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COMMENTS ON THE KKM THEORY ON HYPERCONVEX

METRIC SPACES

SEHIE PARK

Abstract. Recent results in the KKM theory on abstract convex spaces and the

related multimap classes KC and KO are applied to deduce generalizations of results

on KKM maps in metric spaces in Amini et al. [1] and generalized KKM theorems

on hyperconvex metric spaces in Chang et al. [4, 5].

1. Introduction

The notion of hyperconvex metric spaces was introduced by Aronszajn and Pan-
itchpakdi [2] in 1956. Later, in 1979, independently Sine [31] and Soardi [34] proved
that a bounded hyperconvex metric space has the fixed point property for nonexpansive
maps. Since then many interesting works related to nonexpansive maps have appeared
for hyperconvex metric spaces; see [13].

In 1996, Khamsi [11] established the Knaster-Kuratowski-Mazurkiewicz theorem (in
short, KKM theorem) [15] for hyperconvex metric spaces and applied it to obtain a
Schauder type fixed point theorem. This line of study has been followed by a number
of authors; see [13, 18, 19, 20] and references therein. Especially, the present author
obtained extensions or equivalent forms of the KKM theorem, a Fan-Browder type fixed
point theorem, and other results for hyperconvex metric spaces in [18, 19, 20]. Moreover,
Kirk et al. [14] established the KKM theorem, its equivalent formulations, fixed point
theorems, and their applications for hyperconvex metric spaces.

Later, it is known that most of the results in the KKM theory of hyperconvex metric
spaces are simple consequences of much more general results. In fact, Horvath [8, 9]
initiated study of the KKM theory and fixed point theory for c-spaces or H-spaces,
which are significant generalizations of convex spaces or convex subsets of topological
vector spaces. Moreover, in [9], he found that hyperconvex metric spaces are particular
c-spaces. On the other hand, the present author initiated study of the KKM theory
on generalized convex spaces or G-convex spaces, which properly include the class of
c-spaces and a large number of spaces having particular type of abstract convexity; see
[17, 21, 22, 27, 32] and references therein.
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Recently, we generalized G-convex spaces to abstract convex spaces and introduced

the multimap classes KC and KO related to generalizations of KKM maps; see [23, 24, 25,

26, 28, 29, 30, 31]. As applications of our new KKM theory on abstract convex spaces, in

this paper, we deduce generalizations of recent results on KKM maps for metric spaces in

Amini et al. [1] and generalized KKM theorems on hyperconvex metric spaces in Chang

et al. [3, 4, 5, 6].

In Section 2, we introduce the concepts of abstract convex spaces, KKM spaces, and

multimap classes KC and KO. Section 3 deals with four basic theorems in the KKM

theory on abstract convex spaces. In Section 4, main results in [1] are extended to KC-

maps and KO-maps. Section 5 deals with KKM maps in hyperconvex metric space. In

fact, we show that any hyperconvex metric space is a KKM space and that all results in

[4, 5] can be generalized.

2. Abstract convex spaces and the map classes KC and KO

Let 〈D〉 denote the set of all nonempty finite subsets of a set D. Multimaps are also

called simply maps.

Definition. [23, 24, 25, 26, 28, 29, 30, 31] An abstract convex space (E,D; Γ) consists of

a topological space E, a nonempty set D, and a multimap Γ : 〈D〉 ⊸ E with nonempty

values. We may denote ΓA := Γ(A) for A ∈ 〈D〉.

For any D′ ⊂ D, the Γ-convex hull of D′ is denoted and defined by

coΓD
′ :=

⋃
{ΓA | A ∈ 〈D′〉} ⊂ E.

A subset X of E is called a Γ-convex subset of (E,D; Γ) relative to D′ if for any

N ∈ 〈D′〉, we have ΓN ⊂ X , that is, coΓD
′ ⊂ X . Then (X,D′; Γ|〈D′〉) is called a

Γ-convex subspace of (E,D; Γ).

