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ON THE STRUCTURE OF GENERALIZED POLYHEDRAL

SEMIGROUPS WITH ZERO DEFICIENCY

K. AHMADIDELIR, H. DOOSTIE AND R. GHOLAMI

Abstract. The polyhedral or triangle groups and some generalizations of them, such as
binary polyhedral groups, have been studied by several authors. In this paper, we intro-
duce two classes of semigroups that have the same presentation as these generalizations
of polyhedral groups and investigate their structures, such as finiteness, their relation-
ship with the groups presented by the same presentation.

1. Introduction

The polyhedral groups (l ,m,n), for l ,m,n > 1 are defined by the presentation

〈a,b,c | al
= bm

= cn
= abc = 1〉, (1)

or

〈a,b | al
= bm

= (ab)n
= 1〉 (2)

and are classic in group theory. They are important both in algebra and [4] geometry. It is

known that the polyhedral group (l ,m,n) is finite if and only if 1
l +

1
m +

1
n > 1, and in this case

the order of them is obtained by the formula

2l mn

mn +nl + l m − l mn
.

For more details see [7, 8, 9, 11].

Threlfall (1932) considered the larger group 〈l ,m,n〉 defined by the [4] presentation:

〈a,b,c | al
= bm

= cn
= abc〉, (3)

and called them the binary polyhedral groups. Since (l ,m,n) occurs as a factor group, 〈l ,m,n〉

is infinite when 1
l +

1
m +

1
n É 1. If 1

l +
1
m +

1
n > 1, it can be shown that, the order of 〈l ,m,n〉 is

twice that of (l ,m,n), namely 4lmn
mn+nl+lm−lmn . For more information on these groups see [9].
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Another generalization of polyhedral groups are defined by the presentation

〈a,b | al
= bm

= (ab)n
〉, (4)

which is the generalization of the second presentation of (l ,m,n). By adjoining a new gener-

ator t = ab to this presentation we have:

〈a,b, t | al
= bm

= t n , ab = t〉. (5)

Now, if the new relation t n = 1 is adjoined then we obtain a new group presented by it, which

is isomorphic to a factor group presented by (4):

〈a,b, t | al
= bm

= t n
= 1, abt−1

= 1〉.

But, by setting t−1 = c we have:

〈a,b,c | al
= bm

= cn
= abc = 1〉.

The groups presented by the latter presentation is isomorphic to the groups presented by the

former presentation by the Tietze Transformations. So, the groups presented by (4) have the

polyhedral groups as factor groups of them, and therefore are infinite if 1
l +

1
m +

1
n É 1.

Now, consider the presentation

〈a,b | al
= bm, (ab)n

= 1〉. (6)

The groups presented by this presentation are the Miller’s generalization of the polyhedral

groups having them for a factor group [9].

In this paper we consider the semigroups presented by the presentations (4) and (6), and

investigate their structure and their relationship with the groups presented by (4) and (6).

To be more precise, let:

π1 = 〈a,b | al
= bm

= (ab)n
〉,

and

π2 = 〈a,b | al
= bm , a(ab)n

= a〉.

Our notation is standard and, following [1, 2, 9, 14], we recall the notion of presentation

〈X | R〉 of formal generators X and relators R where 〈X |R〉 is defined appropriately for finitely

generated semigroups and for finitely generated monoids. For more information on group,

semigroup and monoid presentations and the related algorithms one may consult [1, 2, 3, 12,

13, 14].



i

i

i

i

ON THE STRUCTURE OF GENERALIZED POLYHEDRAL SEMIGROUPS 137

To avoid confusion we denote a semigroup presentation by Sg (π), a monoid presentation

by Mon(π) and a group presentation by Gp(π). Note that we will refer to [1, 2, 3, 4, 5, 6, 12, 13,

14] for certain results which are necessary for our calculations.

Our main results in this paper are the following theorems:

Theorem A. Sg (π1) is finite if and only if l É 2,m É 2. If l = 1 or m = 1, then Sg (π1) is mono-

genic. But if l = m = 2, then it has a minimal two-sided ideal I such that I ∼= Gp(π1), and

so

|Sg (π1)| = |Gp(π1)|+4n = 4n2.

Theorem B. For every l ,m,n Ê 2, |Sg (π2)| = |Gp(π2)|+ (m −1).

So Sg (π2) is finite if and only if Gp(π2) is finite.

