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POSITIVE SOLUTIONS OF BOUNDARY VALUE PROBLEMS

FOR p-LAPLACIAN FUNCTIONAL DIFFERENCE EQUATIONS

CHANGXIU SONG

Abstract. In this paper, the author studies the boundary value problems of p-Laplacian func-

tional difference equation. By using a fixed point theorem in cones, sufficient conditions are

established for the existence of the positive solutions.

1. Introduction

For notation, given a < b in Z, we employ intervals to denote discrete sets such as

[a, b] = {a, a + 1, . . . , b}, [a, b) = {a, a + 1, . . . b − 1}, [a,∞) = {a, a + 1, . . .}, etc. Let

τ, T ∈ Z and 0 ≤ τ ≤ T . In this paper, we are concerned with the following p-Laplacian

difference equation:

∆φp(∆x(t)) + r(t)f(xt) = 0, t ∈ [0, T ],
(1.1)

x0 = ψ ∈ C+, x(0) −B0(∆x(0)) = 0, ∆x(t+ 1) = 0,

where φp(u) is the p-Laplacian operator, i.e., φp(u) = |u|p−2u, p > 1, (φp)
−1(u) = φq(u),

1
p + 1

q = 1. ∀t ∈ Z, let xt = xt(k) = x(t + k), k ∈ [−τ,−1], then xt ∈ C, where

C = C([−τ,−1], R) is a Banach space with the norm ‖ϕ‖C = max
k∈[−τ,−1]

|ϕ|. Let C+ =

{ϕ ∈ C : ϕ(k) ≥ 0, k ∈ [−τ,−1]}. As usual, ∆ denotes the forward difference operator

defined by ∆x(t) = x(t+ 1) − x(t).

We give the following assumptions:

(H0) f(ϕ) is a nonnegative continuous functional defined on C+;

(H1) r(t) is a nonnegative function defined on [0, T ] and
T
∑

t=τ
r(t) > 0;

(H2) B0 : R → R is continuous and satisfies that there are β ≥ α ≥ 0 such that

αs ≤ B0(s) ≤ βs for s ∈ R+, where R+ denotes the set of nonnegative real

numbers.
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The motivations for the present work stem from many recent investigations in [1-5].
For the continuous or functional case, boundary value prolems analogous to (1.1) are
studied by many authors, see, for example [6-11].

The following lemma will be play an important role in the proof of our results and
can be found in [12].

Lemma 1.1. Assume that X is a Banach space and K ⊂ X is a cone in X; Ω1, Ω2

are open subsets of X, and 0 ∈ Ω1 ⊂ Ω2. Furthermore, let Φ : K ∩ (Ω2 \ Ω1) → K be a

completely continuous operator satisfying one of the following conditions:

(i) ‖Φ(x)‖ ≤ ‖x‖, ∀ x ∈ K ∩ ∂Ω1; ‖Φ(x)‖ ≥ ‖x‖, ∀ x ∈ K ∩ ∂Ω2;
(ii) ‖Φ(x)‖ ≤ ‖x‖, ∀ x ∈ K ∩ ∂Ω2; ‖Φ(x)‖ ≥ ‖x‖, ∀ x ∈ K ∩ ∂Ω1;

Then there is a fixed point of Φ in K ∩ (Ω2 \ Ω1).

2. Main results

We note that x(t) is a solution of (1.1) if and only if

x(t) =











B0

(

φq

(

T
∑

n=0

r(n)f(xn)
))

+

t−1
∑

m=0

φq

(

T
∑

n=m

r(n)f(xn)
)

, t ∈ [0, T + 2],

ψ, t ∈ [−τ,−1].