When D ⊂ E, the space is denoted by (E ⊃ D; Γ). In such case, a subset X of E

is said to be Γ-convex if coΓ(X ∩ D) ⊂ X ; in other words, X is Γ-convex relative to

D′ := X ∩D. In case E = D, let (E; Γ) := (E,E; Γ).

Example.

1. A generalized convex space or a G-convex space (X,D; Γ) due to Park consists of a

topological space X , a nonempty set D, and a multimap Γ : 〈D〉 ⊸ X such that for

each A ∈ 〈D〉 with the cardinality |A| = n + 1, there exists a continuous function

φA : ∆n → Γ(A) such that J ∈ 〈A〉 implies φA(∆J ) ⊂ Γ(J).

Here, ∆n is the standard n-simplex with vertices {ei}n
i=0, and ∆J the face of ∆n cor-

responding to J ∈ 〈A〉; that is, if A = {a0, a1, . . . , an} and J = {ai0 , ai1 , . . . , aik
} ⊂

A, then ∆J = co{ei0 , ei1 , . . . , eik
}. For details, see [17, 21, 22, 27, 32] and references

therein.
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2. A G-convex space (X,D; Γ) is called an H-space if each ΓA is ω-connected (that is,
n-connected for all n ≥ 0) and ΓA ⊂ ΓB for A ⊂ B in 〈D〉. An H-space reduces to a
c-space due to Horvath whenever X = D. The concepts of c-spaces, l.c.-spaces, and
l.c.-metric spaces were extensively studied by Horvath [8, 9].

3. A convex space (X,D; Γ) is a triple where X is a subset of a vector space, D ⊂ X
such that coD ⊂ X , and each ΓA is the convex hull of A ∈ 〈D〉 equipped with
the Euclidean topology. This concept generalizes the one due to Lassonde [16] for
X = D.

4. For further examples of abstract convex spaces, see [31].

Definition. Let (E,D; Γ) be an abstract convex space and Z a topological space. For a
multimap F : E ⊸ Z with nonempty values, if a multimap G : D ⊸ Z satisfies

F (ΓA) ⊂ G(A) :=
⋃

y∈A

G(y) for all A ∈ 〈D〉,

then G is called a KKM map with respect to F . A KKM map G : D ⊸ E is a KKM
map with respect to the identity map 1E .

A multimap F : E ⊸ Z is called a KC-map [resp., a KO-map] [23, 24, 25, 26] if,
for any closed-valued [resp., open-valued] KKM map G : D ⊸ Z with respect to F , the
family {G(y)}y∈D has the finite intersection property. We denote

KC(E,Z) := {F : X ⊸ Z | F is a KC-map}.

Similarly, KO(E,Z) is defined. Some authors use the notation KKM(E,Z) instead
of KC(E,Z).

Remark.

1. If 1E ∈ KC(E,E), then f ∈ KC(E,Z) for any continuous function f : E → Z. This
also holds for KO.

2. For any topological space Y , if F : E → Y is a continuous single-valued map or if
F : F ⊸ Y has a continuous selection, then F ∈ KC(E, Y ) ∩ KO(E, Y ).

3. For more details on the classes KC and KO, see [23, 24, 25, 26, 30, 31].

Definition. An abstract convex space (E,D; Γ) is said to satisfy the KKM principle if,
for any closed-valued [resp., open-valued] KKM map G : D ⊸ E, the family {G(y)}y∈D

has the finite intersection property; that is, the identity map 1E ∈ KC(E,E)∩KO(E,E).

A KKM space is an abstract convex space satisfying the KKM principle.

Example. We give examples of KKM spaces:

1. Every G-convex space is a KKM space; see [21, 29, 30, 31].
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2. A connected linearly ordered space (X,≤) can be made into an abstract convex topo-

logical space (X ⊃ D; Γ) for any nonemptyD ⊂ X by defining ΓA := [min A, max A]

= {x ∈ X | min A ≤ x ≤ max A} for each A ∈ 〈D〉. Further, it is a KKM space;

see [26, Theorem 5(i)].

