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INTEGRAL OPERATORS AND UNIVALENT FUNCTIONS

KIAH WAH ONG, SIN LENG TAN AND YONG ENG TU

Abstract. In this paper, we define two new integral operators L¥ and L; which are itera-
tive in nature. We show that for f(z) = z+apz*+---+a,z" +--- with radius of convergence
larger than one, L f(z) and Ly f (z) when restricted on E = {z: |z| < 1} will eventually be
univalent for large enough k. We then show that these are the best possible results by
demonstrating that there exists a holomorphic function T(z) in normalized form and
with radius of convergence equal to one such that L* T(z) and L. T(z) fail to be univalent
when restricted to E for every k € N.

1. Introduction

Let E be the unit disk {z : |z| < 1} and S be the set of univalent functions in E which can
be normalized to the conditions f(0) = 0 and f’(0) = 1. In 1960 Biernacki [1] falsely claimed
that F(z) = [; @ d( is in S whenever f € S. Three years later this error was notice by Krzyz
and Lewandowski [3, p.149]. Nevertheless, Biernacki’s consideration of the integral transform
gave rise to the study of the following problem:

for what choices of the parameter a is Fy(z) = [; (@)a d( in S whenever f € S.

F,(z) defined above is known as integrals of the first type. Many results were obtained by
Merkes and Wright [4] in the study of this integral. Other types of integral operators are also
studied by researchers in this area. For example G, (2) = f¢ [ f'(()]" d{ is known as integrals
of the second type and theorems similar to Fy(z) were proved by Pfaltzgraff [5], Merkes and
Wright [4]. What we consider in this paper are slightly different, we are interested in iterative
integral operators that take normalized functions which are not necessarily univalent into the
class S when restricted to E.

Corresponding author: Kiah Wah Ong.
2010 Mathematics Subject Classification. Primary 30C55; secondary 30C45.
Key words and phrases. Univalent functions, integral operator.

215


http://dx.doi.org/10.5556/j.tkjm.43.2012.215-221

216 K. W.ONG, S. L. TANAND Y. E. TU

2. Integral Operators L* and L;

We define Sg=; as the class of holomorphic functions f which are normalized and have
radius of convergence R, where R is larger or equal to one. Thus for each f € Sg>;, f hasa
Taylor series expansion of the form

f(2) :z+azzz+a3z3+---, |z| <R, for R=1.

We define Sg- as the class of holomorphic functions f which are normalized and have radius
of convergence R, where R is strictly greater than one.

For f € Sp>1 or f € Sg>1, f has a Taylor series expression of the form f(z) = z+ arz?+---,
hence z = 0 is a removable singularity of f(z)/z. If we define f(z)/z = 1 when z = 0, then

f(2)/z is holomorphic and the complex integral is independent of path.

We then introduce the following two operators which act on f € Sg>1 and their defini-

tions are given below.

Definition 2.1. For f(z) € Spx let

<1
Lf(z) = f 2z da
0 <1

x 1
=z+ ) —anz".
n=2 "1

L*f(2) = L(Lf(2))
x 1
=z+ ), —zanz".
n=21
In general, for positive integer k, we have
L*f(2) = LL* f(2))

=z+ ), —anz".
n=21

Definition 2.2. For f € Sg>, let

k! Z [Zk [Zk-1 22 ]
ka(z)zﬁf f f f —f(z1) dzydzpdz3 -~ dzy
z 0o Jo Jo 0 21

1
— - n
=z+ E — T anZ’.

n:2( n-1 )

Notice that in the Definition 2.1 and 2.2, I.! f(2) and L, f(z) are both equal to F(z) =

Iy @ d{ which is the integral consider by Biernacki in his 1960 paper. We next show that



INTEGRAL OPERATORS AND UNIVALENT FUNCTIONS 217

for f € Sg>1, there exists a positive integer N such that if k = N, then Lk f(2) and L f () re-
stricted to E are univalent and belongs to S.

We will need the following results for the proof in the next section. The first is the cele-
brated Bieberbach’s theorem proved by Louis de Branges in 1985. For the proof of this theo-
rem, please refer to [2].

Theorem 2.1 (Bieberbach’s Theorem). If
oo
f(@=z+) apz"
n=2

isin S, then|ay| < n. The inequality is sharp with equality occurs iff f is a rotation of the Koebe
function.

Noshiro and Warschawski [6] gave a simple but important criterion for univalence in
1935, this criterion now bears their names.

Theorem 2.2 (Noshiro-Warschawski Theorem). Suppose that f is holomorphic in a convex
domain D and for some real a we have

Re{ei"‘f’(z)} >0

forallze D. Then f(z) is univalent in D.

3. Main results

Theorem 3.1. For f € Sg-1, there exists a positive integer N such that if k = N, then L f(2)
restricted to E is univalent and belongs to S.

Proof. For fixed k e N and f € Sg>;. We have

o0
1 _
(Lrfey =1+Y Fanz” L
n=2

Zn—l}

© ]
Re{L*f(2)} = 1+n;2 =

=1+ H(2).

