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POSITIVE SOLUTIONS OF BOUNDARY VALUE PROBLEMS
FOR p-LAPLACIAN FUNCTIONAL DIFFERENCE EQUATIONS

CHANGXIU SONG

Abstract. In this paper, the author studies the boundary value problems of p-Laplacian func-
tional difference equation. By using a fixed point theorem in cones, sufficient conditions are

established for the existence of the positive solutions.

1. Introduction

For notation, given a < b in Z, we employ intervals to denote discrete sets such as
[a,b] = {a,a+1,...,b}, [a,b) = {a,a+1,...b—1}, [a,00) = {a,a+1,...}, etc. Let
7,7 € Z and 0 <7 < T. In this paper, we are concerned with the following p-Laplacian
difference equation:

Apy(Az(t)) +7(t)f(ze) =0, t €[0,T], )
zo =1 € CF, 2(0) — Bo(Az(0)) =0, Az(t+1) =0, '
where ¢, (u) is the p-Laplacian operator, i.e., ¢,(u) = [u[P72u, p > 1, (¢p) " (uw) = ¢¢(u),
%Jr% =1 Vte Z let &y = x(k) = x(t + k), k € [-7,—1], then a; € C, where

C = C(]—1,—1], R) is a Banach space with the norm |[¢|c = i fnax ]|g0|. Let Ct =
el-7,—1

{p e C:pk) >0,k € [—1,—1]}. As usual, A denotes the forward difference operator
defined by Az(t) = z(t + 1) — x(¢).
We give the following assumptions:
(Ho) f(p) is a nonnegative continuous functional defined on C7;
T
(Hy) r(t) is a nonnegative function defined on [0,7] and Y r(¢t) > 0;

t=1

(Hz) By : R — R is continuous and satisfies that there are 8 > « > 0 such that
as < By(s) < Bs for s € RT, where RT denotes the set of nonnegative real
numbers.
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The motivations for the present work stem from many recent investigations in [1-5].
For the continuous or functional case, boundary value prolems analogous to (ILIl) are
studied by many authors, see, for example [6-11].

The following lemma will be play an important role in the proof of our results and
can be found in [12].

Lemma 1.1. Assume that X is a Banach space and K C X is a cone in X; Qq, Qo
are open subsets of X, and 0 € Qy C Qo. Furthermore, let ® : KN (Q2\ Q1) — K be a
completely continuous operator satisfying one of the following conditions:

(i) ()] < o, ¥ = € K 000 [0(x)] > o], ¥ @ € K 10Qy;
(i) @@ < Jlzll, v & € K N 09 @) > [l2]l, v & € K N0
Then there is a fized point of ® in K N (ﬁg \ Q).

2. Main results

We note that z(t) is a solution of (L)) if and only if

o(t) = Bo(%(ir(n)f(xn)))+§¢q(ir<n>f<xn>), te0 T+ o

n=

wa te [—T,—l].

Furthermore, a solution x(¢) of (Tl is called a positive solution, if z(¢) > 0, for ¢ € [0, 7.
We assume that Z(t) is the solution of BVP () with f = 0. Clearly, it can be

expressed as
z

(t){o, tel0,T+2, 22)

v, te[-7,—1].
Let z(t) be a solution of BVP () and y(t) = z(t) — T(t), noting that y(t) = =(t) for
t € [0,T + 2], then we have from (ZTI) that

T t—1 T
J6) = B()(zbq(;::or(n)f(ynJrTn))) +mZ:O¢)q(7;nr(n)f(yn+Tn)), te0,T+2),
0, te -7, —1].
(2.3)
Let E = {y : [-7,T + 2] — R} be endowed with the norm |ly|| = max |y(¢)| and

te[—7,T+2]
K={yeFE:yt)=0 for te[-7,—1];y(t) > %MHyH for t€[0,T +2]}.
Clearly, FE is a Banach space with the norm ||y|| and K is a cone in E. If y(t) € K,
th = h = t)|.
en [lyll = llyllo sz, where [lyllo.r) = max |y(®)]
Definie @ : K — E as
t—1

(Dy)(t) = By (%(ZT: r(n)f(ynwn))) + Z <z>q( Z r(n)f(ynJrfn)), t€[0,T+2],
m=0

n=0 n=m
0, te[—7,—1].
(2.4)
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It following from () that
[®yll = [[®yllo,r+2) = (Py)(T +2)

= By (%(i r(0)f (o + ) ) ) + 5 o S r (o + 7))

n=0 m=0 n=m

< (@ +2+B)6,( D r(m) flyn +70))- (2.5)

n=0
Lemma 2.1. (K) C K.