Some preliminaries are necessary. For an alphabet A let A+ be the free [4] semigroup

over A, and let A∗ = A+∪ǫ be the free monoid over A. For a subset R of A+× A+ (respectively

of A∗× A∗) let ρ be a congruence relation generated by R , then the semigroup S = A+/ρ (the

monoid M = A∗/ρ) will be denoted by 〈A | R〉 which is called a semigroup presentation for S

(a monoid presentation for M ). To lessen the likelihood of confusion, for ω1,ω2 ∈ A+ we write

ω1 ≡ ω2 if ω1 and ω2 are identical words, and ω1 = ω2 if they represent the same element of

S (i.e. if (ω1,ω2) ∈ ρ). Thus, for example, if A = {a,b} and R is {ab = ba}, then aba = a2b but

aba 6≡ a2b.

Proposition 1.1. Let π= 〈X |R〉 be a presentation. If Sg (π) is finite then, Gp(π) is finite too (So,

Sg (π) is infinite if Gp(π) is infinite).

Proof. Let π= 〈X | R〉, where X is a non-empty finite set and R a collection of relations α= β

with α and β non-empty words over X . Let G = Gp(π) and S = Sg (π). If S is finite then, for

each x ∈ X , there exist i > j with xi = x j in S, and then xi− j = 1 in G ; so every element of X

has finite order in G , giving that G is a homomorphic image of S, and so G is finite. Thus, if G

is infinite, then S must be infinite. ���

Proposition 1.2. Let G =Gp(π1). Then G
G ′ is infinite if and only if

1

n
=

1

l
+

1

m
. (⋆)

Also, z = al has infinite order when (⋆) holds, and so Z (G) is infinite in this case.
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Proof. G
G ′ has the presentation:

〈a,b | al
= bm

= (ab)n , [a,b]= 1〉

= 〈a,b | al b−m
= 1, anbn−m

= 1, ab = ba〉.

So the relation matrix of G
G ′ is:

[

l −m

n n −m

]

.

Now, G
G ′ is infinite if and only if the determinant of this matrix is equal to zero, i.e., l (n −m)−

(−m)n = 0, or, 1
n
=

1
l
+

1
m

.

Now, when (⋆) holds, by exhibiting a suitable homomorphism onto Z, we can show that

z = al has infinite order. But 〈al 〉 is a central subgroup of G . So, Z (G) is infinite. ���

Proposition 1.3. Let Gp(π1) = [l ,m,n]. Then the only finite cases of [l ,m,n] are:

Table 1

[l,m,n] Order

[1,m,n] mn +n −m

[l ,1,n] l n +n − l

[2,2,n], (n > 1) 4n(n −1)

[2,n,2] ∼= [n,2,2] 4n

[2,3,2] ∼= [3,2,2] 12

[2,3,3] ∼= [3,2,3] 72

[3,4,2] ∼= [4,3,2] 48

[2,4,3] ∼= [4,2,3] 240

[2,3,4] ∼= [3,2,4] 336

[3,5,2] ∼= [5,3,2] 120

[2,5,3] ∼= [5,2,3] 320

[2,3,5] ∼= [3,2,5] 2280

Proof. By a theorem of Wiegold in [15],

G = 〈a,b | al
= bm

=ω(a,b)〉,

(where ω(a,b) is a word in terms of generators a and b) is finite if and only if G
G ′ and G

〈a l 〉
=

〈a,b | al = bm =ω(a,b) = 1〉 are both finite. So, Gp(π1) = [l ,m,n] is finite if and only if G
G ′ and

H = 〈a,b | al = bm = (ab)n = 1〉 are both finite. But by Proposition 1.2, G
G ′ is finite if and only if

1
n
6= 1

l
+ 1

m
and H is finite if and only if 1

l
+ 1

m
+ 1

n
> 1. So, the above cases are the only cases in

which the group Gp(π1)= [l ,m,n] is finite.
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Now, since H = (l ,m,n) is the polyhedral group and the finite cases of H are:

(1,m,n) ∼=C|n−m|, (2,2,n) ∼=D2n ,

(2,3,3) ∼= A4, (2,3,4) ∼= S4, and (2,3,5) ∼= A5,

and since

(l ,m,n)∼= (m,n, l )∼= (n,m, l ),

we have
[2,2,n]

〈a2〉
=

[2,2,n]

〈b2〉
∼= (2,2,n) ∼=D2n .

On the other hand |a|= 4(n−1) in [2,2,n] and so |a2| = 2(n−1). Therefore, |[2,2,n]| = 4n(n−1).

