1

6
(b −a)

(

1+2p+1

3(p +1)

)

1
p
(

max
{

a−2q ,b−2q
})

1
q .

Proof. The assertion follows from Theorem 5 applied to the quasi-convex mapping f (x) =

1/x, x ∈ [a,b] . ���

Proposition 9. Let a,b ∈R, 0 < a < b and n ∈N, n ≥ 2. Then, we have

∣

∣

∣

∣

1

3
A

(

an ,bn
)

+
2

3
An (a,b)−Ln

n (a,b)

∣

∣

∣

∣

≤ n
(b −a)

6

(

1+2p+1

3(p +1)

)

1
p
(

max
{

aq(n−1),bq(n−1)})
1
q .

Proof. The assertion follows from Theorem 5 applied to the quasi-convex mapping f (x) =

xn , x ∈ [a,b] and n ∈N. ���

Proposition 10. Let a,b ∈R, 0 < a < b and n ∈N, n ≥ 2.Then, for all q > 1, we have
∣

∣

∣

∣

1

3
A

(

an ,bn
)

+
2

3
An (a,b)−Ln

n (a,b)

∣

∣

∣

∣

≤ n
5(b −a)

36

(

max
{

aq(n−1),bq(n−1)})
1
q .

Proof. The assertion follows from Theorem 6 applied to the quasi-convex mapping f (x) =

xn , x ∈ [a,b] and n ∈N. ���

Remark 3. Proposition 10 is equal to Proposition 7 for q = 1.

Remark 4. Because of Remark 2, Proposition 10 is an improvement of Proposition 9 for q = 1.
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