Note that H(z) = Y32, - Re{a,z" "'}, and
|H(2)| = ) ——|Re{anz" "}l
n=2N
Z —|an "

.
Z —1anl, for |z| < 1.
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Since f € Sp-1, then the radius of convergence R for f, is greater than 1. Hence there exists an
€ > 0 such that B = % + ¢ < 1. From limsup IanI% = % and property of limit supremum, there
exists V7 € N such that if n = Ny, then |a,,| < B".

Let M = max{layl,|azl, -+, |lan, -1}, we have

BM
i=s)

Now, there exists NV € N such that |H(z)| < % whenever k = N. With this N € N we see that

1 1
|H(2)| < — (N1 —=2)M +
k-1 =
2 N}

Zn—l}

Rell*f(2)} =1+ f kl_l
n=2 1
=1+ H(2)
> 1 for |zl <1
> ;

whenever k = N.
By Noshiro-Warschawski theorem, we conclude that Lk f(2) is univalent in E, whenever k =
N. O

We give the following lemma before we prove the next theorem.

Lemma 3.2. For j,keN, we have

Proof. Observe the following trivial mequahty T k < 1, multipying both sides of the inequality

by m, we obtained (;Llc), = g7 k - The last inequality implies that
JrL__ ]
G+R)! = (k=D
k! kIGG=1!
This is what we wanted to show. a

Theorem 3.3. For f € Sp~1, there exists a positive integer N such that if k = N, then L f(z)
restricted to E is univalent and belongs to S.

Proof. For fixed k e N and f € Sg-1, we have

Lif(2} =1+ Z (nj e anz",

n—-1

—— Re{a,z"™Y

Re{lLif(2)} =1+ Z

n+k—1
n—-1

=1+G(2).
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Note that G(2) = Y57, #Re{anz”_l}, and
n-1

o0

IG2)l < ), ——~|Re{a,z" ™}

n:2( n—1
x n

<Y — g, z"!
U
x n

<) ——lanl, for lzI<1.
n:2( n—1 )

Since f € Sg-1, then the radius of convergence R for f, is greater than 1. Hence there exists an
€>0suchthat A= % +¢€ < 1. From limsup IanI% = % and property of limit supremum, there
exists V7 € N such that if n > Ny, then |a,| < A™.

Let M = max{|az|,|azl,---,|an,-11}, and from Lemma 3.2 we have
G| < 2 (N) —2) M+ Ny 'k! (ANI)
z —_— - .
k+1 (Nj+k-1!\1-A

Now, there exists IV € N such that |G(z2)| < % whenever k > N. With this N € N we see that

Re{Lif(2)} =1+ nX::Z (n+—Z_I)Re{anz”_1}

n—1

=1+G(2)

1
> 2 for |z| <1,

whenever k = N.
By Noshiro-Warschawski theorem, we conclude that L f(z) is univalent in E, whenever k >
N. O

Next, we are going to show that Theorem 3.1 and 3.3 are the best possible results.

Let
o) sS,iftm=25%seN
T(z)=z+ ) apz”, where a,, = { ]
m=2 0, otherwise
T (z) has radius of convergence one since limsup Iamli = 1. Taking s > 2 and m = 2%, we have
an = s° > 2% = m, hence by the contrapositive of Bieberbach theorem [Theorem 2.3], we con-
clude that T'(z) is not univalent in E. We then show that L* T'(z) and LT (2) is not univalent

in E for every positive integer k.

Theorem 3.4. LXT(z) is not univalent in E for every k e N.
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Proof. For fixed k € N.

2 S ifm=2%5seN
L*T(z)=z+ Z b,,z™, where b,, { G
m=o 0, otherwise

There exists a s € N such that s > 281, Choose m = 2°, then we have

(23:)’6 - (2_8’6)3 >20=m

By the contrapositive of Bieberbach theorem, we concluded that L¥ T'(z) is not univalent in E.

m:

Since k € N arbitrary, this proves the theorem. a

Theorem 3.5. LT (z) is not univalent in E for every k € N.

Proof. For fixed k € N.

(zwl ,ifm=2%seN

LiT(z)=z+ Z cmz™, where ¢, —{
m=2 0, otherwise

Note that there is a s; € N, such that 25! > k — 1, for the fixed k. Because

. s
lim — = oo,
§—00 2:

there is a s, € N, such that <2 > 25*1 Let s = max{sy, 55}, then we have the following inequal-

) 2%
ity.

s$ k! s5k! k' $
= >
CrEY) @ +k-D@S+k-2)--25 " 25+ k-DF = ok g5k
Note that
K _kk-1k-2 321 _1
2k T2 2 2 22272
hence,
s$ 1 s’
> __
(2X+k—1) -2 zsk
25-1
Since 2% > 2k+1 we have
s’ 1 s
o) T 2ok 2
25-1
By taking m = 2%, we have
s 1 s s
Cm 0 ook 2 =M
251

By the contrapositive of Bieberbach theorem, we concluded that Ly T'(z) is not univalent in E.
Since k € N arbitrary, this proves the theorem. a
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