(2.1)

Furthermore, a solution x(t) of (1.1) is called a positive solution, if x(t) > 0, for t ∈ [0, T ].
We assume that x(t) is the solution of BVP (1.1) with f ≡ 0. Clearly, it can be

expressed as

x(t) =

{

0, t ∈ [0, T + 2],

ψ, t ∈ [−τ,−1].
(2.2)

Let x(t) be a solution of BVP (1.1) and y(t) = x(t) − x(t), noting that y(t) = x(t) for
t ∈ [0, T + 2], then we have from (2.1) that

y(t) =











B0

(

φq

(

T
∑

n=0

r(n)f(yn+xn)
))

+
t−1
∑

m=0

φq

(

T
∑

n=m

r(n)f(yn+xn)
)

, t ∈ [0, T+2],

0, t ∈ [−τ,−1].
(2.3)

Let E = {y : [−τ, T + 2] → R} be endowed with the norm ‖y‖ = max
t∈[−τ,T+2]

|y(t)| and

K = {y ∈ E : y(t) = 0 for t ∈ [−τ,−1]; y(t) ≥ 1
T+2+β ‖y‖ for t ∈ [0, T + 2]}.

Clearly, E is a Banach space with the norm ‖y‖ and K is a cone in E. If y(t) ∈ K,
then ‖y‖ = ‖y‖[0,T+2], where ‖y‖[0,T+2] = max

t∈[0,T+2]
|y(t)|.

Definie Φ : K → E as

(Φy)(t) =











B0

(

φq

(

T
∑

n=0

r(n)f(yn+xn)
))

+

t−1
∑

m=0

φq

(

T
∑

n=m

r(n)f(yn+xn)
)

, t ∈ [0, T+2],

0, t ∈ [−τ,−1].
(2.4)
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It following from (2.4) that

‖Φy‖ = ‖Φy‖[0,T+2] = (Φy)(T + 2)

= B0

(

φq

(

T
∑

n=0

r(n)f(yn + xn)
))

+

t−1
∑

m=0

φq

(

T
∑

n=m

r(n)f(yn + xn)
)

≤ (T + 2 + β)φq

(

T
∑

n=0

r(n)f(yn + xn)
)

. (2.5)

Lemma 2.1. Φ(K) ⊂ K.

Proof. For t ∈ [−τ,−1], (Φy)(t) = 0, and for t ∈ [0, T +2], we have from (2.4)−(2.5)

(Φy)(t) ≥ φq

(

T
∑

n=0

r(n)f(yn + xn)
)

≥
1

T + 2 + β
‖Φy‖[0,T+2] =

1

T + 2 + β
‖Φy‖, (2.6)

which implies Φ(K) ⊂ K.

Lemma 2.2. Φ : K → K is completely continuous.

Let

l =
1

(T + 2 + β)φq

(

T
∑

n=0

r(n)
)

, M =
T + 2 + β

φq

(

T
∑

n=τ

r(n)
)

.

Theorem 2.1. BVP (1.1) has at least a positive solution if one of the following
conditions is satisfied:
(H3) lim

‖ϕ‖C↓0
sup f(ϕ)

‖ϕ‖p−1

C

< lp−1, lim
‖ϕ‖C↑∞

inf f(ϕ)

‖ϕ‖p−1

C

> Mp−1, ψ(t) ≡ 0, t ∈ [−τ,−1];

(H4) lim
‖ϕ‖C↓0

inf f(ϕ)

‖ϕ‖p−1

C

> Mp−1, lim
‖ϕ‖C↑∞

sup f(ϕ)

‖ϕ‖p−1

C

< lp−1.

Proof. Suppose that (H3) is satisfied. By ψ(t) ≡ 0, t ∈ [−τ,−1], we know xn ≡ 0,

n ∈ [0, T + 2]. Since lim
‖ϕ‖C↓0

f(ϕ)

‖ϕ‖p−1

C

< lp−1, there is a ρ1 > 0 such that

f(ϕ) ≤ (l‖ϕ‖C)p−1, ‖ϕ‖C ≤ ρ1.

