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FLUID FLOW IN AN ASYMMETRIC CHANNEL

P. MUTHU AND TESFAHUN BERHANE

Abstract. In this paper, we investigate steady, viscous, incompressible fluid flow in an

asymmetric channel with absorbing walls which may have possible applications in flows

in renal tubules. The effect of fluid absorption through permeable wall is accounted for

by prescribing flux as a function of axial distance. The nonlinear governing equations

of motion are linearized by perturbation method by assuming δ (ratio of inlet width to

wavelength) as a small parameter and the resulting equations are solved by numerical

methods. The effects of reabsorption coefficient (α) and phase difference (φ) on the ve-

locity profiles, mean pressure drop and wall shear stress are studied and explained graph-

ically.

1. Introduction

The kidneys play key roles in body function, not only by filtering the blood and getting rid

of waste products, but also by balancing levels of electrolytes in the body, controlling blood

pressure, and stimulating the production of red blood cells. The basic functional unit of kid-

ney is nephron. Each kidney contains over a million tiny units (of nephrons), all similar in

structure and function. Each nephron functions independently and in most instances it is

sufficient to study the function of nephron to understand the mechanism of kidney in terms

of mathematical models. In nephrons, the portion after the Bowman’s capsule is called prox-

imal convoluted tubule. It is the place where most of the wanted substances, like water, glu-

cose and electrolytes are reabsorbed back into the plasma and unwanted substances pass into

urine. Thus it is of interest to study the flow in proximal tubule using mathematical models.

Various authors considered flow in renal tubules. Macey [1] was the first to study the

mathematical modeling of the flow in proximal renal tubule. He formulated the problem as

the flow of an incompressible viscous fluid through a circular tube with linear rate of reab-

sorption at the wall. Kelman [2] noted that the bulk flow in the proximal tubule decays expo-

nentially with the axial distance. Later, Macey [3] used this condition and solved the equa-

tions of motion to find average pressure drop. Marshall and Trowbridge [4] and Palatt et.al [5]

Corresponding author: P. Muthu.
2000 Mathematics Subject Classification. .
Key words and phrases. Asymmetric channel, perturbation method, permeable wall.

149

http://dx.doi.org/10.5556/j.tkjm.42.2011.149-162


i

i

i

i

150 P. MUTHU AND TESFAHUN BERHANE

used physical conditions existing at the permeable wall instead of prescribing the flux/radial

velocity at the wall.

In all the above studies the renal tubule is assumed as cylindrical tube of uniform cross-

section, while in general such tubes may not have uniform cross-section throughout their

length. Radhakrishnamacharya et al [6] made an attempt to understand the flow through the

renal tubule by studying the hydrodynamical aspects of an incompressible viscous fluid in a

circular tube of varying cross-section with reabsorption at the wall. Chandra and Prasad [7]

analyzed flow in rigid tubes of slowly varying cross-section with absorbing wall. Chaturani

and Ranganatha [8] considered fluid flow through a diverging/converging tube with variable

wall permeability. Recently, Muthu and Tesfahun [9] considered the effects of slope parameter

and reabsorption coefficient on the flow of fluid in a symmetric channel with varying cross

section.

All the above literature considered the geometry of the renal tubule to be of symmetric.

But in nature renal tubules may not be symmetric in all their length so we need to consider the

asymmetric channel. In this paper, we have made an attempt to understand the flow through

renal tubule by studying the hydrodynamical aspect of an incompressible viscous fluid in an

asymmetric channel of varying cross-section with reabsorption at the walls. The boundary of

the channel walls are taken as

η1(x) = d1 +a1 cos
(2πx

λ

)

. . . upper wall

(1)

η2(x) = −d2 −b1 cos
(2πx

λ
+φ

)

. . . lower wall

where d1 and d2 are the half width of the channel from the x-axis to η1(x) and η2(x)

respectively at the inlet (at x = 0 ), a1 and b1 are amplitudes and λ is the wave length, and

further a1, b1, d1, d2 and φ satisfies the condition [10] - [11]

a1
2
+b1

2
+2a1b1 cos(φ) ≤ (d1 +d2)2 (2)

