POSITIVE SOLUTIONS OF BOUNDARY VALUE PROBLEMS FOR p-LAPLACIAN FUNCTIONAL DIFFERENCE EQUATIONS

CHANGXIU SONG

Abstract. In this paper, the author studies the boundary value problems of p-Laplacian functional difference equation. By using a fixed point theorem in cones, sufficient conditions are established for the existence of the positive solutions.

1. Introduction

For notation, given $a<b$ in Z, we employ intervals to denote discrete sets such as $[a, b]=\{a, a+1, \ldots, b\},[a, b)=\{a, a+1, \ldots b-1\},[a, \infty)=\{a, a+1, \ldots\}$, etc. Let $\tau, T \in Z$ and $0 \leq \tau \leq T$. In this paper, we are concerned with the following p-Laplacian difference equation:

$$
\begin{align*}
& \Delta \phi_{p}(\Delta x(t))+r(t) f\left(x_{t}\right)=0, t \in[0, T] \\
& x_{0}=\psi \in C^{+}, x(0)-B_{0}(\Delta x(0))=0, \Delta x(t+1)=0 \tag{1.1}
\end{align*}
$$

where $\phi_{p}(u)$ is the p-Laplacian operator, i.e., $\phi_{p}(u)=|u|^{p-2} u, p>1,\left(\phi_{p}\right)^{-1}(u)=\phi_{q}(u)$, $\frac{1}{p}+\frac{1}{q}=1 . \forall t \in Z$, let $x_{t}=x_{t}(k)=x(t+k), k \in[-\tau,-1]$, then $x_{t} \in C$, where $C=C([-\tau,-1], R)$ is a Banach space with the norm $\|\varphi\|_{C}=\max _{k \in[-\tau,-1]}|\varphi|$. Let $C^{+}=$ $\{\varphi \in C: \varphi(k) \geq 0, k \in[-\tau,-1]\}$. As usual, Δ denotes the forward difference operator defined by $\Delta x(t)=x(t+1)-x(t)$.

We give the following assumptions:
$\left(H_{0}\right) f(\varphi)$ is a nonnegative continuous functional defined on C^{+};
$\left(H_{1}\right) r(t)$ is a nonnegative function defined on $[0, T]$ and $\sum_{t=\tau}^{T} r(t)>0$;
$\left(H_{2}\right) B_{0}: R \rightarrow R$ is continuous and satisfies that there are $\beta \geq \alpha \geq 0$ such that $\alpha s \leq B_{0}(s) \leq \beta s$ for $s \in R^{+}$, where R^{+}denotes the set of nonnegative real numbers.

[^0]The motivations for the present work stem from many recent investigations in [1-5]. For the continuous or functional case, boundary value prolems analogous to (1.1) are studied by many authors, see, for example [6-11].

The following lemma will be play an important role in the proof of our results and can be found in 12].

Lemma 1.1. Assume that X is a Banach space and $K \subset X$ is a cone in $X ; \Omega_{1}, \Omega_{2}$ are open subsets of X, and $0 \in \bar{\Omega}_{1} \subset \Omega_{2}$. Furthermore, let $\Phi: K \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right) \rightarrow K$ be a completely continuous operator satisfying one of the following conditions:
(i) $\|\Phi(x)\| \leq\|x\|, \forall x \in K \cap \partial \Omega_{1} ;\|\Phi(x)\| \geq\|x\|, \forall x \in K \cap \partial \Omega_{2}$;
(ii) $\|\Phi(x)\| \leq\|x\|, \forall x \in K \cap \partial \Omega_{2} ;\|\Phi(x)\| \geq\|x\|, \forall x \in K \cap \partial \Omega_{1}$;

Then there is a fixed point of Φ in $K \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right)$.