The order of other cases can be calculated easily. ���

Some important facts about the groups presented by π2 are gathered in the following

proposition (For more information about these groups one may see [9, pp.71-76]):

Proposition 1.4. Let Gp(π2) = 〈l ,m|n〉, (l ,m,n > 1) (If at least one of the l , m, or n is equal to

1 then we have the degenerate case and 〈l ,m|n〉 is cyclic). Then we have the followings:

(i) 〈l ,m|n〉 is finite if and only if k = l m + l n +mn − l mn > 0,

(ii) |〈l ,m|n〉| = |(l ,m,n)| ·o(al ) = |(l ,m,n)| ·o(bm),

(iii) If k > 0, then o(al )= o(bm)= 2(l+m)n
k

, and so |〈l ,m|n〉| =
4(l+m)lmn2

k2 ,

(iv) Z (〈l ,m|n〉)= 〈al 〉 = 〈bm〉, and so the centre is cyclic of order 2(l+m)n
k ,

(v) 〈l ,m|n〉∼= 〈m, l |n〉,

(vi) The only cases that 〈l ,m|n〉 is finite, are:



i

i

i

i

140 K. AHMADIDELIR, H. DOOSTIE AND R. GHOLAMI

Table 2

〈l ,m|n〉 Isomorphic to Order

〈2,2|n〉 〈2,2,n〉×Cn (n odd ) 2n2 (n ∈N)

〈2,m|2〉 ∼= 〈m,2|2〉 Dm ×Cm+2 (m odd ) 2m(m +2) (m ∈N)

〈3,3|2〉 96

〈3,2|3〉 ∼= 〈2,3|3〉 〈2,3,3〉×C5 120

〈4,3|2〉 ∼= 〈3,4|2〉 336

〈2,4|3〉 ∼= 〈4,2|3〉 〈2,3,4〉×C9 432

〈2,3|4〉 ∼= 〈3,2|4〉 480

〈3,5|2〉 ∼= 〈5,3|2〉 1920

〈2,5|3〉 ∼= 〈5,2|3〉 〈2,3,5〉×C21 2520

〈2,3|5〉 ∼= 〈3,2|5〉 〈2,3,5〉×C25 3000

Proof. See [9, pp.71-76]. ���

2. Proof of Theorem A

First we prove a lemma:

Lemma 2.1. In the semigroup S, where S = Sg (π1) and l = m = 2, the element a4(n−1) is an

idempotent of S.

Proof. Let S = Sg (π1) and l = m = 2. Then by the first and second relations of π1 we get the

following equations consecutively:

a4(n−1)+3
= a · (a2)2n−1

= a ·b2
· (a2)2n−2)

= a ·b ·a2
·b · (a2)2n−3

= a ·b ·a ·b2
·a ·b · (a2)2n−4

= a ·b ·a ·b ·a2
·b ·a ·b · (a2)2n−5

= a ·b ·a ·b ·a ·b2
·a ·b ·a ·b · (a2)2n−6

= a ·b ·a ·b ·a ·b ·a2
·b ·a ·b ·a ·b · (a2)2n−7

=
...

...
...

= (ab)(ab) · · ·(ab)
︸ ︷︷ ︸

·(ba)(ba) · · ·(ba)
︸ ︷︷ ︸

·b (n times ab, n −1 times ba)

= (ab)n
· (ba)n−1

·b

= a2
· (ba)n−1

·b
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= a · (ab)n
= a ·a2

= a3.

Now, we have:

a4(n−1)
·a4(n−1)

= a4(n−1)
·a3

·a4(n−1)−3

= a4(n−1)+3
·a4(n−1)−3

= a3
·a4(n−1)−3

= a4(n−1). �

Proof of Theorem A. Let S = Sg (π1), G = Gp(π1). If m > 2 or l > 2, then by Proposition 1.3,

G is infinite except from the cases in Table 1, so by Proposition 1.1, S is infinite for the same

values of l ,m and n. Now, if l = 2 and m = 3, then none of the relations in π1 can be applied

to a word of the form (ab2)k , (k ∈N), and hence the elements:

ab2, (ab2)2, (ab2)3, . . .

are all distinct in S, and so it is infinite. The same is true for the cases l = 2,m = 4, with words

of the form (ab3)k ; l = 2,m = 5, with words of the form (ab4)k ; l = 2,m = 5, with words of the

form (ab4)k ; l = 3,m = 4, with words of the form (a2b3)k ; and l = 3,m = 5, with words of the

form (a2b4)k , (k ∈N). Also if we substitute the values of l and m in the above cases we obtain

anti-isomorphic semigroups with the corresponding semigroups, and so the remaining cases

in the Table 1 are also infinite. Obviously, if l = 1 or m = 1, then G and also S are cyclic.