3. The extended long line L∗ can be made into a KKM space (L∗ ⊃ D; Γ); see [26].

But L∗ is not a G-convex space.

4. For a triple (H,X ; Γ), where H is a hyperconvex metric space, X ⊂ H , and ΓA :=⋂
{B | B is a closed ball containing A} for A ∈ 〈X〉, Khamsi [11] showed 1H ∈

KC(H,H). Horvath [9] showed that a hyperconvex metric space is an l.c. space, a

particular type of H-space. Therefore, it is a KKM space.

5. Let X be a closed convex subset of a complete R-tree H . Then H is a hyperconvex

metric space. Let G : X ⊸ H be a map with nonempty closed [resp., open] values

such that, for each finite A ∈ 〈X〉,

convH(A) ⊂ G(A),

where convH(A) is the intersection of all closed convex subsets of H that contain A.

Then {G(x)}x∈X has the finite intersection property; see Kirk and Panyanak [12]

and Park [31]. Hence, (H,X ; convH) is a KKM space.

Theorem 0. [30] Let (X,D; Γ) be a KKM space and G : D ⊸ X a closed-valued KKM

map. If

(1)
⋂

z∈M G(z) is compact for some M ∈ 〈D〉,

then we have ⋂

z∈D

G(z) 6= ∅.

3. Basic theorems in the KKM theory

In our KKM theory on abstract convex spaces given in [23, 29], there exist some basic
theorems from which we can deduce several equivalent formulations that can be used for

applications. In this section, we introduce some of such basic theorems.

We begin with the following prototype of KKM type theorems:

Theorem A. Let (E,D; Γ) be an abstract convex space, Y a topological space, and
F ∈ KO(E, Y ) [resp., F ∈ KC(E, Y )]. Let G : D ⊸ Y be a map such that

(A.1) for any N ∈ 〈D〉, F (ΓN ) ⊂ G(N); and

(A.2) G is open-valued [resp., closed-valued].

Then for each N ∈ 〈D〉, F (E) ∩
⋂
{G(y) | y ∈ N} 6= ∅.
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Remark.

1. If E = Y and if the identity map 1E = F ∈ K(E,E), then Condition (A.1) says that

G is a KKM map; see Theorem 0.

2. If E = Y = ∆n is an n-simplex, D is the set of its vertices, and Γ = co is the convex

hull operation, then the celebrated KKM theorem [15] says that 1E ∈ KC(E,E).

3. If D is a nonempty subset of a topological vector space E = Y (not necessarily
Hausdorff), Fan’s KKM lemma [7] says that 1E ∈ KC(E,E).

4. For another forms of the KKM theorem for convex spaces, H-spaces, or G-convex

spaces and their applications, there is a large number of works; see [8, 9, 14, 16, 21, 29]
and references therein.

From Theorem A, we have another finite intersection property as follows:

Theorem B. Let (E,D; Γ) be an abstract convex space, Y a topological space, and

F ∈ KO(E, Y ) [resp., F ∈ KC(E, Y )]. Let G : D ⊸ Y and H : E ⊸ Y be maps
satisfying

(B.1) G is open-valued [resp., closed-valued];

(B.2) for each x ∈ E, F (x) ⊂ H(x); and

(B.3) for each y ∈ F (E), M ∈ 〈D \G−(z)〉 implies ΓM ⊂ E \H−(z).
Then F (E) ∩

⋂
{G(z) | z ∈ N} 6= ∅ for all N ∈ 〈D〉.

The following coincidence theorem follows from Theorem B.

Theorem C. Let (E,D; Γ) be an abstract convex space, Y a topological space, S : D ⊸

Y , T : E ⊸ Y maps, and F ∈ KO(E, Y ) [resp., F ∈ KC(E, Y )]. Suppose that

(C.1) S is open-valued [resp., closed-valued];

(C.2) for each y ∈ F (E), coΓS
−(y) ⊂ T−(y); and

(C.3) F (E) ⊂ S(N) for some N ∈ 〈D〉.