2. Main results

We note that $x(t)$ is a solution of (1.1) if and only if

$$
x(t)= \begin{cases}B_{0}\left(\phi_{q}\left(\sum_{n=0}^{T} r(n) f\left(x_{n}\right)\right)\right)+\sum_{m=0}^{t-1} \phi_{q}\left(\sum_{n=m}^{T} r(n) f\left(x_{n}\right)\right), & t \in[0, T+2], \tag{2.1}\\ \psi, & t \in[-\tau,-1]\end{cases}
$$

Furthermore, a solution $x(t)$ of (1.1) is called a positive solution, if $x(t)>0$, for $t \in[0, T]$.
We assume that $\bar{x}(t)$ is the solution of BVP (1.1) with $f \equiv 0$. Clearly, it can be expressed as

$$
\bar{x}(t)= \begin{cases}0, & t \in[0, T+2], \tag{2.2}\\ \psi, & t \in[-\tau,-1]\end{cases}
$$

Let $x(t)$ be a solution of BVP (1.1) and $y(t)=x(t)-\bar{x}(t)$, noting that $y(t)=x(t)$ for $t \in[0, T+2]$, then we have from (2.1) that

$$
y(t)= \begin{cases}B_{0}\left(\phi_{q}\left(\sum_{n=0}^{T} r(n) f\left(y_{n}+\bar{x}_{n}\right)\right)\right)+\sum_{m=0}^{t-1} \phi_{q}\left(\sum_{n=m}^{T} r(n) f\left(y_{n}+\bar{x}_{n}\right)\right), & t \in[0, T+2] \tag{2.3}\\ 0, & t \in[-\tau,-1]\end{cases}
$$

Let $E=\{y:[-\tau, T+2] \rightarrow R\}$ be endowed with the norm $\|y\|=\max _{t \in[-\tau, T+2]}|y(t)|$ and $K=\left\{y \in E: y(t)=0\right.$ for $t \in[-\tau,-1] ; y(t) \geq \frac{1}{T+2+\beta}\|y\|$ for $\left.t \in[0, T+2]\right\}$.

Clearly, E is a Banach space with the norm $\|y\|$ and K is a cone in E. If $y(t) \in K$, then $\|y\|=\|y\|_{[0, T+2]}$, where $\|y\|_{[0, T+2]}=\max _{t \in[0, T+2]}|y(t)|$.

Definie $\Phi: K \rightarrow E$ as
$(\Phi y)(t)= \begin{cases}B_{0}\left(\phi_{q}\left(\sum_{n=0}^{T} r(n) f\left(y_{n}+\bar{x}_{n}\right)\right)\right)+\sum_{m=0}^{t-1} \phi_{q}\left(\sum_{n=m}^{T} r(n) f\left(y_{n}+\bar{x}_{n}\right)\right), & t \in[0, T+2], \\ 0, & t \in[-\tau,-1] .\end{cases}$

It following from (2.4) that

$$
\begin{align*}
\|\Phi y\| & =\|\Phi y\|_{[0, T+2]}=(\Phi y)(T+2) \\
& =B_{0}\left(\phi_{q}\left(\sum_{n=0}^{T} r(n) f\left(y_{n}+\bar{x}_{n}\right)\right)\right)+\sum_{m=0}^{t-1} \phi_{q}\left(\sum_{n=m}^{T} r(n) f\left(y_{n}+\bar{x}_{n}\right)\right) \\
& \leq(T+2+\beta) \phi_{q}\left(\sum_{n=0}^{T} r(n) f\left(y_{n}+\bar{x}_{n}\right)\right) . \tag{2.5}
\end{align*}
$$

Lemma 2.1. $\Phi(K) \subset K$.
Proof. For $t \in[-\tau,-1],(\Phi y)(t)=0$, and for $t \in[0, T+2]$, we have from (2.4) $-(2.5)$

$$
\begin{align*}
(\Phi y)(t) & \geq \phi_{q}\left(\sum_{n=0}^{T} r(n) f\left(y_{n}+\bar{x}_{n}\right)\right) \\
& \geq \frac{1}{T+2+\beta}\|\Phi y\|_{[0, T+2]}=\frac{1}{T+2+\beta}\|\Phi y\|, \tag{2.6}
\end{align*}
$$

which implies $\Phi(K) \subset K$.
Lemma 2.2. $\Phi: K \rightarrow K$ is completely continuous.
Let

$$
l=\frac{1}{(T+2+\beta) \phi_{q}\left(\sum_{n=0}^{T} r(n)\right)}, \quad M=\frac{T+2+\beta}{\phi_{q}\left(\sum_{n=\tau}^{T} r(n)\right)} .
$$