Proof. For ¢ € [—7,—1], (®y)(t) = 0, and for ¢ € [0,T + 2], we have from (Z2)— EH)

@)(1) > ¢y ( Y- r(0)f (o +70))
L ®ylljo,7+2) = %W

(=)

eyl (2.6)
which implies ®(K) C K.
Lemma 2.2. ® : K — K is completely continuous.

Let

1 T+2+p
l= T ) M:Ti

(T +2+ B)og (D r(m) AGID)

n=0 n=r

Theorem 2.1. BVP ([l) has at least a positive solution if one of the following
conditions is satisfied:

H lim f(f)1 < Z;D—l lim inf f(f)1 > Mp_l, H=0,te -7 —1];
(H) | B, 50 oy oo ™ Tl () [ )
(Hy) lim inf L) > pp=1 lim osup £ < -1

llellc Lo lelle llelle Too llelles

Proof. Suppose that (Hjs) is satisfied. By ¢(¢t) =0, t € [—7, —1], we know T,, = 0,

n € (0,7 +2]. Since | lhml H::I(\f)l < [P~! there is a p; > 0 such that
ellclo

Fo) < (el lelle < pr.
For any y € K with ||y|| = p1, we deduce that ||y,|lc < p1 for n € [0,T 4 2] and have

from (1)

T

] < (T + 2+ 8)94( 32 r) )

n=0

<UT+2+5) ||y||¢q(§Tjr )

n=0
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=|ly|| and y € K N 09, (2.7)

where Q,, ={y € K : |y|| < p1}.

On the other hand, since | l”m% inf Hil(\f) r > MP~! there exists a po > p; such that
pwllcToo

£e) = (Mllglel ™ Nelle > 7755

Define Q,, = {y € K : |ly|| < p2}. For y € K with ||y|| = p2, we have

y(t) = lyll, tel0,T+2],

1
T+2+p
and

[ Iyl (2.8)

Thus, we have from (Z3])— &)

@yl = 1®yllo,r+2 = (PY)(T +2)
T+1

> Z d)q( Z f(yn))

T+1

> ZMZ n) (Mg )

> mnyn%(i r(n))

=T

1
>
lle = T+2+73

= |lyll for y € KNy, (2.9)

According to the first part of Lemma 1.1, it follows that ® has a fixed point y €
K N (Q2\ 1) such that

0 < p1 < |lyll = [1yllo.r+2 < po

Now, suppose that (Hy) is satisfied. Since lim inf CINEEN MP~1 there exists a

—1
lellcto llele

p1 > 0 such that
flo) = Mlelle)’™,  llelle < pr-

For y € K with ||y| = p1, we have ||yn|lc < p1 for n € [7,T + 2]. Furthermore, by
asimilar argument as Z3X), we have

lyll, nelrT+2]

Iyl > llynl .
vl 2 llvmlle 2 7573
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For n € [1,T + 2], we have T,, = 0. Thus, we obtain

@yl = |2yl 0,742 = (PY)(T +2)
T+1

T
> 1) (Mlyallcy )

T

> vl (3 )

n=rt

= ||ly|| for y € K N0Q,,. (2.10)

On the other hand, since lim sup H::I(\le < [P~1) there exists N > max{p,
C

llelleToo
max _|¢(k)|} such that
ke[—7,—1]

flo) < Ullelle)",  llelle > N.
Choose a positive constant ps such that
p2 > p1+ 17 max{f7(¢) : 0 < [lollc < N+ [ X]]}.