2. Mathematical Formulation

Consider an incompressible fluid flow through asymmetric channel with slowly varying

cross-section as given by equation (1). The motion of the fluid is assumed to be laminar and

steady. The channel is long enough to neglect the initial and end effects. The governing equa-

tions of such fluid motion are given by

∂u

∂x
+
∂v

∂y
= 0 (3)
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Figure 1: Two dimensional non-symmetric geometry of renal tubules.

u
∂u

∂x
+v

∂u

∂y
= −

1

ρ

∂p

∂x
+ν

(

∂2u

∂x2
+
∂2u

∂y2

)

(4)

u
∂v

∂x
+v

∂v

∂y
= −

1

ρ

∂p

∂y
+ν

(

∂2v

∂x2
+
∂2v

∂y2

)

(5)

where u and v are the velocity components along the x and y axes respectively, p is the pres-

sure, ρ density of the fluid and ν=
µ
ρ

is kinematic viscosity.

The boundary conditions are taken as follows:

(a) The tangential velocity at the wall is zero. That is,

u +
dη1

d x
v = 0 at y = η1(x). (6)

u +
dη2

d x
v = 0 at y = η2(x). (7)

(b) The reabsorption has been accounted for by considering the bulk flow as a decreasing

function of x. That is, the flux across a cross-section is given as

Q(x) =

∫η1(x)

η2(x)
u(x, y) d y =Q0 F (αx), (8)

where F (αx) = 1 when α= 0 and decreases with x, α≥ 0 is the reabsorption coefficient and is

a constant, and Q0 is the flux across the cross-section at x = 0.

Introducing stream function ψ by

u =
∂ψ

∂y
and v =−

∂ψ

∂x
(9)

and the following non-dimensional quantities

x ′
=

x

λ
, y ′

=
y

d
, η′1 =

η1

d
,
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η′2 =
η2

d
, ψ′

=
ψ

Q0
, α′

=αλ, p ′
=

d 2

µQ0
p

where d = d1 +d2, equations (3) - (5) are transformed to the non-dimensional form as (after

dropping the primes) :

(

δ2 ∂2

∂x2
+

∂2

∂y2

)2

ψ= δ R

[

∂ψ

∂y

(

δ2 ∂2

∂x2
+

∂2

∂y2

)

∂ψ

∂x
−
∂ψ

∂x

(

δ2 ∂2

∂x2
+

∂2

∂y2

)

∂ψ

∂y

]

(10)

where δ=
d

λ
and R =

Q0

ν
.

Further the boundary conditions (6) - (8) become

∂ψ

∂y
= δ A sin(2πx)

∂ψ

∂x
at y = η1(x) =β1 + ǫ1 cos(2πx), (11)

∂ψ

∂y
=δ B sin(2πx +φ)

∂ψ

∂x
at y = η2(x) =β2 + ǫ2 cos(2πx +φ), (12)

ψ= F (αx) at y = η1(x) =β1 + ǫ1 cos(2πx) (13)

and ψ=−F (αx) at y = η2(x) =β2 + ǫ2 cos(2πx +φ) (14)

where A =−
2πa1

λ
, B =

2πb1

λ
, ǫ1 =

a1

d
, ǫ2 =−

b1

d
, β1 =

d1

d
and β2 =−

d2

d
.

The parameter R is the Reynolds number and δ is the wave-number (the ratio of inlet

width to the wavelength). ǫ1 and ǫ2 are amplitude ratios (the ratios of amplitudes a1 and b1 to

the inlet width respectively) and β1 and β2 are ratios of distance from x-axis to upper wall and

lower wall to the inlet width respectively. In this problem, we consider exponentially decaying

bulk flow [6], that is, in equation (8), F is taken as

F (αx) = e−αx (15)

3. Method of Solution

It may be noted that the flow is quite complex because of nonlinearity of governing equa-

tion and the boundary conditions. To solve equation (10) for velocity components, in the

present analysis, we assume the wave number δ ≪ 1 (long wavelength approximation). We

shall seek a solution for stream function ψ(x, y) in the form of a power series in terms of δ , as

ψ(x, y) =ψ0(x, y) + δψ1(x, y) + ..... (16)

Substituting equation (16) in equations (10) - (14) and collecting coefficients of various like

powers of δ, we get the following sets of equations for ψ0(x, y), ψ1(x, y), · · · .