Theorem 2.1. BVP (1.1) has at least a positive solution if one of the following conditions is satisfied: $\left(H_{3}\right) \lim _{\|\varphi\|_{C} \downarrow 0} \sup \frac{f(\varphi)}{\|\varphi\|_{C}^{p-1}}<l^{p-1}, \lim _{\|\varphi\|_{C} \uparrow \infty} \inf \frac{f(\varphi)}{\|\varphi\|_{C}^{p-1}}>M^{p-1}, \psi(t) \equiv 0, t \in[-\tau,-1]$;
$\left(H_{4}\right) \lim _{\|\varphi\|_{C} \downarrow 0} \inf \frac{f(\varphi)}{\|\varphi\|_{C}^{p-1}}>M^{p-1}, \lim _{\|\varphi\|_{C} \uparrow \infty} \sup \frac{f(\varphi)}{\|\varphi\|_{C}^{p-1}}<l^{p-1}$.
Proof. Suppose that $\left(H_{3}\right)$ is satisfied. By $\psi(t) \equiv 0, t \in[-\tau,-1]$, we know $\bar{x}_{n} \equiv 0$, $n \in[0, T+2]$. Since $\lim _{\|\varphi\|_{C} \downarrow 0} \frac{f(\varphi)}{\|\varphi\|_{C}^{p-1}}<l^{p-1}$, there is a $\rho_{1}>0$ such that

$$
f(\varphi) \leq\left(l\|\varphi\|_{C}\right)^{p-1}, \quad\|\varphi\|_{C} \leq \rho_{1}
$$

For any $y \in K$ with $\|y\|=\rho_{1}$, we deduce that $\left\|y_{n}\right\|_{C} \leq \rho_{1}$ for $n \in[0, T+2]$ and have from (2.5)

$$
\begin{aligned}
\|\Phi y\| & \leq(T+2+\beta) \phi_{q}\left(\sum_{n=0}^{T} r(n) f\left(y_{n}\right)\right) \\
& \leq l(T+2+\beta)\|y\| \phi_{q}\left(\sum_{n=0}^{T} r(n)\right)
\end{aligned}
$$

$$
\begin{equation*}
=\|y\| \text { and } y \in K \cap \partial \Omega_{\rho_{1}} \tag{2.7}
\end{equation*}
$$

where $\Omega_{\rho_{1}}=\left\{y \in K:\|y\|<\rho_{1}\right\}$.
On the other hand, since $\lim _{\|\varphi\|_{C} \uparrow \infty} \inf \frac{f(\varphi)}{\|\varphi\|_{C}^{p-1}}>M^{p-1}$, there exists a $\rho_{2}>\rho_{1}$ such that

$$
f(\varphi) \geq\left(M\|\varphi\|_{C}\right)^{p-1}, \quad\|\varphi\|_{C} \geq \frac{\rho_{2}}{T+2+\beta}
$$

Define $\Omega_{\rho_{2}}=\left\{y \in K:\|y\|<\rho_{2}\right\}$. For $y \in K$ with $\|y\|=\rho_{2}$, we have

$$
y(t) \geq \frac{1}{T+2+\beta}\|y\|, \quad t \in[0, T+2]
$$

and

$$
\begin{equation*}
\left\|y_{n}\right\|_{C} \geq \frac{1}{T+2+\beta}\|y\| \tag{2.8}
\end{equation*}
$$

Thus, we have from (2.5) - (2.8)

$$
\begin{align*}
\|\Phi y\| & =\|\Phi y\|_{[0, T+2]}=(\Phi y)(T+2) \\
& \geq \sum_{m=0}^{T+1} \phi_{q}\left(\sum_{n=m}^{T} r(n) f\left(y_{n}\right)\right) \\
& \geq \sum_{m=\tau}^{T+1} \phi_{q}\left(\sum_{n=m}^{T} r(n)\left(M\left\|y_{n}\right\|_{C}\right)^{p-1}\right) \\
& \geq \frac{M}{T+2+\beta}\|y\| \phi_{q}\left(\sum_{n=\tau}^{T} r(n)\right) \\
& =\|y\| \text { for } y \in K \cap \partial \Omega_{\rho_{2}} \tag{2.9}
\end{align*}
$$

According to the first part of Lemma 1.1, it follows that Φ has a fixed point $y \in$ $K \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right)$ such that

$$
0<\rho_{1} \leq\|y\|=\|y\|_{[0, T+2]} \leq \rho_{2}
$$

Now, suppose that $\left(H_{4}\right)$ is satisfied. Since $\lim _{\|\varphi\|_{C} \downarrow 0} \inf \frac{f(\varphi)}{\|\varphi\|_{C}^{p-1}}>M^{p-1}$, there exists a $\rho_{1}>0$ such that

$$
f(\varphi) \geq\left(M\|\varphi\|_{C}\right)^{p-1}, \quad\|\varphi\|_{C} \leq \rho_{1}
$$