Then there exists an x̄ ∈ E such that F (x̄) ∩ T (x̄) 6= ∅.

From Theorem C, we obtain the following Ky Fan type matching theorem:

Theorem D. Let (E,D; Γ) be an abstract convex space, Y a topological space, S : D ⊸

Y , and F ∈ KO(E, Y ) [resp., F ∈ KC(E, Y )] satisfying (C.1) and (C.3). Then there
exists an M ∈ 〈D〉 such that F (ΓM ) ∩

⋂
{S(x) | x ∈M} 6= ∅.

Theorem D can be stated in its contrapositive form and in terms of the complement

G(z) of S(z) in Y . Then we obtain Theorem A. Therefore, Theorems A–D are equivalent.
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4. KKM maps in metric spaces

Let (M,d) be a metric space. Motivated by Khamsi [11] and others, for a bounded

subset A ⊂M , we set

ad(A) :=
⋂
{B | B is a closed ball such that A ⊂ B} and

A(M) := {A ⊂ M | A = ad(A)}, i.e., A ∈ A(M) iff A is an intersection of closed

balls. In this case we will say A is an admissible subset of M .

For a subset A ⊂M and t > 0, let

BM (A, t) := {x ∈M | d(x,A) ≤ t} and NM (A, t) := {x ∈M | d(x,A) < t}.

We introduce new definitions:

Definition. An abstract convex space (M,D; Γ) is called simply a metric space if (M,d)

is a metric space, D is a nonempty set, and Γ : 〈D〉 → A(M) is a map having admissible

values.

A Γ-convex subset of (M ⊃ D; Γ) is said to be subadmissible by some authors.

Example. We give examples of metric spaces (M,D; Γ) and KKM maps on them.

1. (M ⊃ X ; Γ) where ΓA := ad(A); see [11]. A map G : X ⊸ M is called a KKM map

if ΓA ⊂ G(A) for each A ∈ 〈X〉.

2. For each A := {a0, a1, . . . , an} ∈ 〈D〉, choose a subset B := {x0, x1, . . . , xn} ∈ 〈M〉
and define ΓA := ad(B). Then (M,D; Γ) becomes a metric space. For this metric

space, the so-called generalized gKKM mapping in [6] simply becomes a KKM map.

Let X be a nonempty subset of a metric space (M,d). A map F : X ⊸ M is said

to have the almost fixed point property (simply, a.f.p.p.) if for any ε > 0, there exists an

xε ∈ X such that F (xε) ∩B(xε, ε) 6= ∅.
From Theorem C, we deduce the following almost fixed point property of the KC-maps

or KO-maps:

Theorem 4.1. Let (M ⊃ D; Γ) be a metric space and X a Γ-convex subset of M such

that X∩D is dense in X. Suppose that F ∈ KC(X,X) [resp., KO(X,X)] such that F (X)

is totally bounded. Then F has the a.f.p.p.

Proof 1. Let E = Y := X in Theorem C. Since X ∩ D is dense in X and F (X) is a

totally bounded subset of X , for each ε > 0, there exists a finite subset A of X ∩D such

that F (X) ⊂
⋃

x∈AN(x, ε) ⊂
⋃

x∈AB(x, ε). Let us define a map S : X ∩ D ⊸ X by

S(x) := N(x, ε) [resp., S(x) := B(x, ε)] for x ∈ X ∩D. Then each S(x) is open [resp.,

closed]. Therefore (C.1) and (C.3) are satisfied. Let us define another map T : X ⊸ X by

T (x) := B(x, ε) for x ∈ X . Then it is easy to show (C.2). [In fact, for any N ∈ 〈S−(y)〉,
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ΓN is the intersection of closed balls containing N . Since T−(y) is one of such closed

balls, we have ΓN ⊂ T−(y).] Therefore, by Theorem C, there exists an xε ∈ X such that

F (xε) ∩ T (xε) = F (xε) ∩B(xε, ε) 6= ∅.