δ0 Case :
∂4ψ0

∂y4
= 0 (17)
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The boundary conditions are :

∂ψ0

∂y
= 0 at y = η1(x) and y = η2(x) (18)

ψ0 = F (αx) = e−αx at y = η1(x) (19)

ψ0 =−F (αx) =−e−αx at y = η2(x) (20)

δ1 Case :
∂4ψ1

∂y4
=R

[

∂ψ0

∂y

∂3ψ0

∂y2∂x
−

∂ψ0

∂x

∂3ψ0

∂y3

]

(21)

The boundary conditions are :

∂ψ1

∂y
= A sin(2πx)

∂ψ0

∂x
at y = η1(x) (22)

∂ψ1

∂y
= B sin(2πx +φ)

∂ψ0

∂x
at y = η2(x) (23)

ψ1 = 0 at y = η1(x) and y = η2(x) (24)

Similar expressions can be written for higher orders of δ. However, since we are looking

for an approximate analytical solution for the problem, we consider up to order of δ1 equa-

tions.

The solution of equation (17) along with equations (18) to (20) is

ψ0(x, y)= A1 y3
+ A2 y2

+ A3 y + A4 (25)

where

A1(x) =
4 e−αx

(η2 −η1)3
,

A2(x) =
−6 (η2 +η1) e−αx

(η2 −η1)3
,

A3(x) =
12 (η2 η1) e−αx

(η2 −η1)3
,

A4(x) =
(η2

2 −3η2
2η1 −3η2η1

2 +η1
3) e−αx

(η2 −η1)3
.

The solution of equation (21) along with equations (22) to (24) is

ψ1(x, y)=
A5

1680
y8

+
A6

840
y7

+
A7

360
y6

+
A8

120
y5

+
A9

24
y4

+ A10 + A11 y + A12 y2
+A13 y3 (26)
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where

A5(x) = 18 R A1
d A1

d x
,

A6(x) = R

(

12 A2
d A1

d x
− 6 A1

d A1

d x

)

,

A7(x) = 6 A3
d A1

d x
,

A8(x) = 4 A2
d A2

d x
− 6 A1

d A3

d x
,

A9(x) = 2 A3
d A2

d x
− 6 A1

d A4

d x
,

A10(x) =
1

5040(η2 −η1)2

{

η2η1

{

3η2η1(η2 −η1)2(5η2
4
+8η2

3η1 +9η2
2η1

2
+8η2η1

3

+5η1
4)A5 −2

[

−6η2η1(η2 −η1)2(2η2
3
+3η2

2η1 +3η2η1
2
+2η1

3)A6

+7
[

−η2η1(η2 −η1)2(3η2
2
+4η2η1 +3η1

2)A7 +3
(

−2η2η1(η2 −η1)2(η2 +η1)A8

+5
(

24
(

Aη2 sin(2πx)
[d A4

d x
+η1

d A3

d x
+η1

2(
d A2

d x
+

d A1

d x
η1)

]

+Bη1 sin(2πx +φ)
[d A4

d x
+η2

d A3

d x
+η2

2(
d A2

d x
+

d A1

d x
η2)

])

−η2η1(η2 −η1)2 A9

))]]}}

A11(x) =
−1

840(η2 −η1)2

{

η2η1(η2 −η1)2(5η2
5
+11η2

4η1 +14η2
3η1

2
+14η2

2η1
3
+11η2η1

4

+5η1
5)A5 +η2η1(η2 −η1)2(8η2

4
+17η2

3η1 +20η2
2η1

2
+17η2η1

3
+8η1

4)A6

−7
[

−2η2η1(3η2
5
−η2

3η1
2
−η2

2η1
3
+η1

5)A7 −η2η1(η2 −η1)2(4η2
2
+7η2η1

+4η1
2)A8 +10

(

12
(

Aη2(η2 +2η1)sin(2πx)
[d A4

d x
+η1

d A3

d x
+η1

2(
d A2

d x
+

d A1

d x
η1)