For $y \in K$ with $\|y\|=\rho_{1}$, we have $\left\|y_{n}\right\|_{C} \leq \rho_{1}$ for $n \in[\tau, T+2]$. Furthermore, by asimilar argument as (2.8), we have

$$
\|y\| \geq\left\|y_{n}\right\|_{C} \geq \frac{1}{T+2+\beta}\|y\|, \quad n \in[\tau, T+2]
$$

For $n \in[\tau, T+2]$, we have $\bar{x}_{n}=0$. Thus, we obtain

$$
\begin{align*}
\|\Phi y\| & =\|\Phi y\|_{[0, T+2]}=(\Phi y)(T+2) \\
& \geq \sum_{m=0}^{T+1} \phi_{q}\left(\sum_{n=m}^{T} r(n) f\left(y_{n}\right)\right) \\
& \geq \sum_{m=\tau}^{T+1} \phi_{q}\left(\sum_{n=m}^{T} r(n)\left(M\left\|y_{n}\right\|_{C}\right)^{p-1}\right) \\
& \geq \frac{M}{T+2+\beta}\|y\| \phi_{q}\left(\sum_{n=\tau}^{T} r(n)\right) \\
& =\|y\| \text { for } y \in K \cap \partial \Omega_{\rho_{1}} . \tag{2.10}
\end{align*}
$$

On the other hand, since $\lim _{\|\varphi\|_{C} \uparrow \infty} \sup \frac{f(\varphi)}{\|\varphi\|_{C}^{p-1}}<l^{p-1}$, there exists $N>\max \left\{\rho_{1}\right.$, $\left.\max _{k \in[-\tau,-1]}|\psi(k)|\right\}$ such that

$$
f(\varphi)<\left(l\|\varphi\|_{C}\right)^{p-1}, \quad\|\varphi\|_{C}>N
$$

Choose a positive constant ρ_{2} such that

$$
\rho_{2}>\rho_{1}+l^{-1} \max \left\{f^{q-1}(\varphi): 0 \leq\|\varphi\|_{C} \leq N+\|\bar{X}\|\right\}
$$

For $y \in K,\|y\|=\rho_{2}$, we have from the facts: $\bar{x}(t) \geq 0, y(t) \geq 0$ for $t \in[-\tau, T+2]$, that for $n \in[0, T]$

$$
\begin{aligned}
& \left\|y_{n}+\bar{x}_{n}\right\|_{C} \geq\left\|y_{n}\right\|_{C}>N, \quad\left\|y_{n}\right\|_{C}>N, \\
& \left\|y_{n}+\bar{x}_{n}\right\|_{C} \leq\left\|y_{n}\right\|_{C}+\left\|\bar{x}_{n}\right\| \leq N+\|\bar{x}\|, \quad\left\|y_{n}\right\|_{C} \leq N
\end{aligned}
$$

Thus, we have

$$
\begin{aligned}
\|\Phi y\| & =\|\Phi y\|_{[0, T+2]}=(\Phi y)(T+2) \\
& =B_{0}\left(\phi_{q}\left(\sum_{n=0}^{T} r(n) f\left(y_{n}+\bar{x}_{n}\right)\right)\right)+\sum_{m=0}^{T+1} \phi_{q}\left(\sum_{n=m}^{T} r(n) f\left(y_{n}+\bar{x}_{n}\right)\right) \\
& \leq(T+2+\beta) \phi_{q}\left(\sum_{n=0}^{T} r(n) f\left(y_{n}+\bar{x}_{n}\right)\right) \\
& =(T+2+\beta) \phi_{q}\left(\sum_{\left\|y_{n}\right\|_{C}>N} r(n) f\left(y_{n}+\bar{x}_{n}\right)+\sum_{\left\|y_{n}\right\|_{C}<N} r(n) f\left(y_{n}+\bar{x}_{n}\right)\right) \\
& \leq(T+2+\beta) \max \left\{l\|y\|, \max \left\{f^{q-1}(\varphi): 0 \leq\|\varphi\|_{C} \leq N+\| \bar{x} \mid\right\}\right\} \phi_{q}\left(\sum_{n=0}^{T} r(n)\right) \\
& =l^{-1} \max \left\{l\|y\|, \max \left\{f^{q-1}(\varphi): 0 \leq\|\varphi\|_{C} \leq N+\|\bar{x}\|\right\}\right\} \\
& \leq \rho_{2}=\|y\| \text { for } y \in K \cap \partial \Omega_{\rho_{2}} .
\end{aligned}
$$