For y € K, ||y|| = p2, we have from the facts: T(t) > 0, y(t) > 0 for t € [-7,T + 2], that
for n € [0, T]

[yn + Tnllc = llynllc > N, lynlle > N,
[Yn + Znllc < llynllc +Zall < N+ (2], llynllc < N

Thus, we have

@yl = 12yllfo.7+2) = (Py)(T +2)
T+1

_ Bo(qﬁq(ir(n)f(yn +70))) + > da(( D2 r(n) g +70))

n=0 = n=m

<(T+ 2+ B)p, ( ZT: r(n) f(yn + fn))

n=0

=T+2+ ﬁ)‘bq( Z 7(n) f(Yn +Tn) + Z r(n)f(yn + fn))

llynlle>N lynllo<N

< (T + 2+ B max {1yl max{ £~ () : 0 < llpllo < N + [z} o, ( 3 r(m))

n=0

= 1 max {Ullyl, max{ 71 (¢) : 0 < |lpllc < N + 7]} |
< p2 = |ly|| for y € K N 0KY,.
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By the second prat of Lemma 1.1, it follows that ® has a fixed point y € KN (Q2\ Q1)
such that

[0,7+2 < p2.

Suppose that y is the fixed point of ® in K N (Qy\ 1), then x = y + T is a positive
solution of BVP ([IJ).
In what follows, we shall consider the existence of twin positive solutions for BVP

.

Theorem 2.2. If the following condztzons are satisfied:

(Hs) lim inf f(f)l > MP~1;  lim inf 122 ) > MP- L.
lellcto liele el Too le\
(Hg) there exists a p1 > 0 such that for ¥ 0 < ||¢|lc < p1+ po, one has f(p) < (Ip1)P~1,
where py = i {nax [(k)|.
€

Then BVP ([Tl has at least two positive solutions 21, w2 such that 0 < [|21]|jp,742) <
p1 < |z2lljo, 742

Proof. By (Hj), there exists a r: 0 < r < p; such that
Flo) = Mlellc)P™,  lelle <

For y € K, ||z|| = r, we have

r
= s n e T,T+1
ol = 755 nemT+

1
r> >
> e > 757

Therefore we obtain a analogous inequality:
@)l = llyll for y € KN IQ,,
where Q, = {y € K : ||y|| < r}.
On the other hand, we have from (Hj) that there exists a R > p; such that

R
fle) = (Melle)™, lelle > T+2+3

For y € K, ||y|]| = R, we have a analogous result to ZJ):

|| Iyl = 2
C—T+2+ﬁ T+2+3

Furthermore, we have ||®(y)|| > ||y|| for y € K N 0Qg, where Qg = {y € K : ||y| < R}.
Now, by (Hg), for V y € K with ||y|| = p1 one has

@yl = 1®ylljo,7+2) = (PY)(T +2)
T+1

:BO(¢q(zT:T(n)f(yn+xn )) Z@z(ir f(yn"’xn))

n=0 =m

lyn forn € [7,T +1].

T

< (T+2+4 B)pioy (D r(n)

n=0

=p1 =yl
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According to Lemma 1.1, it follows that ® has two fixed points y;, y2 such that y; €
KNQpy \Q, y2 € KNQg\ Qp,, where Q,, = {y € K : |ly| < p1}, that is 0 <
ly1ll < p1 < |ly2l|. Since y; € K, we have y;(t) > 0, V¢t € [0,T + 2], i = 1,2. Let
X1 = y1 + T, T2 = y2 + T, then x1, xo are positive solutions of BVP ([l) satisfying
0 < llz1llo,r+21 < p1 < llz2lljo,7+2)-

Theorem 2.3. If the following conditions are satisfied:
(H7) lim sup L) =1 lim sup L&l < -1 Y(t)=0,t € [—7,—1];
lellclo lelle llellcToo lle ”
(Hs) there exists a po > 0 such that for V 78— < ||¢|lc < p2, one has

Mpo )”_1

flp) > (m

Then BVP (1.1) has at least two posivive solutions x1, xo satisfying 0 < |[21]j0,742) <
p2 < ||5L'2H[O,T+2]-

The proof of Theorem 2.3 is analogous to Theorem 2.2 and thus is omitted.
The following Corollaries are obvious.