Proof 2. Let Y := F (X). Then, for each ε > 0, there exists a finite subset A of X ∩D

such that Y ⊂
⋃

x∈AN(x, ε) ⊂
⋃

x∈AB(x, ε). Let us define a mapG : X ⊸ Y byG(x) :=

Y \N(x, ε) [resp., G(x) := Y \B(x, ε)] for x ∈ X . Then each G(x) is closed [resp., open]

and
⋂

x∈AG(x) = ∅. Hence G is not a KKM map with respect to F ∈ KC(X,Y ) [resp.,

KO(X,Y )]. Hence there exists a set B = {x0, x1, . . . , xm} ∈ 〈X ∩D〉 such that F (ΓB) *
G(B). Therefore, there exists an xε ∈ F (ΓB) such that xε /∈ G(B), that is, xε ∈ N(xi, ε)

[resp., xε ∈ B(xi, ε)] for all i ∈ {0, 1, . . . ,m}. Hence xi ∈ N(xε, ε) [resp., xε ∈ B(xi, ε)]

for all i ∈ {0, 1, . . . ,m}. If xε ∈ F (x′ε) for some x′ε ∈ ΓB ⊂ B(xε, ε) or equivalently

xε ∈ ΓB ⊂ B(x′ε, ε). Therefore, xε ∈ F (x′ε) ∩B(x′ε, ε) 6= ∅.

From Theorem 4.1, it is routine to deduce the following fixed point theorem:

Theorem 4.2. Let (M ⊃ D; Γ) be a metric space and X a Γ-convex subset of M such

that X∩D is dense in X. Then any compact closed map F ∈ KC(X,X) [resp., KO(X,X)]

has a fixed point.

In [29], we had the following:

Lemma 4.3. Let (E,D; Γ) be an abstract convex space, Z, W two topological spaces,

F ∈ KC(E,Z) and f : Z → W a continuous function. Then fF ∈ KC(E,W ). This also

holds for KO instead of KC.

As a consequence of Theorem 4.2 and Lemma 4.3, we obtain a Schauder type fixed

point theorem for metric spaces:

Corollary 4.4. Let (M ⊃ D; Γ) be a metric space and X a Γ-convex subset of M such

that X ∩D is dense in X. If the identity map 1E ∈ KC(X,X) [resp., 1E ∈ KO(X,X)],

then any compact continuous function f : X → X has a fixed point.

Note that Theorems 4.1, 4.2, Lemma 4.3 and Corollary 4.4 properly generalize the

corresponding ones in [1]. Moreover, the authors of [1] claimed that acyclic maps defined

on G-convex spaces have the KKM property; but it was already shown by Park and Kim

in 1997.

From Theorem 4.2 and Lemma 4.3, we have the following coincidence theorem:

Theorem 4.5. Let (M ⊃ D; Γ) be a metric space, X a Γ-convex subset of M such that

X ∩ D is dense in X, and Z a compact topological space. Let T : Z ⊸ X be a map

having a continuous selection and F ∈ KC(X,Z) [resp., F ∈ KO(X,Z)] a closed map.

Then there exist x0 ∈ X and z0 ∈ Z such that z0 ∈ F (x0) and x0 ∈ T (x0).
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Proof. Let f be a continuous selection of T . Then fF ∈ KC(X,X) by Lemma 4.3 and

it is compact and u.s.c. Hence, by Theorem 4.2, it has a fixed point x0 ∈ X such that

x0 ∈ fF (x0). Therefore, x0 = f(z0) ∈ T (z0) for some z0 ∈ F (x0).