By the second prat of Lemma 1.1, it follows that Φ has a fixed point $y \in K \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right)$ such that

$$
0<\rho_{1}<\|y\|=\|y\|_{[0, T+2]} \leq \rho_{2} .
$$

Suppose that y is the fixed point of Φ in $K \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right)$, then $x=y+\bar{x}$ is a positive solution of BVP (1.1).

In what follows, we shall consider the existence of twin positive solutions for BVP (1.1).

Theorem 2.2. If the following conditions are satisfied:
$\left(H_{5}\right) \lim _{\|\varphi\|_{C} \downarrow 0} \inf \frac{f(\varphi)}{\|\varphi\|_{C}^{p-1}}>M^{p-1} ; \lim _{\|\varphi\|_{C} \uparrow \infty} \inf \frac{f(\varphi)}{\|\varphi\|_{C}^{p-1}}>M^{p-1}$;
$\left(H_{6}\right)$ there exists a $p_{1}>0$ such that for $\forall 0 \leq\|\varphi\|_{C} \leq p_{1}+p_{0}$, one has $f(\varphi) \leq\left(l p_{1}\right)^{p-1}$, where $p_{0}=\max _{k \in[-\tau,-1]}|\psi(k)|$.
Then BVP (1.1) has at least two positive solutions x_{1}, x_{2} such that $0<\left\|x_{1}\right\|_{[0, T+2]}<$ $p_{1}<\left\|x_{2}\right\|_{[0, T+2]}$.

Proof. By $\left(H_{5}\right)$, there exists a $r: 0<r<p_{1}$ such that

$$
f(\varphi) \geq\left(M\|\varphi\|_{C}\right)^{p-1}, \quad\|\varphi\|_{C} \leq r
$$

For $y \in K,\|x\|=r$, we have

$$
r \geq\left\|y_{n}\right\|_{C} \geq \frac{1}{T+2+\beta}\|y\|=\frac{r}{T+2+\beta}, \quad n \in[\tau, T+1]
$$

Therefore we obtain a analogous inequality:

$$
\|\Phi(y)\| \geq\|y\| \text { for } y \in K \cap \partial \Omega_{r}
$$

where $\Omega_{r}=\{y \in K:\|y\|<r\}$.
On the other hand, we have from $\left(H_{5}\right)$ that there exists a $R>p_{1}$ such that

$$
f(\varphi) \geq\left(M\|\varphi\|_{C}\right)^{p-1}, \quad\|\varphi\|_{C} \geq \frac{R}{T+2+\beta}
$$

For $y \in K,\|y\|=R$, we have a analogous result to (2.8):

$$
\left\|y_{n}\right\|_{C} \geq \frac{1}{T+2+\beta}\|y\|=\frac{R}{T+2+\beta} \text { for } n \in[\tau, T+1]
$$

Furthermore, we have $\|\Phi(y)\| \geq\|y\|$ for $y \in K \cap \partial \Omega_{R}$, where $\Omega_{R}=\{y \in K:\|y\|<R\}$.
Now, by $\left(H_{6}\right)$, for $\forall y \in K$ with $\|y\|=p_{1}$ one has

$$
\begin{aligned}
\|\Phi y\| & =\|\Phi y\|_{[0, T+2]}=(\Phi y)(T+2) \\
& =B_{0}\left(\phi_{q}\left(\sum_{n=0}^{T} r(n) f\left(y_{n}+\bar{x}_{n}\right)\right)\right)+\sum_{m=0}^{T+1} \phi_{q}\left(\sum_{n=m}^{T} r(n) f\left(y_{n}+\bar{x}_{n}\right)\right) \\
& \leq(T+2+\beta) l p_{1} \phi_{q}\left(\sum_{n=0}^{T} r(n)\right) \\
& =p_{1}=\|y\| .
\end{aligned}
$$