Finally, let l = m = 2. First we show that S has a unique minimal left ideal and a unique

minimal right ideal. We claim that S1a3 is the unique minimal left ideal and a3S1 is the unique

minimal right ideal of M . We have to show that:

∀ω ∈ {a,b}+,∃ω1 ∈ {a,b}+; ω1ω= a3 (1),

∀ω ∈ {a,b}+,∃ω1 ∈ {a,b}+; a3 =ωω1 (2).

The proof of (1) is by induction on |ω| (the length of the word ω). If |ω| = 1 then ω ≡ a or

ω≡ b. If ω≡ a, we set ω1 ≡ a2 and then, ω1ω= a2 ·a = a3. If ω≡ b, we put ω1 ≡ ab and then,

ω1ω= ab ·b = a ·b2 = a ·a2 = a3.

Now, suppose that the assertion holds for all ω such that |ω| < k + 1[4](k ∈ N), and let

|ω| = k +1. If ω≡ω′a, since |ω′| = k < k +1, then by the induction hypothesis we get:

∃ω′
1 ∈ {a,b}+; ω′

1ω
′
= a3.

Letting ω1 ≡ a4(n−1)−1ω′
1 gives us (by Lemma 2.1):

ω1ω= a4(n−1)−1ω′
1 ·ω

′

︸ ︷︷ ︸
a = a4(n−1)−1

·a3
·a = a4(n−1)+3

= a3.
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If ω≡ω′′b, since |ω′′| = k < k +1, then

∃ω′′
1 ∈ {a,b}+; ω′′

1ω
′′
= a3.

So, by considering ω1 ≡ a4(n−1)−3baω′′
1 we deduce that (again by Lemma 2.1):

ω1ω = a4(n−1)−3baω′′
1 ·ω

′′

︸ ︷︷ ︸
b = a4(n−1)−3ba ·a3 ·b = a4(n−1)−3ba4b

= a4(n−1)−3a4b2 = a4(n−1)+3 = a3.

This completes the proof of (1), showing that S1a3 is the unique minimal left ideal of S.

To prove (2) we use a similar method. If |ω| = 1, then ω ≡ a or ω ≡ b. If ω ≡ a, we set

ω1 ≡ a2 and we get the identity ωω1 = a ·a2 = a3. If ω≡ b, we set ω1 ≡ ba. Then, ωω1 = b ·ba =

b2 ·a = a3.

Letting ω= aω′ where |ω| = k +1 and |ω′| = k yields

∃ω′
1 ∈ {a,b}+; ω′ω′

1 = a3.

So, by defining ω1 ≡ω′
1a4(n−1)−1, we get:

ωω1 = aω′
·ω′

1
︸ ︷︷ ︸

a4(n−1)−1
= a ·a3

·a4(n−1)−1
= a4(n−1)+3

= a3.

In the case ω≡ bω′′ where |ω′′| = k < k +1, the same argument gives us

∃ω′′
1 ∈ {a,b}+; ω′′ω′′

1 = a3,

and, by taking ω1 ≡ω′′
1 aba4(n−1)−3, we conclude that:

ωω1 = bω′′
·ω′′

1
︸ ︷︷ ︸

aba4(n−1)−3 = b ·a3 ·aba4(n−1)−3 = b2a4 ·a4(n−1)−3

= a6 ·a4(n−1)−3 = a4(n−1)+3 = a3.

Hence a3S1 is the unique minimal right ideal of S.

Now, if we denote the minimal (two-sided) ideal of S by I , then a3S1 = I = S1a3. But

a3S1 ∩S1a3 = I is a group. Consequently, as a result of the Theorem 4 of [1], I ∼=Gp(π1).

To calculate the order of Sg (π1), since a2 = b2 = (ab)n , then every word that contains

a subword ab2 = b2a = a3, is in I . So the only words that are not in I are the followings:

a,b, a2, ab,ba, aba,bab, ..., (ab)n−1a,b(ab)n−1, (ba)n . All of these 4n elements of S are pair-

wise distinct and also each of them is alone in its H −class and the number of H −classes is

4n +1. So, |S| = |I |+4n or,

|Sg (π2)| = |Gp(π2)|+4n = 4n(n −1)+4n = 4n2.
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Trivially by the above discussion, all the Green’s relations are equal in S, i.e.; H = L =

R =D =J . This completes the proof. ���

Corollary 2.2. The semigroup S where, S = Sg (π1) has an unique idempotent a4(n−1).