From Theorem D, we deduce the following Ky Fan type matching theorem:

Theorem 4.6. Let (M ⊃ D; Γ) be a metric space, X a Γ-convex subset of M , and Z a

topological space. Let S : X ∩D ⊸ Z be an open-valued [resp., closed-valued] map and

F ∈ KC(X,Z) [resp., F ∈ KO(X,Z)] such that F (X) ⊂ S(N) for some N ∈ 〈X ∩ D〉.
Then there exists an A ∈ 〈X ∩D〉 such that F (ΓA) ∩

⋂
{T (x) | x ∈ A} 6= ∅.

Note that Theorems 4.5 and 4.6 are far-reaching extensions of [1, Theorem 2.5 and

2.7], resp.

From Theorem C with E = Y and F = 1E, we have the following Fan-Browder type

fixed point theorem:

Theorem 4.7. Let (E,D; Γ) be an abstract convex space such that 1E ∈ KO(E,E) [resp.,

1E ∈ KC(E,E)], and S : D ⊸ E, T : E ⊸ E maps. Suppose that

(1) S is open-valued [resp., closed-valued];

(2) for each y ∈ E, coΓS
−(y) ⊂ T−(y); and

(3) E = S(N) for some N ∈ 〈D〉.
Then there exists an x̄ ∈ E such that x̄ ∈ T (x̄).

Theorem 4.7 generalizes [1, Corollary 2.8].

In the last part of [1], the authors introduced NR-metric spaces, which are G-convex
spaces and hence KKM -spaces. For those spaces, some known results on hyperconvex

metric spaces are extended in [1].

5. KKM maps in hyperconvex metric spaces

Definition. A metric space (H, d) is said to be hyperconvex if

⋂

α

B(xα, rα) 6= ∅

for any collection {B(xα, rα)} of closed balls in H for which d(xα, xβ) ≤ rα + rβ .

Example. It is known that the space C(E) of all continuous real functions on a Sto-

nian space E (that is, extremally disconnected compact Hausdorff space) with the usual

norm is hyperconvex, and that every hyperconvex real Banach space is a space C(E) for
some Stonian space E. Therefore, (Rn, ‖ · ‖∞), l∞, and L∞ are concrete examples of

hyperconvex metric spaces.

Results of Aronszajn and Panitchpakti [2, Theorem 1′] and Isbell [10, Theorem 1.1]

are combined in the following:
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Lemma 5.1. A hyperconvex metric space is complete and (freely) contractible.

The following is easy to prove:

Lemma 5.2. An admissible subset of a hyperconvex metric space is hyperconvex.

Definition. An abstract convex space (H,D; Γ) is called simply a hyperconvex metric

space if (H, d) is a hyperconvex metric space, D is a nonempty set, and Γ : 〈D〉 → A(H)

is a map having admissible values such that

A,B ∈ 〈D〉, A ⊂ B implies ΓA ⊂ ΓB .

There should be no confusion between a hyperconvex metric space H = (H, d) and

(H,D; Γ).

Theorem 5.3. Any hyperconvex metric space (H,D; Γ) is a KKM space.

Proof. For each A ∈ 〈D〉, ΓA is hyperconvex by Lemma 5.2 and hence contractible

by Lemma 5.1. Therefore, (H,D; Γ) is an H-space and hence a G-convex space. It is

well-known that any G-convex space is a KKM space.

Example.

1. As a consequence of Theorem 5.3, we obtain Khamsi’s KKM theorem for a partic-

ular Γ and for particular KKM maps with finitely closed values; see [11]. In fact,

by replacing the original topology of H by its finitely generated extension, we can

eliminate “finitely”.

2. From Theorem 5.3, we can obtain another particular forms in [3, Theorems 2 and 3].

It is well-known that any family of closed balls in a hyperconvex metric space has

nonempty intersection whenever each two members of the family intersects. More pre-

cisely, we have the following [13, p.406]:

Lemma 5.4. (Penot) Let (H, d) be a hyperconvex metric space and {Aα}α∈Λ ⊂ A(H).