According to Lemma 1.1, it follows that Φ has two fixed points y_{1}, y_{2} such that $y_{1} \in$ $K \cap \bar{\Omega}_{p_{1}} \backslash \Omega_{r}, y_{2} \in K \cap \bar{\Omega}_{R} \backslash \Omega_{p_{1}}$, where $\Omega_{p_{1}}=\left\{y \in K:\|y\|<p_{1}\right\}$, that is $0<$ $\left\|y_{1}\right\|<p_{1}<\left\|y_{2}\right\|$. Since $y_{i} \in K$, we have $y_{i}(t)>0, \forall t \in[0, T+2], i=1,2$. Let $x_{1}=y_{1}+\bar{x}, x_{2}=y_{2}+\bar{x}$, then x_{1}, x_{2} are positive solutions of BVP (1.1) satisfying $0<\left\|x_{1}\right\|_{[0, T+2]}<p_{1}<\left\|x_{2}\right\|_{[0, T+2]}$.

Theorem 2.3. If the following conditions are satisfied:
$\left(H_{7}\right) \lim _{\|\varphi\|_{C \downarrow 0}} \sup \frac{f(\varphi)}{\|\varphi\|_{C}^{p-1}}<l^{p-1}, \lim _{\|\varphi\|_{C} \uparrow \infty} \sup \frac{f(\varphi)}{\|\varphi\|_{C}^{p-1}}<l^{p-1}, \psi(t) \equiv 0, t \in[-\tau,-1]$;
$\left(H_{8}\right)$ there exists a $p_{2}>0$ such that for $\forall \frac{p_{2}}{T+2+\beta} \leq\|\varphi\|_{C} \leq p_{2}$, one has

$$
f(\varphi) \geq\left(\frac{M p_{2}}{T+2+\beta}\right)^{p-1}
$$

Then BVP (1.1) has at least two posivive solutions x_{1}, x_{2} satisfying $0<\left\|x_{1}\right\|_{[0, T+2]}<$ $p_{2}<\left\|x_{2}\right\|_{[0, T+2]}$.

The proof of Theorem 2.3 is analogous to Theorem 2.2 and thus is omitted.
The following Corollaries are obvious.
Corollary 2.1. BVP (1.1) has at least a positive solution if one of the following conditions is satisfied:
$\left(H_{3}^{\prime}\right) \lim _{\|\varphi\|_{C} \downarrow 0} \sup \frac{f(\varphi)}{\|\varphi\|_{C}^{p-1}}=0, \lim _{\|\varphi\|_{C} \uparrow \infty} \inf \frac{f(\varphi)}{\|\varphi\|_{C}^{p-1}}=+\infty, \phi(t) \equiv 0, t \in[-\tau,-1] ;$
$\left(H_{4}^{\prime}\right) \lim _{\|\varphi\|_{C} \downarrow 0} \inf \frac{f(\varphi)}{\|\varphi\|_{C}^{p-1}}=+\infty, \lim _{\|\varphi\|_{C} \uparrow \infty} \sup \frac{f(\varphi)}{\|\varphi\|_{C}^{p-1}}=0$.
Corollary 2.2. If the following conditions are satisfied:
$\left(H_{5}^{\prime}\right) \lim _{\|\varphi\|_{C \downarrow 0}} \inf \frac{f(\varphi)}{\|\varphi\|_{C}^{p-1}}=+\infty ; \lim _{\|\varphi\|_{C} \uparrow \infty} \inf \frac{f(\varphi)}{\|\varphi\|_{C}^{p-1}}=+\infty$;
$\left(H_{6}\right)$ there exists a $p_{1}>0$ such that for $\forall 0 \leq\|\varphi\|_{C} \leq p_{1}+p_{0}$, one has $f(\varphi) \leq\left(l p_{1}\right)^{p-1}$, where $p_{o}=\max _{k \in[-\tau,-1]}|\psi(k)|$.
Then $B V P(1.1)$ has got at least two positive solutions x_{1}, x_{2} satisfying $0<\left\|x_{1}\right\|_{[0, T+2]}<$ $p_{1}<\left\|x_{2}\right\|_{[0, T+2]}$.