For any y ∈ K with ‖y‖ = ρ1, we deduce that ‖yn‖C ≤ ρ1 for n ∈ [0, T + 2] and have
from (2.5)

‖Φy‖ ≤ (T + 2 + β)φq

(

T
∑

n=0

r(n)f(yn)
)

≤ l(T + 2 + β)‖y‖φq

(

T
∑

n=0

r(n)
)
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= ‖y‖ and y ∈ K ∩ ∂Ωρ1
, (2.7)

where Ωρ1
= {y ∈ K : ‖y‖ < ρ1}.

On the other hand, since lim
‖ϕ‖C↑∞

inf f(ϕ)

‖ϕ‖p−1

C

> Mp−1, there exists a ρ2 > ρ1 such that

f(ϕ) ≥ (M‖ϕ‖C)p−1, ‖ϕ‖C ≥
ρ2

T + 2 + β
.

Define Ωρ2
= {y ∈ K : ‖y‖ < ρ2}. For y ∈ K with ‖y‖ = ρ2, we have

y(t) ≥
1

T + 2 + β
‖y‖, t ∈ [0, T + 2],

and

‖yn‖C ≥
1

T + 2 + β
‖y‖. (2.8)

Thus, we have from (2.5)−(2.8)

‖Φy‖ = ‖Φy‖[0,T+2] = (Φy)(T + 2)

≥

T+1
∑

m=0

φq

(

T
∑

n=m

r(n)f(yn)
)

≥
T+1
∑

m=τ

φq

(

T
∑

n=m

r(n)(M‖yn‖C)p−1
)

≥
M

T + 2 + β
‖y‖φq

(

T
∑

n=τ

r(n)
)

= ‖y‖ for y ∈ K ∩ ∂Ωρ2
. (2.9)

According to the first part of Lemma 1.1, it follows that Φ has a fixed point y ∈

K ∩ (Ω2 \ Ω1) such that

0 < ρ1 ≤ ‖y‖ = ‖y‖[0,T+2] ≤ ρ2.

Now, suppose that (H4) is satisfied. Since lim
‖ϕ‖C↓0

inf f(ϕ)

‖ϕ‖p−1

C

> Mp−1, there exists a

ρ1 > 0 such that

f(ϕ) ≥ (M‖ϕ‖C)p−1, ‖ϕ‖C ≤ ρ1.

For y ∈ K with ‖y‖ = ρ1, we have ‖yn‖C ≤ ρ1 for n ∈ [τ, T + 2]. Furthermore, by

asimilar argument as (2.8), we have

‖y‖ ≥ ‖yn‖C ≥
1

T + 2 + β
‖y‖, n ∈ [τ, T + 2].
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For n ∈ [τ, T + 2], we have xn = 0. Thus, we obtain

‖Φy‖ = ‖Φy‖[0,T+2] = (Φy)(T + 2)

≥

T+1
∑

m=0

φq

(

T
∑

n=m

r(n)f(yn)
)

≥

T+1
∑

m=τ

φq

(

T
∑

n=m

r(n)(M‖yn‖C)p−1
)

≥
M

T + 2 + β
‖y‖φq

(

T
∑

n=τ

r(n)
)

= ‖y‖ for y ∈ K ∩ ∂Ωρ1
. (2.10)

On the other hand, since lim
‖ϕ‖C↑∞

sup f(ϕ)

‖ϕ‖p−1

C

< lp−1, there exists N > max{ρ1,

max
k∈[−τ,−1]

|ψ(k)|} such that

f(ϕ) < (l‖ϕ‖C)p−1, ‖ϕ‖C > N.

Choose a positive constant ρ2 such that

ρ2 > ρ1 + l−1 max{f q−1(ϕ) : 0 ≤ ‖ϕ‖C ≤ N + ‖X‖}.

For y ∈ K, ‖y‖ = ρ2, we have from the facts: x(t) ≥ 0, y(t) ≥ 0 for t ∈ [−τ, T + 2], that
for n ∈ [0, T ]

‖yn + xn‖C ≥ ‖yn‖C > N, ‖yn‖C > N,

‖yn + xn‖C ≤ ‖yn‖C + ‖xn‖ ≤ N + ‖x‖, ‖yn‖C ≤ N.