If for each α, β ∈ Λ, Aα ∩Aβ 6= ∅, then
⋂

α∈ΛAα 6= ∅.

Note that Lemma 5.4 simply tells that, for a family of admissible subsets of a hy-

perconvex metric space, the finite intersection property implies the whole intersection

property. As was shown by the celebrated Ky Fan lemma [7], this fact is usually shown

under some extra compactness assumption.

Theorem 5.5. Let (E,D; Γ) be an abstract convex space and H a hyperconvex metric

space. If F ∈ KC(E,H) and G : D → A(H) is a KKM map with respect to F , then⋂
z∈D G(z) 6= ∅.
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Proof. Since F ∈ KC(E,H) and G : D → A(H) is a closed-valued KKM map with
respect to F , the family {G(z) | z ∈ D} ⊂ A(H) has the finite intersection property.
Now, by Lemma 5.4, we have the conclusion.

Note that Theorem 5.5 reduces to [4, Theorem 5] and [5, Theorem 1] when E = D is
a metric space.

Corollary 5.6. [5, Corollary 1] Let X be a Γ-convex subset of a hyperconvex metric
space (H ⊃ X ; Γ). If F ∈ KC(X,X) and G : X ∩D → A(X) is a KKM map with respect
to F , then G has a fixed point.

From Theorem B, we have another whole intersection property as follows:

Theorem 5.7. Let (E,D; Γ) be an abstract convex space and H a hyperconvex metric
space. Suppose that F ∈ KC(E,H), S : D → A(H) and T : E ⊸ H are maps satisfying

(1) S : D → A(H) is a KKM map with respect to F ;

(2) for each x ∈ E, F (x) ⊂ T (x); and

(3) for each y ∈ F (E), M ∈ 〈D \G−(z)〉 implies ΓM ⊂ E \H−(z).

Then
⋂

z∈D S(z) 6= ∅.

Proof. Since F ∈ KC(E,H) and S : D → A(H) is a closed-valued KKM map with
respect to F , by Theorem B, the family {S(z) | z ∈ D} ⊂ A(H) has the finite intersection
property. Now, by Corollary 5.6, the family has the whole intersection property.

Theorem 5.8. Let (E,D; Γ) be an abstract convex space and H a hyperconvex metric
space. Suppose that

(1) F ∈ KC(E,H);

(2) G : D ⊸ H is a KKM map with respect to F ; and

(3) for each z ∈ D, F (E) ∩G(z) is admissible in H.

Then F (E) ∩
⋂
{G(z) | z ∈ D} 6= ∅.

Proof. Define a map G′ : D → A(H) by G′(z) := F (E) ∩ G(z) for each z ∈ D. Since
F (ΓA) ⊂ G(A) for each A ∈ 〈D〉 by (ii), we have

F (ΓA) ⊂ F (A) ∩G(A) = G′(A)

and hence, G′ is a KKM map with respect to F . Then, by Theorem 5.5,
⋂

z∈D G′(z) 6= ∅.,
which is the conclusion.

Theorem 5.8 reduces to [5, Theorem 2] whenever E = D = X is a metric space and
F (X) and each G(z) are admissible.

Remark. In Theorem 5.7, instead of (iii), we may assume
(iii)′ G has closed values and F (X) is compact.

Applying Lemma 5.4, we obtain the following Ky Fan type matching theorem:
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Theorem 5.9. Let (E,D; Γ) be an abstract convex space, H a hyperconvex metric space,

S : D ⊸ H, and F ∈ KC(E,H) satisfying

(1) S is open-valued;

(2) for each z ∈ D, Sc(z) := H \ S(z) is admissible; and

(3) H = S(D).

Then there exists an A ∈ 〈D〉 such that F (ΓA) ∩
⋂
{S(z) | z ∈ A} 6= ∅.

Proof. Suppose, on the contrary, that F (ΓA) ⊂
⋃
{Sc(z) | z ∈ A} for each A ∈ 〈D〉.

