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ON NEW INEQUALITIES OF SIMPSON’S TYPE FOR QUASI-CONVEX
FUNCTIONS WITH APPLICATIONS

ERHAN SET, M. EMIN OZDEMIR AND MEHMET ZEKI SARIKAYA

Abstract. In this paper, we introduce some inequalities of Simpson’s type based on quasi-
convexity. Some applications for special means of real numbers are also given.

1. Introduction
The following inequality is well known in the literature as Simpson’s inequality.
Theorem 1. Let f : [a,b] — R be a four times continuously differentiable mapping on (a, b)

and || i ” o= Sup ’f(4) (x)| < 00. Then, the following inequality holds:
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For recent refinements, counterparts, generalizations and new Simpson’s type inequali-
ties, see ([11,[2],[4]).

a+b)

In [2], Dragomir, Agarwal and Cerone proved the following some recent developments on
Simpson’s inequality for which the remainder is expressed in terms of lower derivatives than
the fourth.

Theorem 2. Suppose f : [a, b] — R is a differentiable mapping whose derivative is continuous
on (a,b) and f' € L|a, b). Then the following inequality

’ 1[f(@+fb)
3 2

1

b
_b—afa fx)dx

b-a
=—— 7l (L.1)

+2f

a+b)

holds, where ||f’||1 = f:|f’(x)| dx.

The bound of (1.1) for L-Lipschitzian mapping was given in [2] by %L (b—a).

Also, the following inequality was obtained in [2].
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Theorem 3. Suppose f : [a, b] — R is an absolutely continuous mapping on [a, b] whose deriva-

tive belongs to Ly a, b]. Then the following inequality holds,

1[f(@+fb) (a+b) 1 fb
’3 5 +2f 2 boal, fx)dx (1.2)
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wherep q 1

We recall that the notion of quasi-convex functions generalized the notion of convex
functions. More precisely, a function f : [a, b] — R is said to be quasi-convexon [a, b] if

f(tx+Q-0y)<max{f(x),f(}, Vxyelabl.

Any convex function is a quasi-convex function but the reverse are not true. Because there

exist quasi-convex functions which are not convegx, (see for example [3])

The main aim of this paper is to establish new Simpson’s type inequalities for the class of
functions whose derivatives in absolute value at certain powers are quasi-convex functions.
2. Simpson’s Type Inequalities for Quasi-Convex

In order to prove our main theorems, we need the following lemma, see [1].

Lemma 1. Let f: I <R — R be an absolutely continuous mapping on I° where a,b € I with
a < b. Then the following equality holds:

‘1 @2.1)
- .
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0

where

A simple proof of this equality can be also done by integrating by parts in the right hand

side. The details are left to the interested reader.

The next theorem gives a new result of the Simpson inequality for quasi-convex func-

tions.
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Theorem 4. Let f: [ R — R be a differentiable mapping on I°, such that f' € L|a, b], where
a,belwitha<b. If|f’| is quasi-convex on [a, b, then the following inequality holds:

;
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Proof. From Lemma 1, and since | f ! | is quasi-convex, we have
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which completes the proof. O

Corollary 1. In Theorem 4, if f (a) = f(%b) = f(b), then we have

‘_f fx)dx - f(a+b)’ 5(2 a)m {If @], |f W]}

A similar results is embodied in the following theorem.

Theorem 5. Let f: [ =« R — R be a differentiable mapping on I°, such that f' € L|a, b], where
a,bel witha<b. If|f’|q is quasi-convex on [a, b] and q > 1, then the following inequality
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holds:
1 a+b 1 [P
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Proof. From Lemma 1, using the well known Hoélder integral inequality, we have
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Since |f'|? is quasi-convex, we have
|f/ (th+ (1= ) @)|7 < max{|f' B)|7,|f (@]}
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1+42P+1
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where we use the fact that
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which completes the proof. O