Thus, we have

‖Φy‖ = ‖Φy‖[0,T+2] = (Φy)(T + 2)

= B0

(

φq

(

T
∑

n=0

r(n)f(yn + xn)
))

+

T+1
∑

m=0

φq

(

T
∑

n=m

r(n)f(yn + xn)
)

≤ (T + 2 + β)φq

(

T
∑

n=0

r(n)f(yn + xn)
)

= (T + 2 + β)φq

(

∑

‖yn‖C>N

r(n)f(yn + xn) +
∑

‖yn‖C<N

r(n)f(yn + xn)
)

≤ (T + 2 + β)max
{

l‖y‖,max{f q−1(ϕ) : 0 ≤ ‖ϕ‖C ≤ N + ‖x|}
}

φq

(

T
∑

n=0

r(n)
)

= l−1 max
{

l‖y‖,max{f q−1(ϕ) : 0 ≤ ‖ϕ‖C ≤ N + ‖x‖}
}

≤ ρ2 = ‖y‖ for y ∈ K ∩ ∂Ωρ2
.
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By the second prat of Lemma 1.1, it follows that Φ has a fixed point y ∈ K∩(Ω2\Ω1)
such that

0 < ρ1 < ‖y‖ = ‖y‖[0,T+2] ≤ ρ2.

Suppose that y is the fixed point of Φ in K ∩ (Ω2 \ Ω1), then x = y + x is a positive
solution of BVP (1.1).

In what follows, we shall consider the existence of twin positive solutions for BVP
(1.1).

Theorem 2.2. If the following conditions are satisfied:

(H5) lim
‖ϕ‖C↓0

inf f(ϕ)

‖ϕ‖p−1

C

> Mp−1; lim
‖ϕ‖C↑∞

inf f(ϕ)

‖ϕ‖p−1

C

> Mp−1;

(H6) there exists a p1 > 0 such that for ∀ 0 ≤ ‖ϕ‖C ≤ p1 + p0, one has f(ϕ) ≤ (lp1)
p−1,

where p0 = max
k∈[−τ,−1]

|ψ(k)|.

Then BVP (1.1) has at least two positive solutions x1, x2 such that 0 < ‖x1‖[0,T+2] <

p1 < ‖x2‖[0,T+2].

Proof. By (H5), there exists a r : 0 < r < p1 such that

f(ϕ) ≥ (M‖ϕ‖C)p−1, ‖ϕ‖C ≤ r.

For y ∈ K, ‖x‖ = r, we have

r ≥ ‖yn‖C ≥
1

T + 2 + β
‖y‖ =

r

T + 2 + β
, n ∈ [τ, T + 1].

Therefore we obtain a analogous inequality:

‖Φ(y)‖ ≥ ‖y‖ for y ∈ K ∩ ∂Ωr,

where Ωr = {y ∈ K : ‖y‖ < r}.
On the other hand, we have from (H5) that there exists a R > p1 such that

f(ϕ) ≥ (M‖ϕ‖C)p−1, ‖ϕ‖C ≥
R

T + 2 + β
.

For y ∈ K, ‖y‖ = R, we have a analogous result to (2.8):

‖yn‖C ≥
1

T + 2 + β
‖y‖ =

R

T + 2 + β
for n ∈ [τ, T + 1].