]

+Bη1(2η2 +η1)sin(2πx +φ)
[d A4

d x
+η2

d A3

d x
+η2

2(
d A2

d x
+

d A1

d x
η2)

])

−η2η1(η2 +η1)A9

)]}

A12(x) =
−1

1680(η2 −η1)2

{

(η2 −η1)2(5η2
6
+20η2

5η1 +29η2
4η1

2
+32η2

3η1
3
+29η2

2η1
4

+20η2η1
5
+5η1

6)A5 −

[

−2(η2 −η1)2(2η2
5
+8η2

4η1 +11η2
3η1

2
+11η2

2η1
3

+8η2η1
4
+2η1

5)A6 +7
(

− (η2 −η1)2(η2
4
+4η2

3η1 +5η2
2η1

2
+4η2η1

3
+η1

4)A7

−2(η2 −η1)2(η2
3
+4η2

2η1 +4η2η1
2
+η1

3)A8 +5
(

24
(

A(2η2 +η1)sin(2πx)
[d A4

d x
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+η1
d A3

d x
+η1

2(
d A2

d x
+

d A1

d x
η1)

]

+B (η2 +2η1)sin(2πx +φ)
[d A4

d x
+η2

d A3

d x

+η2
2(

d A2

d x
+

d A1

d x
η2)

])

− (η2 −η1)2(η2
2
+4η2η1 +η1

2)A9

))]}

A13(x) =
−1

2520(η2 −η1)2

{

−3(η2 −η1)2(3η2
5
+5η2

4η1 +6η2
3η1

2
+6η2

2η1
3
+5η2η1

4

+3η1
5)A5 −3(η2 −η1)2(5η2

4
+8η2

3η1 +9η2
2η1

2
+8η2η1

3
+5η1

4)A6

+7
[

−2(η2 −η1)2(2η2
3
+3η2

2η1 +3η2η1
2
+2η1

3)A7

−3(η2 −η1)2(η2
2
+4η2η1 +3η1

2)A8

+30
(

12
(

A sin(2πx)
[d A4

d x
+η1

d A3

d x
+η1

2(
d A2

d x
+

d A1

d x
η1)

]

+B sin(2πx +φ)
[d A4

d x
+η2

d A3

d x
+η2

2(
d A2

d x
+

d A1

d x
η2)

])

− (η2 −η1)2(η2 +η1)A9

)]}

Hence, substituting ψ0 and ψ1 in equation (16), we get that

ψ(x, y) = A1 y3
+ A2 y2

+ A3 y + A4

+δ

(

A5

1680
y8

+
A6

840
y7

+
A7

360
y6

+
A8

120
y5

+
A9

24
y4

+A10+A11 y+A12 y2
+A13 y3

)

. (27)

Now, the nondimensional pressure p(x, y) can be obtained by using equations (27), (9)

and (4). It is given as

p(x, y)= δ
∂u

∂x
+

1

δ

∫

∂2u

∂y2
d x − R

(
∫

u
∂u

∂x
d x +

∫

v
∂u

∂y
d x

)

. (28)

The mean pressure is given as

p̄(x) =
1

η1(x)−η2(x)

∫η1(x)

η2(x)
p(x, y) d y (29)

Further, the mean pressure drop between x = 0 and x = x0 is

∆p̄(x0)= p̄(0)− p̄(x0). (30)

The wall shear stress τw (x) is defined as

τw (x) =

(

σy y −σxx

) d y

dx
+ σx y

[

1−
(

d y

dx

)2
]

1+
(

d y

dx

)2
at y = η1(x) and y = η2(x) (31)

where σxx = 2µ
∂u

∂x
, σy y = 2µ

∂v

∂y
, and σx y = µ(

∂u

∂y
+

∂v

∂x
).
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Using the nondimensional quantityτ′w1 =
d2

µQ0
τw1 and τ′w2 =

d2

µQ0
τw2, the wall shear stress

τw1 and τw2 become (after dropping the prime),

τw1 =

2 δ2
(

∂v
∂y

− ∂u
∂x

)

dη1

dx
+

(

∂u
∂y

+δ2 ∂v
∂x

)

[

1−δ2
(

dη1

dx

)2
]

.