Corollary 2. In Theorem 5, if f(a) = f(%b) = f(b), then we have

1 (b a+b)| 1 14271\ LG et
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Corollary 3. In Theorem 5, if f (a) = f(%b) = f(b) and p =2, then we have

'ﬁfclbf(x)dx—f(a+b)'5(b;a)\/max{|f/(“)|2’|f'(b)|2}-

2
A more general inequality is given using Lemma 1, as follows.

Theorem 6. Let f: [ =« R — R be a differentiable mapping on I°, such that f' € L|a, b], where
a,bel witha<b. If|f’|q is quasi-convex on [a, b] and q = 1, then the following inequality
holds:
’ 1
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Proof. Suppose that g = 1. From Lemma 1 and using the well known power mean inequality,
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Since | f ! |q is quasi-convex, we have

t—%‘|f’(tb+(1—t)a)|th)q.
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Also, we note that
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I P -
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Therefore, te proofis completed.
Remark 1. Theorem 6 is equal to Theorem 4 for g = 1.
Remark 2. In Theorem 5, since
1427417 1+2P+1\7 5
im ) =2 and lim ) =—
p—oo\3(p+1) p—17\3(p+1) 6
we have :
5 (l+2Pth\»
_<( ) <2 pe(l,o00),
6 \3(p+1)

so for g > 1, Theorem 6 is an improvement of Theorem 5.

Corollary 4. In Theorem 6, if f (a) = f(%b) = f(b), then we have

Q=

a+b)’ 5(b-a)
<
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3. Applications to Special Means

We now consider the applications of above Theorems to the following special means:

a+b
(a) The arithmetic mean: A= A(a,b) := , a,b=0,

(b) The harmonic mean:

2ab
H=H(a,b):= a ,a,b>0,
a+b
(c) The logarithmic mean:
a ifa=>b
L=L(a,b):= , a,b>0,

b—a .
Inb-Ina lf a# b
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(d) The p—logarithmic mean:

Zifa;éb

bp+l_ap+1
(p+1)(b-a)
Ly,=Ly(a,b):= , peRN{-1,0}; a,b>0.
a ifa=»b

It is well known that L, is monotonic nondecreasing over p € Rwith L_; := L and Ly:=I.In
particular, we have the following inequalities

H=<L<A.
Now, using the results of Section 2, some new inequalities is derived for the above means.

Proposition 7. Leta,beR,0<a<bandneN, n=2. Then, we have

5(b—a)

<n max{a", b"" '},

1 2
’gA(a”,b”) + gA” (a,b)— L} (a,b)

Proof. The assertion follows from Theorem 4 applied to the quasi-convex mapping f (x) =
x", x€[a,b] and n e N. Oa

Proposition 8. Leta,beR,0< a< b. Then, forall p > 1, we have

1+42P+1
3(p+1)

1 2 , -
‘EH_I (a,b)+ §A_1 (a,b)—L ' (a,b) ) " (max{a~29,b27})7.

1
Sg(b—a)

Proof. The assertion follows from Theorem 5 applied to the quasi-convex mapping f (x) =
1/x, x€[a,b]. Oa

Proposition 9. Leta,beR,0<a<bandneN, n=2. Then, we have

=n

(b—a)(1+2p+1

» 1
6 (3(p+D ) (max{a?"™V, p7" DY)

1 2
’gA(a”,b”) + gA” (a,b)— L} (a,b)

Proof. The assertion follows from Theorem 5 applied to the quasi-convex mapping f (x) =
x", x€[a,b] and n e N. Oa
Proposition 10. Leta,beR,0<a<bandneN, n=2.Then, forall g > 1, we have

5(b-a)
36

%A(a”, b")+ %A” (a,b) - L} (a,b)| <n (max{a?"D, 10D}

Proof. The assertion follows from Theorem 6 applied to the quasi-convex mapping f (x) =
x", x€la,b) and n e N. O

Remark 3. Proposition 10 is equal to Proposition 7 for g = 1.

Remark 4. Because of Remark 2, Proposition 10 is an improvement of Proposition 9 for g = 1.
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