Furthermore, we have ‖Φ(y)‖ ≥ ‖y‖ for y ∈ K ∩ ∂ΩR, where ΩR = {y ∈ K : ‖y‖ < R}.
Now, by (H6), for ∀ y ∈ K with ‖y‖ = p1 one has

‖Φy‖ = ‖Φy‖[0,T+2] = (Φy)(T + 2)

= B0

(

φq

(

T
∑

n=0

r(n)f(yn + xn)
))

+

T+1
∑

m=0

φq

(

T
∑

n=m

r(n)f(yn + xn)
)

≤ (T + 2 + β)lp1φq

(

T
∑

n=0

r(n)
)

= p1 = ‖y‖.
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According to Lemma 1.1, it follows that Φ has two fixed points y1, y2 such that y1 ∈

K ∩ Ωp1
\ Ωr, y2 ∈ K ∩ ΩR \ Ωp1

, where Ωp1
= {y ∈ K : ‖y‖ < p1}, that is 0 <

‖y1‖ < p1 < ‖y2‖. Since yi ∈ K, we have yi(t) > 0, ∀ t ∈ [0, T + 2], i = 1, 2. Let

x1 = y1 + x, x2 = y2 + x, then x1, x2 are positive solutions of BVP (1.1) satisfying
0 < ‖x1‖[0,T+2] < p1 < ‖x2‖[0,T+2].

Theorem 2.3. If the following conditions are satisfied:

(H7) lim
‖ϕ‖C↓0

sup f(ϕ)

‖ϕ‖p−1

C

< lp−1, lim
‖ϕ‖C↑∞

sup f(ϕ)

‖ϕ‖p−1

C

< lp−1, ψ(t) ≡ 0, t ∈ [−τ,−1];

(H8) there exists a p2 > 0 such that for ∀ p2

T+2+β ≤ ‖ϕ‖C ≤ p2, one has

f(ϕ) ≥
( Mp2

T + 2 + β

)p−1

.

Then BVP (1.1) has at least two posivive solutions x1, x2 satisfying 0 < ‖x1‖[0,T+2] <

p2 < ‖x2‖[0,T+2].

The proof of Theorem 2.3 is analogous to Theorem 2.2 and thus is omitted.

The following Corollaries are obvious.

Corollary 2.1. BVP (1.1) has at least a positive solution if one of the following

conditions is satisfied:

(H ′
3) lim

‖ϕ‖C↓0
sup f(ϕ)

‖ϕ‖p−1

C

= 0, lim
‖ϕ‖C↑∞

inf f(ϕ)

‖ϕ‖p−1

C

= +∞, φ(t) ≡ 0, t ∈ [−τ,−1];

(H ′
4) lim

‖ϕ‖C↓0
inf f(ϕ)

‖ϕ‖p−1

C

= +∞, lim
‖ϕ‖C↑∞

sup f(ϕ)

‖ϕ‖p−1

C

= 0.

Corollary 2.2. If the following conditions are satisfied:

(H ′
5) lim

‖ϕ‖C↓0
inf f(ϕ)

‖ϕ‖p−1

C

= +∞; lim
‖ϕ‖C↑∞

inf f(ϕ)

‖ϕ‖p−1

C

= +∞;

(H6) there exists a p1 > 0 such that for ∀ 0 ≤ ‖ϕ‖C ≤ p1 + p0, one has f(ϕ) ≤ (lp1)
p−1,

where po = max
k∈[−τ,−1]

|ψ(k)|.

Then BVP (1.1) has got at least two positive solutions x1, x2 satisfying 0 < ‖x1‖[0,T+2] <

p1 < ‖x2‖[0,T+2].

Corollary 2.3. If the following conditions are satisfied:

(H ′
7) lim

‖ϕ‖C↓0
sup f(ϕ)

‖ϕ‖p−1

C

= 0, lim
‖ϕ‖C↑∞

sup f(ϕ)

‖ϕ‖p−1

C

= 0, φ(t) ≡ 0, t ∈ [−τ,−1];

(H8) there exists a p2 > 0 such that for ∀ p2

T+2+β ≤ ‖ϕ‖C ≤ p2, one has f(ϕ) ≥

( Mp2

T+2+β )p−1.