1+δ2
(

dη1

dx

)2
(32)

τw2 =

2 δ2
(

∂v
∂y −

∂u
∂x

)

dη2

dx +

(

∂u
∂y +δ2 ∂v

∂x

)

[

1−δ2
(

dη2

dx

)2
]

.

1+δ2
(

dη2

dx

)2
(33)

It may be noted that in equation (28), the integrals are difficult to evaluate analytically to

get closed form expression for p(x, y). Therefore, they are calculated by numerical integra-

tion.

4. Results and Discussion

The objective of this analysis is to study the behavior of a steady, viscous, incompressible

fluid flow through asymmetric channel of slowly varying cross-section with absorbing walls.

It may be recalled that φ, the phase difference, varies in the range 0 ≤φ≤π where φ= 0 corre-

sponds to symmetric channel with waves out of phase and φ= π corresponds to asymmetric

channel with waves are in phase. α represents reabsorption coefficient at the channel walls.

We discuss the effects of these parameters on the transverse velocity (v(x, y)), mean pres-

sure drop (∆p̄) and wall shear stress (τw ) quantities. In all our numerical calculations, the fol-

lowing parameters are fixed as A =−0.0628, B = 0.0628, β1 = 0.5, β2 =−0.5, ǫ1 = 0.1, ǫ2 =−0.1

and δ= 0.1. We take R = 1.0 to consider low Reynolds number flow.

4.1. The velocity v :

The transverse velocity profile of the flow is obtained by taking different values of φ at

different cross-sections of the channel, for example, x = 0.1, 0.5 and 0.9. The values of φ are

taken as 0 for symmetric channel, π
2 and π for asymmetric channel.

Figure 2(a) displays the effect of φ on v at x = 0.1. It can be observed that as φ increases

from 0 to π, the magnitude of v decreases, in general. It may be remarked that the reabsorp-

tion value at the wall is fixed at x = 0.1 and when φ increases from 0 to π, the cross sectional

area reduces. This results in less v values.

The cross sectional area increases as φ increases, at x = 0.5, and this gives a mixed trend

on v , see Figure 2(b). Note that magnitude of v is less at x = 0.9, in general, due to the reab-

sorption all along the wall from x = 0 to x = 0.9. As φ increases, the velocity v increases, see

Figure 2(c).
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Figure 2(a): Distribution of transverse velocity v with y at x = 0.1, α= 1.0.
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Figure 2(b): Distribution of transverse velocity v with y at x = 0.5, α= 1.0.
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Figure 2(c): Distribution of transverse velocity v with y at x = 0.9, α= 1.0.

These results are interpreted with earlier studies on symmetry channels and are in good

agreement, especially at φ = 0. Moreover, we presented the effect of asymmetry on v by

varying φ.

Generally, it can be observed from Figures 2(a) - 2(c), that as the width of the channel con-

tracts due to the non-symmetric nature of the walls the transverse velocity decreases and as

the channel width expands the velocity increases at different positions of x from the entrance

to the exit. Exceptionally it can be noted that at the entrance of the channel the transverse



i

i

i

i

158 P. MUTHU AND TESFAHUN BERHANE

velocity is more for symmetric channel than the asymmetric channel, except in the middle

of the channel width which is due to the wavy nature of the boundary. Furthermore, as fluid

goes through the channel from entrance to the exit, the magnitude of the transverse velocity

decreases.

0.2 0.4 0.6 0.80
0

1
x

φ= 0

φ=π/2

φ=π

20

40

60

80

100

120

140

160

180

∆p

Figure 3. Distribution of mean pressure drop ∆̄p with x.