Proof. By the Lemma 2.1, a4(n−1) is an idempotent of S = Sg (π1). But by the Theorem A, it

belongs to the unique minimal ideal of S, I ∼=G =Gp(π2), and so corresponds to the identity

element of G . Also, none of the elements of S − I is an idempotent of S. ���

3. Proof of Theorem B

An almost similar method to that of Theorem A will be used here.

Proof of Theorem B. Let S = Sg (π2). We show that S1al−1 and al−1S1 are the unique left and

unique right minimal ideals of S, respectively. As well as the proof of Theorem A we have to

show, by induction on the length of ω, that:

∀ω ∈ {a,b}+, ∃ω1 ∈ {a,b}+; ω1ω= al−1

Let l ,m,n Ê 2. If |ω| = 1 then ω≡ a or ω≡ b. If ω≡ a (in S), by setting ω1 ≡ b(ab)n−1al−1 we

get:

ω1ω = b(ab)n−1al−1 ·a = b(ab)n−1al = al b(ab)n−1

= al−2a ·ab(ab)n−1 = al−2a · (ab)n = al−2a = al−1.

If ω≡ b (in S), by putting ω1 ≡ al−1(ab)n−1a, we get:

ω1ω= al−1(ab)n−1a ·b = al−1(ab)n
= al−2

·a(ab)n
= al−2

·a = al−1.

Now, suppose that the assertion holds for all words with length < k +1, where k ∈N, and

ω is a word of length |ω| = k +1. If ω≡ω′a, then by the induction hypothesis,

∃ω′
1 ∈ {a,b}+; ω′

1ω
′
= al−1.

So, by defining ω1 ≡ b(ab)n−1ω′
1, we conclude that

ω1ω = b(ab)n−1ω′
1 ·ω

′

︸ ︷︷ ︸
a = b(ab)n−1 ·al−1 ·a = al ·b(ab)n−1

= al−2 ·a(ab)n = al−2 ·a = al−1.

If ω≡ω′′b then,

∃ω′′
1 ∈ {a,b}+; ω′′

1ω
′′
= al−1,
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and considering ω1 ≡ b(ab)n−2a2ω′′
1 gives us

ω1ω = b(ab)n−2a2ω′′
1 ·ω

′′

︸ ︷︷ ︸
b = b(ab)n−2a2 ·al−1 ·b = al ·b(ab)n−2 ·ab

= al−2 ·a(ab)n = al−2 ·a = al−1.

Therefore, S1al−1 = Sal−1 ∪ {al−1} is the unique minimal left ideal of S.

To prove that al−1S1 is the unique minimal right ideal of S it suffices to show that

∀ω ∈ {a,b}+, ∃ω1 ∈ {a,b}+; al−1
=ωω1.

If |ω| = 1, then ω≡ a or ω≡ b. If ω≡ a, we set ω1 ≡ al−2(ab)n , (l > 2) and we get the identity

ωω1 = a · al−2(ab)n = al−2 · a(ab)b = al−1. (If l = 2, we just set ω1 ≡ (ab)n). If ω ≡ b, we set

ω1 ≡ (ab)n−1al . Then,

ωω1 = b · (ab)n−1al
= al

·b(ab)n−1
= al−2

·a(ab)n
= al−1.

Letting ω= aω′ where |ω| = k +1 and |ω′ |= k yields

∃ω′
1 ∈ {a,b}+; ω′ω′

1 = al−1.

So, by defining ω1 ≡ω′
1b(ab)n−1, we get:

ωω1 = aω′
·ω′

1
︸ ︷︷ ︸

b(ab)n−1
= a ·al−1

·b(ab)n−1
= al−2

·a(ab)n
= al−1.

In the case ω≡ bω′′ where |ω′′| = k < k +1, the same argument gives us

∃ω′′
1 ∈ {a,b}+; ω′′ω′′

1 = al−1,

and, by taking ω1 ≡ω′′
1 a(ab)n−1, we conclude that:

ωω1 = bω′′
·ω′′

1
︸ ︷︷ ︸

a(ab)n−1
= b ·al−1

·a(ab)n−1
= al b(ab)n−1

= al−2
·a(ab)n

= al−1.