Then BVP (1.1) has got at least two positive solutions x1, x2 satisfying 0 < ‖x1‖[0,T+2] <

p2 < ‖x2‖[0,T+2].
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3. Example

Example 3.1. Consider BVP:

∆φp(∆x(t)) + r(t)x3(t− 1) = 0, t ∈ [0, T ],
(3.1)

x(−1) = 0; x(0) −B0(∆x(0)) = 0; x(T + 1) = X(T + 2),

where τ = 1 < T , 1 < p < 4, f(ϕ) = ϕ3(−1), r(t) satisfies (H1). As ϕ ∈ C+, ‖ϕ‖C → 0

we have that
f(ϕ)

‖ϕ‖p−1
C

=
ϕ3(−1)

‖ϕ‖p−1
C

=
‖ϕ‖3

C

‖ϕ‖p−1
C

= ‖ϕ‖4−p
C → 0.

That is to say that lim
‖ϕ‖C↓0

sup f(ϕ)

‖ϕ‖p−1

C

= 0 holds.

On the other hand, suppose that ϕ ∈ C+, then ‖ϕ‖C = ϕ(−1), thus, as ‖ϕ‖C → ∞

we get
f(ϕ)

‖ϕ‖p−1
C

=
ϕ3(−1)

‖ϕ‖p−1
C

= ‖ϕ‖4−p
C → +∞.

That is to say that lim
‖ϕ‖C↓0

inf f(ϕ)

‖ϕ‖p−1

C

= ∞ holds.

According to Corollary 2.1, it follows that BVP (3.1) has at least a positive solution

y(t).

Example 3.2. Consider BVP:

∆φp(∆x(t)) + r[x
1

9 (t− 1) + x
1

3 (t− 1)] = 0, t ∈ [0, T ]
(3.2)

x(t) = ψ(t); t = −1; x(0) − B0(∆x(0)) = 0; x(T + 1) = X(T + 2),

where τ = 1 < T , r > 0 is a constant. ψ(t) ≥ 0, ‖ψ‖C = m0 = |ψ(−1)| > 0, p = 7
6 ,

q = 7, f(ϕ) = ϕ
1

9 (−1) + ϕ
1

3 (−1). Suppost that ϕ ∈ C+, then ‖ϕ‖C = ϕ(−1), thus, as

‖ϕ‖C → 0 or ‖ϕ‖C → +∞ we get

f(ϕ)

‖ϕ‖p−1
C

=
ϕ1/9(−1) + ϕ1/3(−1)

‖ϕ‖p−1
C

= ‖ϕ‖
10−9p

9

C + ‖ϕ‖
4−3p

3

C → +∞.

We deduce that

l =
1

(T + 2 + β)φq

(

T
∑

n=0

r(n)
)

=
1

(T + 2 + β)φq((T + 1)r)
=

1

(T + 2 + β)(T + 1)6r6
,

then for ∀ m > 0 and 0 ≤ ‖ϕ‖C ≤ m+m0, one has

0 ≤ f(ϕ) ≤ (m+m0)
1

9 + (m+m0)
1

3 = (m+m0)
1

9

(

m1−p +
(m+m0)

2

9

mp−1

)

mp−1.
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Define H(m) = (m+m0)
1

9 (m1−p + (m+m0)
2

9

mp−1 ), then

lim
m→0

H(m) = +∞, lim
m→+∞

H(m) = +∞. (3.3)

Suppose that, r, T and m0 satisfy

(2m0)
1

9 (m
− 1

6

0 + 2
2

9m
1

18

0 ) <
1

r(T + 1)(T + 2 + β)
1

6

= lp−1,

then H(m0) = (2m0)
1

9 (m
− 1

6

0 + 2
2

9m
1

18

0 ) < lp−1 holds. By the continuity of H(m) and

(3.3), we can found a m > 0 (for example m = m0) such that f(ϕ) < H(m)mp−1 <

(lm)p−1 for 0 ≤ ‖ϕ‖C ≤ m+m0. By the Corollary 2.2, we know that BVP (3.2) has at
least two positive solutions.
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