Corollary 2.3. If the following conditions are satisfied:
$\left(H_{7}^{\prime}\right) \lim _{\|\varphi\|_{C} \downarrow 0} \sup \frac{f(\varphi)}{\|\varphi\|_{C}^{p-1}}=0, \lim _{\|\varphi\|_{C} \uparrow \infty} \sup \frac{f(\varphi)}{\|\varphi\|_{C}^{p-1}}=0, \phi(t) \equiv 0, t \in[-\tau,-1]$;
$\left(H_{8}\right)$ there exists a $p_{2}>0$ such that for $\forall \frac{p_{2}}{T+2+\beta} \leq\|\varphi\|_{C} \leq p_{2}$, one has $f(\varphi) \geq$ $\left(\frac{M p_{2}}{T+2+\beta}\right)^{p-1}$.
Then BVP (1.1) has got at least two positive solutions x_{1}, x_{2} satisfying $0<\left\|x_{1}\right\|_{[0, T+2]}<$ $p_{2}<\left\|x_{2}\right\|_{[0, T+2]}$.

3. Example

Example 3.1. Consider BVP:

$$
\begin{align*}
& \Delta \phi_{p}(\Delta x(t))+r(t) x^{3}(t-1)=0, \quad t \in[0, T] \tag{3.1}\\
& x(-1)=0 ; \quad x(0)-B_{0}(\Delta x(0))=0 ; \quad x(T+1)=X(T+2)
\end{align*}
$$

where $\tau=1<T, 1<p<4, f(\varphi)=\varphi^{3}(-1), r(t)$ satisfies $\left(H_{1}\right)$. As $\varphi \in C^{+},\|\varphi\|_{C} \rightarrow 0$ we have that

$$
\frac{f(\varphi)}{\|\varphi\|_{C}^{p-1}}=\frac{\varphi^{3}(-1)}{\|\varphi\|_{C}^{p-1}}=\frac{\|\varphi\|_{C}^{3}}{\|\varphi\|_{C}^{p-1}}=\|\varphi\|_{C}^{4-p} \rightarrow 0
$$

That is to say that $\lim _{\|\varphi\|_{C} \downarrow 0} \sup \frac{f(\varphi)}{\|\varphi\|_{C}^{p-1}}=0$ holds.
On the other hand, suppose that $\varphi \in C^{+}$, then $\|\varphi\|_{C}=\varphi(-1)$, thus, as $\|\varphi\|_{C} \rightarrow \infty$ we get

$$
\frac{f(\varphi)}{\|\varphi\|_{C}^{p-1}}=\frac{\varphi^{3}(-1)}{\|\varphi\|_{C}^{p-1}}=\|\varphi\|_{C}^{4-p} \rightarrow+\infty
$$

That is to say that $\lim _{\|\varphi\|_{C} \downarrow 0} \inf \frac{f(\varphi)}{\|\varphi\|_{C}^{p-1}}=\infty$ holds.
According to Corollary 2.1, it follows that BVP (3.1) has at least a positive solution $y(t)$.

Example 3.2. Consider BVP:

$$
\begin{align*}
& \Delta \phi_{p}(\Delta x(t))+r\left[x^{\frac{1}{9}}(t-1)+x^{\frac{1}{3}}(t-1)\right]=0, \quad t \in[0, T] \\
& x(t)=\psi(t) ; \quad t=-1 ; \quad x(0)-B_{0}(\Delta x(0))=0 ; \quad x(T+1)=X(T+2) \tag{3.2}
\end{align*}
$$

where $\tau=1<T, r>0$ is a constant. $\psi(t) \geq 0,\|\psi\|_{C}=m_{0}=|\psi(-1)|>0, p=\frac{7}{6}$, $q=7, f(\varphi)=\varphi^{\frac{1}{9}}(-1)+\varphi^{\frac{1}{3}}(-1)$. Suppost that $\varphi \in C^{+}$, then $\|\varphi\|_{C}=\varphi(-1)$, thus, as $\|\varphi\|_{C} \rightarrow 0$ or $\|\varphi\|_{C} \rightarrow+\infty$ we get

$$
\frac{f(\varphi)}{\|\varphi\|_{C}^{p-1}}=\frac{\varphi^{1 / 9}(-1)+\varphi^{1 / 3}(-1)}{\|\varphi\|_{C}^{p-1}}=\|\varphi\|_{C}^{\frac{10-9 p}{9}}+\|\varphi\|_{C}^{\frac{4-3 p}{3}} \rightarrow+\infty .
$$