Hence Sc is a closed-valued KKM map with respect to F . Since F ∈ KC(E,H), the

family {Sc(z) | z ∈ D} of admissible subsets of H has the finite intersection property.

Then by Lemma 5.4, we have
⋃
{Sc(z) | z ∈ D} 6= ∅. This contradicts (3).

Theorem 5.9 reduces to [5, Theorem 3] whenever E = X is a metric space, D = I is

a subset of X , and S(z) = Uz.

The following coincidence theorem follows from Theorem 5.9:

Theorem 5.10. Let (E,D; Γ) be an abstract convex space, H a hyperconvex metric

space, F ∈ KC(E,H) and S : D ⊸ H a map satisfying (1)−(3) of Theorem 5.8. More-

over, if

(4) T : E ⊸ H is a map satisfying coΓS
−(y) ⊂ T−(y) for each y ∈ H,

then there exists an x̄ ∈ E such that F (x̄) ∩ T (x̄) 6= ∅.

Proof. Applying Theorem 5.9, there exist an A ∈ 〈D〉, an x0 ∈ ΓA and a y0 ∈ F (x0)

such that y0 ∈
⋂
{S(z) | z ∈ A}. Since z ∈ A implies z ∈ S−(y0), and hence x0 ∈ ΓA ⊂

coΓS
−(y0) ⊂ T−(y0). Therefore y0 ∈ F (x0) ∩ T (x0).

Theorem 5.10 reduces to [4, Theorem 7] and [5, Theorem 4] whenever E = D = X is

a metric space.

In the last section of [5], its authors applied Theorem 5.5 to some abstract forms of

generalized variational inequality problems. All of the results in [5, Section 3] can be

generalized by our method.

The following is a Ky Fan type minimax inequality:

Theorem 5.11. Let (E,D; Γ) be an abstract convex space, H a hyperconvex metric

space, F ∈ KC(E,H). Suppose that ϕ : D × H → R and ψ : E × H → R are real

functions satisfying

(1) ψ(x, y) < 0 for each (x, y) ∈ Gr(F );

(2) for each z ∈ D, {y ∈ H | ϕ(z, y) ≤ 0} is admissible; and

(3) for each y ∈ H, coΓ{z ∈ D | ϕ(z, y) > 0} ⊂ {x ∈ E | ψ(x, y) > 0}.

Then there exists a y0 ∈ H such that ϕ(z, y0) ≤ 0 for each z ∈ D.
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Proof. Define two maps T : E ⊸ H and G : D ⊸ H by

T (x) := {y ∈ H | ψ(x, y) ≤ 0} for x ∈ E and G(z) := {y ∈ H | ϕ(z, y) ≤ 0} for z ∈ D.

By (1), we have Gr(F ) ⊂Gr(T ). By (2), each G(z) is admissible. Moreover, by (3), for
each A ∈ 〈D〉 and for each y ∈ T (ΓA),

ϕ(z, y) > 0 for all z ∈ A implies ψ(x, y) > 0 for all x ∈ ΓA,

or equivalently,

ψ(x, y) ≤ 0 for some x ∈ ΓA implies ϕ(z, y) ≤ 0 for some z ∈ A.

Therefore y ∈ T (ΓA) ⊂ G(A) and hence F (ΓA) ⊂ G(A) for each A ∈ 〈D〉. Since
G : D → A(H) is a closed-valued KKM map with respect to F ∈ KC(E,H), by Theorem
5.5, we have a y0 ∈

⋂
z∈D G(z), that is, ϕ(z, y0) ≤ 0 for each z ∈ D.

Theorem 5.11 reduces to [5, Theorem 5] whenever E = D = X is a metric space.
Similarly all of other results in Section 3 of [5] can be stated for an abstract convex

spaces (E,D; Γ) instead of a metric space (X ; Γ). Moreover, note that [4] contains similar
contents of [5].
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