4.2. Mean pressure drop ∆p̄ :

The values of the mean pressure drop (equation (30)) over the length of the channel are

calculated for different values of φ and α. It can be noted from Figure 3 that as the width of

the channel contracts the mean pressure drop increases. Particularly at the entrance of the

channel the mean pressure drop for asymmetric channel is more than the symmetric chan-

nel. However, due to deep contraction in the middle of the channel the reverse is true at the

end of the channel. On the other hand it is worthwhile to mention that the mean pressure

drop decreases with a rise of the reabsorption coefficient whether the channel is symmetric

or asymmetric or waves out of phase or waves in phase (Figures 4(a) - 4(c)).

4.3. Magnitude of wall shear stress |τw | :

The effects of φ and α on the magnitude of wall shear stress (|τw1| and |τw2|) are studied

and presented graphically in Figures 5(a) - 6(c). It may be noted from Figures 5(a) and 5(b)

that the magnitude of wall shear stress for both walls increase as the channel changed from

symmetric to asymmetric, except in the middle of the channel where there is more contrac-

tion. This indicates that as the width of the channel decreases due to the asymmetric nature

of the walls, the magnitude of the wall shear stress 1 and wall shear stress 2 increases.
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Figure 4(a): Distribution of mean pressure drop ∆̄p with x for α variation at φ= 0.
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Figure 4(b): Distribution of mean pressure drop ∆̄p with x for α variation at φ= π
2

.

0.2 0.4 0.6 0.80
0

1
x

φ=π

20

40

60

80

100

120

140

160

∆p

α= 2.0

α= 1.5

α= 1.0

Figure 4(c): Distribution of mean pressure drop ∆̄p with x for α variation at φ=π.

It is very important to mention that there is no such remarkable difference on the mag-

nitude of wall shear stress 1 and wall shear stress 2 as the channel changes from symmetric to

asymmetric. Even though the variation of φ doesn’t have an influence in changing the bound-

ary of the above wall, its influence is shown in the same way due to the change of the lower

wall. Which might mean that the change in shape of one of the boundaries of the channel

reflects in the same way to the magnitude of wall shear stress of both walls.
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Figure 5(a): Distribution of magnitude of |τw1| with x.

 2

 4

 6

 8

 10

 12

 14

0.2 0.4 0.6 0.80
0

1
x

φ= 0
φ=π/2

φ=π

|τ
w

2
|

Figure 5(b): Distribution of magnitude of |τw2| with x.

It can also be observed, from Figures 6(a) - 6(c), that whether the channel is symmetric

or asymmetric the magnitude of wall shear stress decreases with an increase of reabsorption

coefficient α.

5. Conclusions

In the present study an analysis of mathematical model of steady, viscous, incompress-

ible fluid flow in asymmetric channel of slowly varying walls has been presented with pos-

sible applications to the flow in renal tubules. The main contribution of this study is to see

the effect of asymmetric nature of the channel on the flow in particular modeling of the renal

tubules. It is observed that as the width of the channel expands due to the non-symmetric

nature of the walls the transverse velocity increases and as the channel width contracts the

velocity decreases. The mean pressure and the magnitude of the wall shear stress increases

as the width of the channel contracts. Particularly at the entrance of the channel the mean

pressure drop and the magnitude of wall shear stress for asymmetric channel is more than

the symmetric channel. It is also worthwhile to mention that there is no such remarkable dif-

ference on the magnitude of wall shear stress 1 and wall shear stress 2 as the channel changes
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from symmetric to asymmetric. Moreover, as the reabsorption coefficient α rises, the magni-

tude of wall shear stress and the mean pressure drop decreases whether the channel is sym-

metric or asymmetric or waves out of phase or waves in phase.
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Figure 6(a): Distribution of magnitude of |τw1| with x for α variation at φ= 0.
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Figure 6(b): Distribution of magnitude of |τw1| with x for α variation at φ= π
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Figure 6(c): Distribution of magnitude of |τw1| with x for α variation at φ=π.
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