We deduce that

$$
l=\frac{1}{(T+2+\beta) \phi_{q}\left(\sum_{n=0}^{T} r(n)\right)}=\frac{1}{(T+2+\beta) \phi_{q}((T+1) r)}=\frac{1}{(T+2+\beta)(T+1)^{6} r^{6}}
$$

then for $\forall m>0$ and $0 \leq\|\varphi\|_{C} \leq m+m_{0}$, one has

$$
0 \leq f(\varphi) \leq\left(m+m_{0}\right)^{\frac{1}{9}}+\left(m+m_{0}\right)^{\frac{1}{3}}=\left(m+m_{0}\right)^{\frac{1}{9}}\left(m^{1-p}+\frac{\left(m+m_{0}\right)^{\frac{2}{9}}}{m^{p-1}}\right) m^{p-1}
$$

Define $H(m)=\left(m+m_{0}\right)^{\frac{1}{9}}\left(m^{1-p}+\frac{\left(m+m_{0}\right)^{\frac{2}{9}}}{m^{p-1}}\right)$, then

$$
\begin{equation*}
\lim _{m \rightarrow 0} H(m)=+\infty, \quad \lim _{m \rightarrow+\infty} H(m)=+\infty \tag{3.3}
\end{equation*}
$$

Suppose that, r, T and m_{0} satisfy

$$
\left(2 m_{0}\right)^{\frac{1}{9}}\left(m_{0}^{-\frac{1}{6}}+2^{\frac{2}{9}} m_{0}^{\frac{1}{18}}\right)<\frac{1}{r(T+1)(T+2+\beta)^{\frac{1}{6}}}=l^{p-1}
$$

then $H\left(m_{0}\right)=\left(2 m_{0}\right)^{\frac{1}{9}}\left(m_{0}^{-\frac{1}{6}}+2^{\frac{2}{9}} m_{0}^{\frac{1}{18}}\right)<l^{p-1}$ holds. By the continuity of $H(m)$ and (3.3), we can found a $m>0$ (for example $m=m_{0}$) such that $f(\varphi)<H(m) m^{p-1}<$ $(l m)^{p-1}$ for $0 \leq\|\varphi\|_{C} \leq m+m_{0}$. By the Corollary 2.2, we know that BVP (3.2) has at least two positive solutions.

References

[1] R. P. Agarwal and J. Henderson, Positive solutions and nonlinear eigenvalue problems for third-order difference equationsm, Comput. Math. Appl. 36(1998), 347-355.
[2] Y. J. Liu and W. G. Ge, Twin positive solutions of boundary value problems for finite difference equations with p-Laplacian operator, J. Math. Anal. Appl. 278(2003), 551-561.
[3] A. Cabada, Extremal solutions for the difference ϕ-Laplacian problem with nonlinear functional boundary conditions, Comput. Math. Appl. 42(2001), 593-601.
[4] J. Henderson, Positive solutions for nonlinear difference equations, Nonlinear Stud. 4(1997), 29-36.
[5] P. X. Weng and Z. H. Guo, Existence of positive solutions for nonlinear functional difference equation with p-Laplacian operator, Acta Mathematica Sinica 49(2006), 187-194.
[6] L. H. Erbe and H. Y. Wang, On the existence of positive solutions of ordinary differential equations, Proc. Amer. Math. Soc. 120(1994), 743-748.
[7] F. H. Wong, Existence of positive solutions for m-Laplacian Bvps., Appl. Math. Letters 12(1999), 11-17.
[8] R. Manasevich and F. Zanolin, Time-mapping and multiplicity of solutions for the onedimensional p-Laplacians, Nonlinear Analysis 21(1993), 269-291.
[9] X. M. He and W. G. Ge, Existence of positive solutions for the one-dimensional p-Laplacian equations, Acta Mathematica Sinica 46(2003), 805-810.
[10] P. X. Weng and D. Q. Jing, Existence of positive solutions for boundary value problem of second-order FDE, Computers and Mathematics with Applications 37(1999), 1-9.
[11] L. H. Erbe and Q. K. Kong, Boundary value problems for singular second-order functional differential equations, J. Comput. Appl. Math. 53(1994), 377-388.
[12] M. A. Krasnosel'skii, Positive Solutions of Operator Equations, Noordhoof, Groningen, 1964.

School of Applied Mathematics, Guangdong University of Technology, Guangzhou, 510006, China.
E-mail: scx168@sohu.com

[^0]: Received February 22, 2006.
 2000 Mathematics Subject Classification. 39A05.
 Key words and phrases. p-Laplacian boundary value problem, functional difference equations, positive solution, fixed point theorem in cones.
 Supported by Natural Science Fund of Guangdong Province, China.