Hence al−1S1 is the unique minimal right ideal of S.

Now, if we denote the minimal (two-sided) ideal of S by I , then al−1S1 = I = S1al−1.

Consequently, al−1S1 ∩S1al−1 = I is a group, indeed, the group I ∼=Gp(π2). To calculate the

order of Sg (π2), since a2 ·b(ab)n−1 = a, then a ∈ a2S1 and a2S1 = aS1 (for, a2 ∈ aS1). This

yields in turn ai S1 = aS1, for every positive integer i . Now, a = a2b(ab)n−1 ∈ a2S1 = al−1S1

and so a ∈ S1al−1. So S1al = S1al−1 = ·· · = S1a and then, by S1bm = S1al , we get

S1ai
= ai S1

= I = S1bm (∀i = 1, . . . , l ).
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All of the elements of S except b,b2, . . . ,bm−1 are in I ∼= Gp(π2) because they are pairwise

distinct and

{b,b2, . . . ,bm−1}∩ ({a,b}+ \ {bi
| i ∈N}) =∅.

Thus, |S| = |I |+ (m −1) or,

|Sg (π2)| = |Gp(π2)|+ (m −1).

Also every bi (1 É i É m − 1) is alone in its H −class and the [4] number of H −classes

is (m −1)+1 = m ({Ha
∼= Gp(π2), Hb = {b}, Hb2 = {b2}, . . . , Hbm−1 = {bm−1}}). Trivially by the

above discussion, all the Green’s relations are equal in S, i.e.; H = L = R = D = J . This

completes the proof. ���

Corollary 3.1. In the semigroup S, where S = Sg (π2) the element (ab)n is the unique idempo-

tent of S.

Proof. Let S = Sg (π2). Then by the first and second relations of π2 we get the following equal-

ities consecutively:

(ab)n = ab · (ab)n−1

= a(ab)n ·b(ab)n−1

= a(ab)(ab)n−1 ·b(ab)n−1

= a ·a(ab)n ·b(ab)n−1 ·b(ab)n−1

= a2 ·a(ab)n ·b(ab)n−1 ·b(ab)n−1 ·b(ab)n−1

= a3 · (ab)n · (b(ab)n−1)3

=
...

...
...

= al · (ab)n · (b(ab)n−1)l

= (ab)n ·al · (b(ab)n−1)l

= (ab)n ·al−1 ·a(b(ab)n−1)(b(ab)n−1)l−1

= (ab)n ·al−1 · (ab)n(b(ab)n−1)l−1

= (ab)n ·al−2 ·a(ab)n · (b(ab)n−1)l−1

= (ab)n ·al−2 ·a · (b(ab)n−1) · (b(ab)n−1)l−2

= (ab)n ·al−2 · (ab)n · (b(ab)n−1)l−2

= (ab)n ·al−3 ·a(ab)n · (b(ab)n−1)l−2

= (ab)n ·al−3 ·a · (b(ab)n−1)l−2

=
...

...
...

= (ab)n ·a ·a(ab)n · (b(ab)n−1)2

= (ab)n ·a ·a ·b(ab)n−1 ·b(ab)n−1

= (ab)n ·a(ab)n ·b(ab)n−1

= (ab)n ·a ·b(ab)n−1 = (ab)n · (ab)n .
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Now, by the Theorem B, (ab)n belongs to the unique minimal ideal of S = Sg (π2) which is a

group and so it must be unique corresponding to identity element of G =Gp(π2). Also, none

of the elements of S − I = {b,b2, . . . ,bm−1} is an [4] idempotent of S. ���

Remarks 3.2. We have obviously:

Mon(π1) ∼= Sg (π1)∪ {1}.

Also, with a similar method as in proof of Theorem B, we can show that if

π= 〈a,b,c | al
= bm

= cn , abc = 1〉,

then Mon(π) is a group and Mon(π)∼=Gp(π). On the other hand, if we let

π3 = 〈a,b | am
= bl , (ab)nb = b〉,

π4 = 〈a,b | al
= bm , (ab)n a = a〉,

π5 = 〈a,b | am
= bl ,b(ab)n

= b〉,

then the groups presented by πi , (i = 2,3,4,5), are all isomorphic, but the semigroups pre-

sented by π2 and π3 are anti-isomorphic. While the anti-isomorphic semigroups presented

by π4 and π5 are always infinite (for every values of l ,m,n > 1).
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