Corollary 2.1. BVP (1.1) has at least a positive solution if one of the following
conditions is satisfied:

H) Tim sup L2 =0, lim inf Lk = foo, 6(t) = 0, ¢ € [, ~1];
(H3) lellclo SUP Tz ||Lp||cToo lellZ: (1) [ ]
H)) lim inf L&) — lim AC )

(1) toimo ™ ez T = 0% imSUP oz

Corollary 2. 2 If the following conditions are satisfied:

(Hf) lim £) . = too; lim inf L = 4o
leliclo llele lelletoo  llvlle
(Hg) there exists a p1 > 0 such that for ¥ 0 < ||p|lc < p1+ po, one has f(p) < (Ip1)P~1,
ahere o= max | o)
€

Then BVP (1.1) has got at least two positive solutions x1, o satisfying 0 < ||x1||p, 742 <
p1 <llz2lo,7+2)-

Corollary 2.3. If the following conditions are satisfied:
H}) lim sup £ =0, lim 1) — 0, ¢(t) =0, t € [-r,—1];
) 10 ™ P Tl lelletoo Tl #) [ ]
(Hsg) there exists a pa > 0 such that for ¥ T+2+B < |lelle < p2, one has f(p) >
(i
42406 i iy . L
Then BVP (1.1) has got at least two positive solutions x1, 2 satisfying 0 < ||x1 ||, 742 <

p2 < [|z2]lj0,742-
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3. Example

Example 3.1. Consider BVP:

Agp(Ax(t)) +r(t)2®(t —1) = 0; 5-6 (0,77, (3.1)

r
z(—1)=0; x(0) — Bo(Az(0)) z(T+1)=X(T+2),
where 7 =1 < T, 1<p<4, fp) = p3(=1), r(t) satisfies (H1). As ¢ € CF, ||p|lc — 0

we have that ) 3( ) I ”3
% e (-1 ® 4
= = < =lelle?—o.

-1 -1 -1
lelle™  llelle™  llelle

That is to say that lim sup f(le = 0 holds.
lellelo lelle

On the other hand, suppose that ¢ € CT, then ||p||c = ¢(—1), thus, as ||¢|lc — o
we get

flo) _ (=1

= o1 = llelle” = +oo.
lele™  llele

That is to say that lim inf %L = o holds.
lellcto — llelle

According to Corollary 2.1, it follows that BVP (3.1) has at least a positive solution
y(@)-

Example 3.2. Consider BVP:

Ady(Az(t)) +r[z5(t — 1)+ 23t —1)] =0, te0,T)

(3.2)
2(t) = (1) t=-1; @(0)— Bo(Aa(0) =0 (T +1)=X(T +2),

where 7 = 1 < T, r > 0 is a constant. ¢(t) > 0, ||¢||c = mo = |[(=1)| > 0, p = %7
qg=1, f(e) = 90%(—1) + @%(—1). Suppost that ¢ € CT, then [|p|lc = ¢(—1), thus, as
lelle — 0 or ||¢llc — +oo we get

flo) _ o=+ (1) 10-0p it
- - T — -o0.
el ol lele ™ + lplls™ = +oo
We deduce that
| = 1 N 1 - )
— N (T+2+ﬂ)¢q((T+1)7’) B (T+2+6)(T+1)67’6’
(T+2+5)¢q(zr(n)>
n=0

then for V m > 0 and 0 < ||¢|lc < m + my, one has

ol

0< f() < (m+mo)® + (m+mo)s = (m+mo) (m! =7+ %)mzﬂfl_
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(=N

Define H(m) = (m + mg)s (m! =P 4+ 7m0 %) “then

mp—1

lim H(m) =400, lim H(m) = +oo. (3.3)

m—0 m— 00
Suppose that, r, T and my satisfy
1

1 1 2 1
2mo)?(my ° +25md®) < o=t
(2mo)? (rmy 0 r(T+1)(T +2+ B)3

then H(mg) = (2m0)%(mg% + Z%mé%) < P71 holds. By the continuity of H(m) and
(3.3), we can found a m > 0 (for example m = myg) such that f(¢) < H(m)mP~! <
(Im)P~! for 0 < ||¢|lc < m + mg. By the Corollary 2.2, we know that BVP (3.2) has at
least two positive solutions.
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